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Shiba chains of scalar impurities on unconventional superconductors
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We show that a chain of nonmagnetic impurities deposited on a fully gapped two- or three-dimensional
superconductor can become a topological one-dimensional superconductor with protected Majorana bound states
at its end. A prerequisite is that the pairing potential of the underlying superconductor breaks the spin-rotation
symmetry, as it is generically the case in systems with strong spin-orbit coupling. We illustrate this mechanism
for a spinless triplet-superconductor (px + ipy) and a time-reversal symmetric Rashba superconductor with a
mixture of singlet and triplet pairing. For the latter, we show that the impurity chain can be topologically nontrivial
even if the underlying superconductor is topologically trivial.
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I. INTRODUCTION

Majorana bound states are a distinctive feature of topo-
logical superconductors. To verify the exotic properties that
theory attributes to them, in particular their non-Abelian
braiding statistics [1,2], Majorana modes have to be obtained as
controllable, localized excitations. For that reason, significant
research efforts are focused on one-dimensional (1D) topologi-
cal superconductors, in which Majorana states naturally appear
as zero-dimensional, i.e., fully localized, end states [3–11].

One of the ways to create a topological 1D superconductor
is through the deposition of a chain of magnetic adatoms
on the surface of a thin-film or bulk superconductor. If
these adatoms order magnetically the chain can become
a 1D topological superconductor, even if the underlying
superconductor is of s-wave spin-singlet type [12–26]. The
key point in this construction is that magnetic impurities in
s-wave superconductors feature so-called Shiba midgap bound
states [18,21,27–30], which can hybridize along the chain and
experience band inversion. The appearance of Shiba states can
be intuitively understood from “Anderson’s theorem” [31],
stating that s-wave superconductivity is (locally) suppressed
by magnetic impurities.

Here, we exploit a second implication of “Anderson’s the-
orem,” namely the fact that unconventional superconducting
pairing is suppressed by nonmagnetic impurities [32–37]. We
ask the question under which conditions bound states of a
chain of nonmagnetic scalar impurities can hybridize in such a
way that they form a 1D topological superconductor [38].
In particular, such a construction involving nonmagnetic
impurities could allow for time-reversal symmetric (TRS) 1D
superconductors with Kramers pairs of Majorana end states.

We consider two examples for the underlying unconven-
tional superconductor: (i) a TRS superconductor with Rashba
spin-orbit interaction that mixes s-wave singlet and p-wave
triplet pairing and (ii) a spinless TRS breaking p-wave
superconductor. While the latter is per se a bulk topological
superconductor that in itself supports Majorana edge modes,
the former can either be in a topological or in a trivial
phase, depending on whether the triplet or the singlet pairing
dominates. We find that the chain of nonmagnetic impurities

can support Majorana end modes, both in the topological and
trivial phase of the underlying superconductor, provided that
the triplet pair potential is sufficiently large. Despite the fact
that the required fully gapped unconventional or strong-Rashba
superconductors are much less abundant than conventional s-
wave superconductors, several promising examples have been
discovered and examined recently. This includes thin-film and
interface superconductors such as LaAlO3/SrTiO3 [39] and
single layer of FeSe on SrTiO3 [40] as well as bulk materials
such as Sr2RuO4 [41] and CePt3Si [42]. The observation of
Majorana bound states at the end of nonmagnetic adatom
chains deposited on these superconductors would also confirm
their unconventional pairing in a way similar to Andreev
boundary states at edges and interfaces [43–48].

This paper is structured as follows. We start by giving an
intuitive explanation for transitions in the ground state parity
of isolated impurities in Sec. II. In Sec. III we explain the
framework for deriving an effective Hamiltonian of hybridized
bound states of a one-dimensional scalar impurity chain on the
surface of a superconductor. We subsequently apply this to the
case of a noncentrosymmetric TRS Rashba superconductor in
Sec. IV and show that the impurity chain can be in a topological
phase on a trivial superconductor. In Sec. V we complement
our analytical results with a numerical analysis of a lattice
model. Finally, in Sec. VI we discuss the case of a spinless
chiral p-wave superconductor.

II. PARITY TRANSITIONS OF SCALAR IMPURITIES

We start by giving an intuitive picture as to why impurity
sites in s- and p-wave superconductors can bind impurity states
(the Shiba states) and why those can experience a topological
transition, at which the parity of the many-body ground state
changes. To this end, we consider the simplest noninteracting
model of a single site and a pair of sites, respectively, but work
in its many-body Hilbert space.

In symmetry class D (which applies to chiral p-wave super-
conductors) the Z2 topological index of a 1D superconductor
denotes the change in fermion parity of the ground state as a
flux π is inserted through a system with periodic boundary
conditions. This parity change can even be observed in
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zero-dimensional models of isolated impurities and provides
basic intuition whether and how a 1D chain of scalar impurities
has the potential to undergo a topological phase transition.
Here, we discuss this minimal model for a parity changing tran-
sition for one and two sites populated with spinless fermions
and for a single site populated with spinful fermions. These
trivial models provide insight into why in-gap Shiba states
can be present in scalar impurities placed in superconductors,
complementing the more well known situation of Shiba states
occurring in magnetic impurities.

1. Spinless fermions

A single spinless fermion cannot exhibit superconducting
pairing. Irrespective of that, we see that an on-site chemical
potential μ can change the parity P of the ground state, for the
latter is given by sgnμ. In the occupation basis (|0〉,|1〉), the
Hamiltonian reads

H =
(

0 0
0 −μ

)
. (1)

Any other terms in the Hamiltonian violate the conservation
of fermion parity. The ground state is given by |0〉 and |1〉 for
μ < 0 and μ > 0, respectively, with opposite parity.

The minimal extension to this model that accounts for
superconducting pairing includes two sites with spinless
fermions. In this case, we can have triplet—but not singlet—
superconducting pairing. In the basis (|0,0〉,|1,0〉,|0,1〉,|1,1〉),
the Hamiltonian reads

H =

⎛
⎜⎝

0 0 0 �

0 −μ t 0
0 t −μ 0
� 0 0 −2μ

⎞
⎟⎠, (2)

where t is the hopping integral between the two sites. The
energies are

εeven = ±
√

�2 + μ2 − μ, εodd = ±t − μ. (3)

Whenever |t | > � (commonly referred to as the weak pairing
phase), we can induce a parity change of the ground state
(protected crossing) by changing the chemical potential at

μ2 = t2 − �2. (4)

For smaller |μ|, the ground state has odd parity; for larger |μ|, it
has even parity. This is in line with the behavior of bound states
of two impurities in p-wave superconductors: they exhibit a
protected crossing in the bound state spectrum. The presence
of this protected crossing implies the existence of subgap Shiba
states in the energy spectrum: since a protected crossing has to
occur upon varying μ, which could be considered as modeling
the scalar impurity strength, it must be that subgap E < �

states exist—these are the Shiba states.

2. Spinful fermions

A single site with a spinful fermion degree of freedom will
allow for singlet superconducting pairing �. We also apply a
Zeeman field B in the direction of the spin-quantization axis.

In the basis (|0,0〉,|↑,0〉,|0,↓〉,|↑,↓〉), the Hamiltonian reads

H =

⎛
⎜⎝

0 0 0 �

0 −μ + B 0 0
0 0 −μ − B 0
� 0 0 −2μ

⎞
⎟⎠. (5)

The energies are

εeven = ±
√

�2 + μ2 − μ, εodd = ±B − μ. (6)

We observe a level crossing protected by parity symmetry at

B2 = �2 + μ2. (7)

For smaller |B|, the ground state has even parity; for larger
|B|, it has odd parity. This is congruent with the behavior of a
ferromagnetic Shiba chain on an s-wave superconductor. This
model also indicates that a density impurity cannot induce a
subgap bound state deep in an s-wave superconducting gap,
because μ does not induce any phase transition in this model
for B = 0.

III. EFFECTIVE HAMILTONIANS FOR SCALAR
SHIBA CHAINS

Before we consider a specific model system, let us outline
the general derivation of an effective Hamiltonian for the chain
of scalar impurities following Ref. [18]. We consider a two-
dimensional (2D) superconductor with Hamiltonian

H0 :=
∫

d2k
(2π )2

�†(k)Hk�(k), (8)

where �†(k) = (c†k↑,c
†
k↓,c−k↓, − c−k↑) is the 4-spinor-valued

annihilation operator of a Bogoliubov quasiparticle at momen-
tum k and Hk is the (4 × 4) Bogoliubov–de Gennes (BdG)
Hamiltonian including the spin and particle-hole grading [49].

On this superconductor, impurities are deposited at po-
sitions rn = ane1, n ∈ Z, i.e., with distance a along the
1-direction. For a δ-function density impurity of strength U ,
the impurity Hamiltonian reads

Himp = −U

2

∑
n

�†(rn)X03�(rn)

= −U

2

∫ π/a

−π/a

dk1

2π
�†(k1)X03�(k1), (9)

with k1 ∈ [−π/a,π/a), where we use the notation Xμν =
σμ ⊗ τν for the tensor product of Pauli matrices σμ and τμ,
μ = 0, . . . ,3, that act on spin-space and on particle-hole space,
respectively, with τ0 and σ0 being the identity matrices. Here,
�(r) is the Fourier transform of �(k) and the 4-spinor �†(k1)
is defined as

�†(k1) :=
∑

n

∫ ∞

−∞

dk2

2π
�†(k1 + 2πn/a,k2). (10)

Notice that �†(k1) is periodic in k1 with period 2π/a, while
the momentum k ∈ R2.

The Schrödinger equation for the superconducting electrons
in the presence of the chain of impurity potentials, governed
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by the Hamiltonian H0 + Himp, reads

(
Ek1 − Hk

)
�(k) = −U

2
X03�(k1), (11)

where k = (k1 + 2πn/a,k2), n ∈ Z. We note that k1, but not
k, is a good quantum number which can be used to label
the energies. After multiplication with (Ek1 − Hk)−1 from the
left, integration over k2, and summation over all momenta
k1 = k1 + 2πn/a on both sides, it can be transformed into an
eigenvalue equation for �(k1)

�(k1) = U

2
R
(
k1,Ek1

)
�(k1), (12)

where we defined

R
(
k1,Ek1

)
:=
∑

n

∫ ∞

−∞

dk2

2π

(
Hk1+2πn/a,k2 − Ek1

)−1
X03 (13)

as a (2π/a)-periodic matrix-valued function of k1. Analyt-
ically, the only solution possible is in the case where the
impurity bound states hybridize into a band of energies Ek1

well below the bulk gap of the superconductor so that we can
perform the expansion

R
(
k1,Ek1

) = g(k1) + f (k1)Ek1 + O
(
E2

k1

)
. (14)

In particular, this expansion is justified as we are primarily
interested in topological phase transitions of the Shiba wire at
which the energy eigenvalue Ek1 vanishes. Inserting Eq. (14)
in Eq. (12) yields the effective Hamiltonian of the 1D chain of
impurity bound states

Hchain
k1

= f −1(k1)

[
2

U
− g(k1)

]
, (15)

provided that f (k1) is invertible for all k1 ∈ [−π/a,π/a).

IV. CONTINUUM MODEL FOR A RASHBA
SUPERCONDUCTOR

So far, we have outlined the general derivation without
assuming anything about the band structure or pairing potential
of the underlying superconductor. We now particularize to
the continuum limit of a 2D system with Rashba spin-orbit
coupling of strength α and a superconducting pairing potential
that mixes an s-wave spin-singlet component �s with a p-wave
spin-triplet component �t. The Hamiltonian

Hk =
(

k2

2m
− μ

)
X03 + α(k2X13 − k1X23)

+�sX01 + �t (k2X11 − k1X21) (16)

has the eigenvalues

E2
k;λ =

(
k2

2m
− μ + λα|k|

)2

+ (�s + λ�t |k|)2, (17)

with λ = ±. The TRS represented by T = X20K and the
particle hole symmetry P = X22K square to −1 and +1,
respectively (K is complex conjugation). This places the model
in class DIII in the classification of Refs. [50,51] with a
Z2 topological classification in 2D. If �s = −λ�tkλ, a gap-
closing phase transition between the trivial and topological
phase of the superconductor occurs (see Fig. 1). The trivial

FIG. 1. Normal state band structure of the 2D superconductor
with Rashba-split bands as defined in Eq. (16). When a mixture of
singlet and triplet pairing gap is induced, the superconductor can be
in (a) a topological phase or (b) a trivial phase, depending on the
relative position of the nodes of �λ = �s + λ|k|�t (green dots) with
respect to the Fermi momentum kλ. For the topological properties
of a scalar Shiba chain, the relative position of these nodes with
respect to the Fermi momentum in the chain, rather than that of the
2D superconductor, is crucial.

phase is the one that is adiabatically connected to the limit
|�t| → 0. Here, kλ :=

√
2mμ + m2α2 + λmα are the Fermi

momenta of the normal state band structure. In the limit α → 0
and �s → 0, this model reduces to two copies of spinless
chiral p-wave superconductors. Following our analysis of the
full model, we will discuss this limit more specifically. We
emphasize that this is a simplified, low energy effective model.
The strong-coupling form of the gap can be quite different and
influence our results.

In passing from the underlying 2D superconductor Hamilto-
nian (16) to the effective 1D Shiba-chain Hamiltonian (15), the
integration over k2 will eliminate all terms odd in k2. These will
be the terms proportional to the Pauli matrix σ1. To understand
this, we observe that the 2D model has a mirror-symmetry
e2 → −e2. For the Hamiltonian (16), this mirror-symmetry
acting in spin and orbital space simultaneously is represented
by Hk1,k2

→ X20Hk1,−k2
X20. [The impurity Hamiltonian (9)

is also explicitly invariant under the mirror operation.] This
representation of the mirror symmetry also holds for the
inverse of Hk that enters the effective Hamiltonian Hchain

k1
via

Eq. (13). Since the effective Hamiltonian (15) is obtained
by integration over k2, the action of the mirror operation
on it reduces to Hchain

k1
→ X20Hchain

k1
X20. This is equivalent

to the conservation of spin in the 2-direction. The effective
Hamiltonian (15) then only contains terms proportional to σ0

and σ2, restoring a U (1) spin-rotation symmetry around the σ2

axis. It is a consequence of this extra U (1) symmetry thatHchain
k1

is also invariant under the time-reversal symmetry of spinless
fermions T ′ = X20T = X00K which squares to +1. This extra
symmetry elevates Hchain

k1
from the symmetry class DIII of the

underlying system to symmetry class BDI, which features a Z
classification in 1D. At the same time, it provides a simple way
to determine the topological index of the model. The index of
class BDI is an integer winding number w that determines the
number of Kramers pairs of Majorana end states. In class DIII,
the Z2 index is the parity of this winding number. A similar
shift of the symmetry class also appears in magnetic Shiba
chains realized experimentally in Ref. [24].

In the eigenspaces of σ2 with eigenvalue s2 = ±1 the
effective Hamiltonian reads Hchain

k1;s2
= d(k1,s2) · τ/fk1;s2 (a τ0

term would not respect T and P), where

d(k1,s2) = (
�sfk1;s2 + �tg̃k1;s2 ,0,2/U − gk1;s2

)T
(18a)
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is defined in terms of the scalar functions

fk1;s2 : =
∑

n

∑
λ=±

∫
dk2

2π

1 + s2λk1/|k|
2E2

k;λ

,

gk1;s2 : =
∑

n

∑
λ=±

∫
dk2

2π

(
k2

2m
− μ + λα|k|

)
1 + s2λk1/|k|

2E2
k;λ

,

g̃k1;s2 : =
∑

n

∑
λ=±

∫
dk2

2π

λ|k| + s2k1

2E2
k;λ

, (18b)

and we have implied the notation k = (k1,k2) = (k1 +
2πn/a,k2) on the right-hand sides of the equations. Notice
that the factor fk1;s2 is manifestly positive for all k1.

To simplify matters, we would like to consider the Hamil-
tonian (18) in the limit of infinitesimal superconducting gaps
�s and �t. To lowest order, the Hamiltonian only depends on
the sign γλ := sgn(�s − λ�tkλ) of the pairing potential on the
two Fermi surfaces at momenta kλ, for (see Appendix A for
the derivation)

d1(k1,s2) ≈ m
∑

n

∑
λ=±

γλ

k+ + k−

kλ − s2λk1√
k2
λ − k2

1

, (19a)

gk1;s2 ≈ m

k+ + k−

∑
n

∑
λ,λ′=±

Re

⎧⎨
⎩kλ + s2λ k1√

k2
1 − k2

λ

×
⎡
⎣1

2
+ λλ′

π
arctan

⎛
⎝ kλ√

k2
1 − k2

λ

⎞
⎠
⎤
⎦
⎫⎬
⎭, (19b)

where it is understood that only the terms with k2
1 < k2

λ

contribute to the sum for d1(k1,s2). The n dependence of
the sum rests in k1 = k1 + 2πn/a. Formally, the sum in
gk1;s2 is ultraviolet divergent. Introducing a Debye-frequency
cutoff for the superconducting interaction energy scale much
larger than �s, and �tk+ and much smaller than μ, is the
physical cure to this divergence. The square-root singularities
in Eqs. (19b) and (19a) are regulated if higher-order
contributions in �t are considered.

Let us now explore the topological properties of the 1D
chain. As the form of Hamiltonian (18) suggests, the winding
number w equals the number of windings of d(k1,s2) around
the origin of the 1-3-plane as k1 changes from −π/a to π/a.
A prerequisite for a nonvanishing winding number is that both
components d1(k1,s2) and d3(k1,s2) change sign as a function
of k1 ∈ [−π/a,π/a). In particular, the expansions in Eq. (19a)
can be analyzed in this light. If γ+ = γ−, which is precisely
the condition for the underlying 2D superconductor to be
topologically trivial, the lowest order expansion of d1(k1,s2),
Eq. (19a), does not change sign as function of k1. In contrast,
when γ+ = −γ−, i.e., if the underlying 2D superconductor is
topologically nontrivial, the summand in Eq. (19a) diverges to
(γλ∞), when k1 → −λs2kλ. If we include the folding of the
momentum to the Brillouin zone k1 ∈ [−π/a,π/a), this means
that d1(k1,s2) diverges to (γ+∞) at k1,+ := (−s2k+)mod 2π/a
and to (γ−∞) at k1,− := (s2k−)mod 2π/a. Thus d1(k1,+) has
to change sign between k1,− and k1,+ if γ+ = −γ−. Due to the
2π/a periodicity in k1, d1(k1,s2) has thus at least two zeros
in the interval k1 ∈ [−π/a,π/a). Denote these zeros by k1,0

and k′
1,0, and let us consider the case where these are the only

zeros of d1(k1,s2). For the winding number w to be nontrivial,
d3(k1,s2) has to change sign between these two zeros.
Generically, the function gk1,s2 that enters d3(k1,s2) will take
different values at the two zeros. Let us assume, without loss
of generality, gk1,0,s2 < gk′

1,0,s2 . Then, according to Eq. (18a),
if U ∈ (2/gk′

1,0,s2 ,2/gk1,0,s2 ) the component d3(k1,s2) changes
sign between the two zeros and the winding number is one. Our
considerations thus show how the impurity chain becomes a
nontrivial 1D superconductor, if the underlying superconduc-
tor is topological, U lies in the appropriate range, and d1(k1,s2)
has only two zeros. If one of these conditions is not met,
however, the chain may remain in a topologically trivial state.

A natural question that follows from these observations
is whether the nontrivial topology of the underlying super-
conductor is a prerequisite for the impurity chain to become
topological. We will now argue that this is not the case. First,
we show analytically that Eqs. (18b) allow for this scenario
in a certain limit. Second, we numerically solve finite systems
and show the existence of Majorana bound states in a chain of
scalar impurities on a trivial superconductor.

For the analytical argument, we consider the simplified case
k+ = k− and the limit ak± � π . By treating the underlying
2D superconductor in the continuum limit, we have assumed
that its lattice constant a is much smaller than that of the chain
a � a. In a lattice description of the 2D superconductor,
its Brillouin zone [−π/a,π/a) is thus much larger than that
of the chain [−π/a,π/a). The constraint that the Fermi
momenta lie in the smaller chain Brillouin zone ak± � π is
thus satisfied if the chemical potential of the superconductor
is sufficiently low. Then, the expansion of d1(k1,s2) to lowest
(zeroth) order in the gap functions, as given by Eq. (19a),
vanishes identically for k± < |k1| < π/a (while it has definite
sign γ+ = γ− otherwise). We thus have to appeal to the next
(linear) order corrections in the superconducting gaps to this
result, and in particular ask whether they allow for a sign
change of d1(k1,s2) for k1 with k± < |k1| < π/a. In the limit
ak± � π , due to the denominator, it is sufficient to restrict
the sums over n in Eqs. (18b) to the n = 0 term. Further, if we
also restrict ourselves to small |k1| � π/a, we can expand
the terms in k1, with the understanding that k± < k1 � π/a,
and obtain d1(k1,s2) ≈ m2(�s + s2k1�t)/|k1|3, as well as
gk1;s2 ≈ |k1|−1 (see Appendix B). We observe that d1(k1,s2)
indeed changes sign at momentum k(0)

1 = −s2�s/�t. (Note
that the condition to have a trivial underlying superconductor
γ+ = γ− implies |k(0)

1 | > k±.) One can take advantage of this
sign change in d1 by choosing U in such a way that the vector
d(k1,s2) winds. Thus the chain of scalar impurities can be
topologically nontrivial, hosting a Kramers pair of Majorana
bound states at its end, even if the underlying superconductor
is topologically trivial.

This mathematical result has an intuitive understanding. If
the 2D superconductor has a sizable triplet pair potential, there
is a circle at |k| = |�s/�t| in the k1-k2 plane along which the
gap function is nodal. If the 2D superconductor is topologically
trivial, the Fermi surfaces of the metallic state before pairing
lie inside this nodal circle, i.e., the Fermi momenta satisfy
k± < |�s/�t|. The impurity chain, on the other hand, will
have its own independent Fermi momentum kF,1D. The chain
is in a nontrivial state if the paring potential is of opposite
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sign on the two Fermi points of the chain, that is, if the nodal
line of the order parameter lies between the 2D and 1D Fermi
momenta k± < |�s/�t| < kF,1D. We note that this is a one-
body consideration beyond the weak pairing limit (requires the
superconducting gaps to be well formed for a larger k-space
region than just the superconductor Fermi surfaces), and might
not survive a self-consistent calculation.

V. LATTICE MODEL FOR A RASHBA
SUPERCONDUCTOR

We have obtained the analytical result as a proof of principle
in the limit |k1| � π/a in order to make the calculation
tractable. However, the general statement that nontrivial chain
topology can emerge out of a trivial substrate (in BdG
formalism) is not restricted to this limit, as we now show
numerically. To that end, consider the BdG Hamiltonian

H =
∑
r∈�

∑
s=±

∑
j=1,2

[
tc†r,scr+ej a,s + (is)j�tc

†
r,sc

†
r+ej a,s

]

+
∑
r∈�

[∑
s=±

Ur − μ

2
c†r,scr,s + �s c

†
r,↑c

†
r,↓

]
+ H.c.

(20)

defined on a square lattice � = L1 × L2, spanned by the
vectors e1a and e2a, with periodic boundary conditions. Here,
c
†
r,s creates an electron of spin s at site r , while t and μ

are the nearest neighbor hopping integrals and the chemical
potential, respectively. The local potential Ur takes the nonzero
value U along the Shiba chain of length L < L1, say for
r1/a = 0, . . . ,L and r2 = 0, while it vanishes otherwise.
Figure 2 shows that for a choice of t and μ, for which the
2D Fermi surface is small, there exists a Kramers pair of
exponentially localized Majorana bound states at each end of
the chain for values of the pairing potential �t that lie below
the bulk trivial to topological superconductor phase transition.

VI. CHIRAL p-WAVE SUPERCONDUCTOR

Before closing, let us discuss topological properties of a
chain of scalar impurities on a chiral p-wave superconductor
of spineless fermions. The Hamiltonian for this system is
readily obtained by evaluating Hamiltonian (18) for one spin
species (say s2 = +1) in the limit α → 0 and �s → 0. In this
case, d1(k1) defined in Eq. (18a) is odd in k1 and therefore
d1(0) = d1(π/a) = 0, while d3(k1) is even in k1. We can thus
conclude that the winding number w is odd (and thus the
phase topologically nontrivial), whenever d3(k1) changes sign
between k1 = 0 and k1 = π/a, i.e., if

(2/U − g0)(2/U − gπ/a) < 0, (21)

provided that the spectrum is fully gapped.
In the limit of in infinitesimal p-wave gap �tkF � μ, the

function g from Eq. (18b) reduces to

gk1 := m
∑

n

[
(k1 + 2πn/a)2 − k2

F

]−1/2
, (22)

where the sum is only taken over the values of n for which the
summand is real and kF = √

2mμ. Observe that g0 and gπ/a

FIG. 2. Topological chain of scalar impurities on a nontopologi-
cal 2D superconductor. (a) Lowest eigenvalues of Hamiltonian (20)
for μ/t = 3.5, �s/t = 0.16, L1 × L2 = 2000 × 26, and L = 1800.
Between �t/t ∼ 0.08 and �t/t ∼ 0.12 the chain is in a topological
and the underlying superconductor are in a trivial phase. (b) The
Kramers pair of Majorana modes at each end of the chain is
exponentially localized. (c) Phase diagram as a function of the triplet
pairing potential �t and the strength of the scalar impurities U ,
with the color scale representing the lowest energy eigenvalue of
Hamiltonian (20). Thus blue regions in the phase diagram either
indicate the presence of Majorana end states or a gapless bulk
superconductor. The shaded region between the solid lines marks
the topological phase transition of the 2D bulk superconductor. The
dashed line shows an analytical estimate for the topological phase
transition in the chain. It is obtained by restricting Hamiltonian (20)
to the lattice sites on the chain only, with the inclusion of second order
virtual processes that correspond to hopping one site away from the
chain and back.

diverges when kFa/(2π ) approaches from below an integer
and half-integer value, respectively. We conclude that for
sufficiently small impurity potentials U , there exists a series of
topological transitions between phases with w = 1 and with
even w, made by the phase transition lines in see Fig. 3 as
a function of the impurity spacing a, for values of a slightly
below half-integer or integer multiples of the Fermi wavelength

FIG. 3. Phase diagram for the 1D chain of nonmagnetic impuri-
ties on a chiral p-wave superconductor as a function of the strength
of the impurity potential U and the spacing a of the impurity atoms
in units of the Fermi wavelength 2π/kF of the chiral superconductor.
The colored regions correspond to different values of the topological
index w of the 1D chain, which has been evaluated numerically in
the presence of a small regulating gap �t. Physically, w equals the
number of Majorana end modes of the chain.
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2π/kF. The red and blue phase boundaries in Fig. 3 are the
values of g0/m and gπ/a/m defined in Eq. (22) and border
the region where w = 1 according to condition (21). The
explicit numerical evaluation of the winding number w reveals
an even richer structure including regions in the U–(kFa)
phase diagram in which w = 2. We explicitly checked that the
Hamiltonian is gapped for all the phases presented in Fig. 3.

VII. DISCUSSION

In summary, we have shown that a chain of scalar
impurities that is deposited on fully gapped unconventional
superconductors can be a topologically nontrivial 1D super-
conductor. We have exemplified this for the case of a chiral
p-wave superconductor and for a Rashba spin-orbit coupled
superconductor with both singlet and triplet pairing potential.
In the latter case, the impurity chain can be in a nontrivial

phase, even if the underlying superconductor is topologically
trivial. However, for this to happen, the oder parameter must
be nodal for momenta outside the Fermi sea—not necessarily
a generic situation.

We hope our results will stimulate work on nonmagnetic
impurities on Sr2RuO4. The system we considered may
naturally occur at step edges [52,53] and related linear defects
on the surface of such chiral superconductors. Our results
suggest that the ends of such linear defects could carry
interesting bound states.
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APPENDIX A: DERIVATION OF EQ. (19)

Starting from Eq. (18b), we want to consider the limit of small �s and �t. We rewrite

E2
k;λ = 1

(2m)2

[
(|k| + kλ)2(|k| − k−λ)2 + δ2

λ,|k|
]
, (A1)

where

δλ,|k| := 2m(�s + λ�t |k|). (A2)

We will need the following two integrals. We are only interested in the lowest order nonvanishing terms in δλ,|k|, which is order
O(1/δλ,|k|) for the first integral and O(1) for the second integral. The first integral is defined by

I1,−λ(k1): =
∫

dk2

2π

1(√
k2

1 + k2
2 − kλ

)2(√
k2

1 + k2
2 + k−λ

)2 + δ2
−λ,kλ

= 1

2iδ−λ,kλ

∑
γ=±

γ

∫
dk2

2π

1(√
k2

1 + k2
2 − kλ

)(√
k2

1 + k2
2 + k−λ

)− iγ δ−λ,kλ

= 1

2iδ−λ,kλ

∑
γ=±

γ

∫
dk2

2π

1(√
k2

1 + k2
2 − kλ − i

γ δ−λ,kλ

k++k−

)(√
k2

1 + k2
2 + k−λ + i

γ δ−λ,kλ

k++k−

)+ O
(
δ2
−λ,kλ

) . (A3)

We compute the integral (for κλ := kλ/|k1| > 1)

∫
dκ

1

(
√

1 + κ2 − κλ − i�)(
√

1 + κ2 + κ−λ + i�)

= 1

κ+ + κ− + 2i�

∑
λ′=±

(κλ′λ + i�)√
1 − (κλ′λ + i�)2

[
arctan

(
κ√

1 − (κλ′λ + i�)2

)
+λ′ arctan

(
κ(κλ′λ + i�)√

1 + κ2
√

1 − (κλ′λ + i�)2

)]κ=+∞

κ=−∞

= 1

κ+ + κ− + 2i�

∑
λ′=±

(κλ′λ + i�)√
1 − (κλ′λ + i�)2

⎡
⎣π (1 + λ′) + 2λ′i sgn(�)artanh

⎛
⎝
√

κ2
λ′λ − 1

κλ′λ

⎞
⎠
⎤
⎦+ O(�)

= i sgn(�)

κ+ + κ−

∑
λ′=±

κλ′λ√
κ2

λ′λ − 1

⎡
⎣π (1 + λ′) + 2λ′i sgn(�)artanh

⎛
⎝
√

κ2
λ′λ − 1

κλ′λ

⎞
⎠
⎤
⎦+ O(�), (A4)

094508-6



SHIBA CHAINS OF SCALAR IMPURITIES ON . . . PHYSICAL REVIEW B 93, 094508 (2016)

with artanh the inverse of the hyperbolic tangent. Notice that �, that will be substituted by γ δ−λ,kλ
/[|k1|(k+ + k−)] with

γ = ±, λ = ±, is a dimensionless number. Here we used

arctan

(
a + ib√

1 − (a + ib)2

)
= π

2
+ i sgn(b) artanh

(√
a2 − 1

a

)
+ O(b) (A5)

and

a + ib√
1 − (a + ib)2

= i sgn(b)
a√

a2 − 1
+ O(b). (A6)

We now use Eq. (A4) to determine Eq. (A3) with κ = k2/|k1|, κλ′λ = kλ′λ/|k1|, and � = γ δ−λ,kλ
/[|k1|(k+ + k−)] for the case

kλ > |k1|

I1,−λ(k1) = 1∣∣δ−λ,kλ

∣∣ kλ

k+ + k−

1√
k2
λ − k2

1

+ O(1), (A7)

where O(1) = O(|δ−λ,kλ
/[k1(k+ + k−)]|0). In contrast, if kλ < |k1| the integral in Eq. (A3) is completely regular in the limit

δ−λ,kλ
→ 0, so that we conclude that the leading order in δ−λ,kλ

is given by

I1,−λ(k1) =
{

1
|δ−λ,kλ

|
kλ

k++k−
1√

k2
λ−k2

1

+ O(1), |k1| < kλ,

O(1), |k1| > kλ.
(A8)

The second integral that we need is

I2,−λ,s(k1) :=
∫

dk2

2π

⎛
⎝1 + sλ

k1√
k2

1 + k2
2

⎞
⎠

(√
k2

1 + k2
2 − kλ

)(√
k2

1 + k2
2 + k−λ

)
(√

k2
1 + k2

2 − kλ

)2(√
k2

1 + k2
2 + k−λ

)2 + δ2
−λ

. (A9)

We can compute the leading contributions O(1) of this integral simply by setting δ−λ = 0 yielding

I2,−λ,s(k1) =
∫

dk2

2π

⎛
⎝1 + sλ

k1√
k2

1 + k2
2

⎞
⎠ 1(√

k2
1 + k2

2 − kλ

)(√
k2

1 + k2
2 + k−λ

) + O
(
δ−λ/k2

1

)

= 1

k+ + k−

∑
λ′=±

Re

⎧⎨
⎩kλ′λ + sλλ′ k1√

k2
1 − k2

λ′λ

⎡
⎣1

2
+ λ′

π
arctan

⎛
⎝ kλ′λ√

k2
1 − k2

λ′λ

⎞
⎠
⎤
⎦
⎫⎬
⎭+ O

(
δ−λ/k2

1

)
. (A10)

We will need two more equalities. They can be solved by manipulations similar to Eq. (A3), namely∫
dk2

2π

1√
k2

1 + k2
2

1(√
k2

1 + k2
2 − kλ

)2(√
k2

1 + k2
2 + k−λ

)2 + δ2
−λ,kλ

= 1

kλ

I1,−λ(k1) + 1

2iδ−λ,kλ

∑
γ=±

γ

∫
dk2

2π

kλ −
√

k2
1 + k2

2√
k2

1 + k2
2kλ

1(√
k2

1 + k2
2 − kλ

)(√
k2

1 + k2
2 + k−λ

) + O(1)

= 1

kλ

I1,−λ(k1) + O(1) (A11)

and ∫
dk2

2π

√
k2

1 + k2
2

1(√
k2

1 + k2
2 − kλ

)2(√
k2

1 + k2
2 + k−λ

)2 + δ2
−λ,kλ

= kλ I1,−λ(k1) + 1

2iδ−λ,kλ

∑
γ=±

γ

∫
dk2

2π

√
k2

1 + k2
2 − kλ(√

k2
1 + k2

2 − kλ

)(√
k2

1 + k2
2 + k−λ

) + O(1)

= 1

kλ

I1,−λ(k1) + O(1). (A12)
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We can now approximate the functions entering the chain Hamiltonian using Eqs. (A11) and (A11)

fk1;s2 = 2m2
∑

n

∑
λ=±

∫
dk2

2π

1 − s2λk1/|k|
(|k| − kλ)2(|k| + k−λ)2 + δ2

λ,|k|
= 2m2

∑
n

∑
λ=±

∫
dk2

2π

1 − s2λk1/kλ

(|k| − kλ)2(kλ + k−λ)2 + δ2
λ,|k|

+ O(1)

= 2m2
∑

n

∑
λ=±

(
1 − s2λ

k1

kλ

)
I1,λ(k1) + O(1) (A13)

and

g̃k1;s2 = 2m2
∑

n

∑
λ=±

∫
dk2

2π

−λ|k| + s2k1

(|k| − kλ)2(|k| + k−λ)2 + δ2
−λ,|k|

= 2m2
∑

n

∑
λ=±

∫
dk2

2π

−λkλ + s2k1

(|k| − kλ)2(kλ + k−λ)2 + δ2
−λ,|k|

+ O(1)

= 2m2
∑

n

∑
λ=±

(−λkλ + s2k1)I1,λ(k1) + O(1), (A14)

as well as

gk1;s2 = m
∑

n

∑
λ=±

∫
dk2

2π
(|k| + kλ)(|k| − k−λ)

1 + s2λk1/|k|
(|k| + kλ)2(|k| − k−λ)2 + δ2

λ,|k|

= m
∑

n

∑
λ=±

∫
dk2

2π

1 + s2λk1/|k|
(|k| + kλ)(|k| − k−λ)

+ O

(
δλ,|k|

(|k| + kλ)(|k| − k−λ)

)

≈ m
∑

n

∑
λ=±

I2,λ,−s2 (k1). (A15)

In particular, the linear combination

�sfk1;s2 + �tg̃k1;s2 ≈ 2m2
∑

n

∑
λ=±

I1,−λ(k1)

[
�s

(
1 − s2λ

k1

kλ

)
+ �t(−λkλ + s2k1)

]
= m

∑
n

∑
λ=±

I1,−λ(k1)

(
1 − s2λ

k1

kλ

)
δ−λ,kλ

≈ m
∑

n

∑
λ=±

kλ − s2λk1

k+ + k−

sgnδ−λ,kλ√
k2
λ − k2

1

, (A16)

where it is understood that only terms with real square root contribute.

APPENDIX B: NONTRIVIAL CHAINS FROM TRIVIAL SUPERCONDUCTORS

Here we provide an analytical argument that in the limit where the lattice spacing a of the impurity chain is much smaller than
the inverse Fermi momenta k−1

± of the underlying superconductor it is possible to construct a nontrivial 1D superconducting chain
on a trivial 2D superconductor. To obtain a nontrivial chain in this limit, we further require that the triplet gap �t is nonvanishing
and that the strength U of the scalar impurities can be appropriately tuned. In the limit a � k−1

± we can discard the summation
over n entering the Eq. (18a) (i.e., only take the n = 0 term) and find the leading behavior of the quantities entering Hchain

k1;s2
as

(note that fk1;s2 is manifestly positive)

�sfk1;s2 + �tg̃k1;s2 ≈ 4m2
∑
λ=±

∫
dk2

2π

(
�s

1 + s2λk1/|k|
2k4

+ �t
λ|k| + s2k1

2k4

)
= m2

|k1|3 (�s + s2 k1�t) (B1)

and

gk1;s2 ≈ 2m
∑
λ=±

∫
dk2

2π

1 + s2λk1/|k|
2k2

= 1

|k1| . (B2)

Note that the first function is odd while the second function is even in k1 to leading order for large |k1| as long as �t �= 0. As a
consequence, the term multiplying τ1 changes sign at some k1 in the limit a � k−1

± and for the function to be periodic it has to
change sign twice. Let us denote the zeros of this term by k1,0 and k′

1,0 (in general there could be any even number of zeros, but
we shall focus on the simplest case of two zeros here). The function gk1;s2 entering the Hamiltonian in the term proportional to
τ3 will take two in general different values at k1,0 and k′

1,0, say gk1,0;s2 < gk′
1,0;s2 . Then, for impurity strengths U such that

2

U
∈ (gk1,0;s2 ,gk′

1,0;s2

)
(B3)
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the sign of the term proportional to τ3 changes between the two zeros of the term proportional to τ1. Hence the winding number
is nonzero and the chain is topological in this case.
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