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Quantum oscillations in a bilayer with broken mirror symmetry: A minimal model for YBa2Cu3O6+δ
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Using an exact numerical solution and semiclassical analysis, we investigate quantum oscillations (QOs)
in a model of a bilayer system with an anisotropic (elliptical) electron pocket in each plane. Key features
of QO experiments in the high temperature superconducting cuprate YBCO can be reproduced by such a
model, in particular the pattern of oscillation frequencies (which reflect “magnetic breakdown” between the
two pockets) and the polar and azimuthal angular dependence of the oscillation amplitudes. However, the
requisite magnetic breakdown is possible only under the assumption that the horizontal mirror plane symmetry is
spontaneously broken and that the bilayer tunneling t⊥ is substantially renormalized from its ‘bare’ value. Under
the assumption that t⊥ = Z̃t

(0)
⊥ , where Z̃ is a measure of the quasiparticle weight, this suggests that Z̃ � 1/20.

Detailed comparisons with new YBa2Cu3O6.58 QO data, taken over a very broad range of magnetic field, confirm
specific predictions made by the breakdown scenario.

DOI: 10.1103/PhysRevB.93.094503

I. INTRODUCTION

Quantum oscillations (QOs) are a spectacular consequence
of the presence of a Fermi surface. Their observation in the
high Tc cuprate superconductors [1–15] combined with recent
observations of charge density wave correlations [16–31],
have led to a compelling view of the nonsuperconducting
“normal” state of the underdoped cuprates at high fields,
H > Hc, and low temperatures, T � Tc. In this regime, small
electronlike Fermi pockets arise from reconstruction of a
larger holelike Fermi surface presumably due to translation
symmetry breaking in the form of bidirectional [32] charge-
density-wave (CDW) order [33–44].

However, to date, no theory of Fermi-surface reconstruction
by a simple CDW can simultaneously account for the Fermi
pockets and the relatively small magnitude of the measured
specific heat [45,46], which presumably reflects the persis-
tence a pseudogap that removes other portions of the original
(large) Fermi surface [47]. Thus, rather than trying to infer the
origin of the Fermi pockets, we explore a generic model of
a single bilayer split pocket to elucidate general features that
can most easily account for the salient features of the QOs.

Specifically, we focus on the bilayer cuprate YBCO, in
which quantum oscillations have been studied in greatest
detail. The frequency of the QOs and the negative values
of various relevant transport coefficients [2] establish the
existence of an electron pocket enclosing an area of order
2% of the Brillouin zone. A typical spectrum of QOs in
underdoped YBCO is shown in Fig. 1. While there is some
suggestive evidence of more than one basic frequency—which
might suggest more than one pocket per plane [39,48,49]—we
instead adopt and further elucidate a suggestion of Harrison
and Sebastian [10,35,37] that the “three-peak” structure of
the spectrum of oscillation frequencies reflects magnetic
breakdown orbits associated with a single, bilayer-split pocket.
In refining this suggestion, we show that, although many
aspects of the QO experiments can be successfully accounted
for in this way, the requisite magnetic breakdown is forbidden
in the presence of a mirror symmetry that exchanges the
planes of the bilayer; thus, a heretofore unnoticed implication

is that the high field phase must spontaneously break this
symmetry. Other striking features of the quantum oscillations
are the existence of prominent “spin zeros” [9] and a strong
C4 symmetric dependence of the oscillation amplitudes on the
in-plane component of the magnetic field with no evidence
of the enhancement at the “Yamaji angle” expected from
the simplest “neck and belly” structure of a quasi-2D Fermi
surface [13,50].

We show that all these experimental features are consistent
with a simple model in which there is an elliptical Fermi
pocket in each of the planes of a bilayer, with their principal
axes rotated by π/2 relative to each other. In terms of broken
symmetries, this is consistent with a “criss-crossed-nematic”
component of whatever ordered state exists in this range of
T and B. We assume a �k independent coupling between the
layers within a bilayer, t⊥, and we neglect all interbilayer
coupling, t ′⊥ ≈ 0. As we will discuss in Sec. V, both these
assumptions seem more natural in the context of experiments
and band-structure calculations of YBCO than those made
by Sebastian et al. in their pioneering treatment of this same
problem. Specifically, Sebastian et al. [10,35,37] assumed a
strong �k dependence associated with a presumed vanishing of
t⊥ in certain crystallographic directions, the significant role of
nonzero t ′⊥, and broken translation symmetry in the c direction
[51]; these do not feature in our minimal model.

Finally, we have uncovered a quantitative issue with
potential qualitative implications for magnetic breakdown. The
magnitude of t⊥ sets the size of the gap between bilayer split
Fermi surfaces thus controlling the importance of magnetic
breakdown orbits. Because our numerical approach treats
magnetic breakdown exactly (rather than using a Zenner
tunneling approach), we are uniquely placed to examine this
effect. We have found that in order for magnetic breakdown
to play a significant role in the relevant range of B, it is
necessary to assume that t⊥ is 20 times or more smaller
than its “bare” value t

(0)
⊥ , which can be estimated either from

band-structure calculations [52–54] or from angle resolved
photoemission (ARPES) studies of overdoped YBCO [55].
As was emphasized both in ARPES measurements [55] and
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FIG. 1. Typical Fourier transform of QOs of the magnetic torque
for underdoped YBa2Cu3O6.58 (Tc = 60 K,p ≈ 11%) showing the
characteristic symmetrically split “three peak” structure. Raw torque
data is shown in the inset, taken at T ≈ 1.5 K, for a field range of 31
to 62.6 T. Structure above 700 T in the Fourier transform is harmonic
content.

previous theoretical studies [54,56–58], the ratio Z̃ ≡ t⊥/t
(0)
⊥ is

a measure of the degree of single particle interlayer coherence
and so is related [59] to the quasiparticle weight. This implies
that the quasiparticles responsible for the QOs are very
strongly renormalized, with Z̃ � 0.05, which in turn suggests
that they are likely to be rather subtle, emergent features of the
high field, low temperature state. One should be cautious in
interpreting higher energy or temperature phenomena in terms
of a Fermi liquid of these excitations.

Logic and Organization of the Paper

In Sec. II, we define an explicit lattice model of noninter-
acting electrons with a band structure engineered to produce
the desired small elliptical electronlike Fermi pockets (shown
in Fig. 2), and describe the numerical algorithm we have used
to obtain exact results for this model as a function of an applied
magnetic field. To orient ourselves, in Sec. III we sketch
the semiclassical analysis (including the effects of magnetic
breakdown) which will allow us to associate the oscillation
frequencies we will encounter with the geometry of the Fermi
surface. We then present results of the numerical analysis
of the model in Sec. IV: In Fig. 3 we present the ideal QO
spectrum, while in Fig. 4 we exhibit the way in which higher
harmonics are rapidly suppressed by a noninfinite quasiparticle
lifetime. We then present spectra that result when the range of
magnetic fields analyzed is confined to realistically accessible
values, discussing both qualitative and quantitative trends as
parameters are tuned (see Fig. 5). We also study the polar and
azimuthal angular dependence of the QOs (see Figs. 6 and 7),
and develop accurate semiclassical arguments to interpret our
numerical results (see Figs. 7 and 8). Finally, in Sec. V we
discuss the implications of our results for the interpretation
of experiments in the cuprates, including comparison with

FIG. 2. The Fermi surface of the bilayer system in (a) the absence
(t⊥ = 0) and (b) the presence (t⊥ = 0.005ta) of an isotropic interlayer
tunneling t⊥. The parameters used are tb = ta/3 and μ = −2.5306ta .
Note that we have zoomed in to an area that is one quarter of the full
(unreconstructed) Brillouin zone.

newly presented QO data taken on YBa2Cu3O6.58, which is
used to test key features of the magnetic breakdown scenario
discussed here. We also discuss the connection with other
related theoretical work.

II. THE MODEL

We study a tight-binding model of electrons hopping on
two coupled layers, each consisting of a square lattice with
purely nearest-neighbor hopping elements. In the presence of
an arbitrarily oriented magnetic field the Hamiltonian of this
model has the form

H =
∑

〈�ri ,�rj 〉;σ

∑
λ

−t�ri−�rj ;λ
(
ei�ij c

†
�ri ,λ,σ

c�rj ,λ,σ + H.c.
)

+
∑
�ri ;σ

∑
λ

4πg̃Bσc
†
�ri ,λ,σ

c�ri ,λ,σ

−
∑
�ri ;σ

t⊥
(
ei�z

i c
†
�ri ,1,σ

c�ri ,2,σ + H.c.
)
, (1)

where c
†
�ri ,λ,σ

is an electron creation operator at position �ri

in layer λ = 1,2 with spin σ = ±1/2, and t�ri−�rj ;λ denotes
the appropriate hopping matrix element in layer λ, while t⊥
is the (isotropic) hopping between each layer in the bilayer
and g̃ controls the strength of Zeeman splitting. Here, �ij =∫ �ri

�rj
A(r)d r is the phase obtained by an electron hopping from

site �rj to �ri in units in which �c/e = 1, while �z
i is the phase

obtained upon tunneling from one layer to the next at position
�ri . To obtain perpendicularly oriented elliptical pockets we
set tx̂;1 = tŷ;2 = ta , and tŷ;1 = tx̂;2 = tb. In the absence of a
magnetic field this Hamiltonian can be diagonalized to give
the spectrum E±(k) where k = (kx,ky) is a two-dimensional
Bloch wave vector, with

E±(k) = ε+(k) ±
√

ε2−(k) + t2
⊥ (2)

ε±(k) = −(ta ± tb) cos(kx) − (tb ± ta) cos ky. (3)

094503-2



QUANTUM OSCILLATIONS IN A BILAYER WITH BROKEN . . . PHYSICAL REVIEW B 93, 094503 (2016)

FIG. 3. QOs of the DOS for very small broadening δ = 0.0001ta (long lifetimes) and t⊥ = 0.005ta , in the absence of a Zeeman coupling
(g̃ = 0). Panels (a) and (b) show the calculated DOS ρ vs B and 1/B; panel (c) is the Fourier transform of panel (b). Each peak indicates a
characteristic frequency of QOs and the corresponding semiclassical orbits are also illustrated above. The number of equivalent semiclassical
orbits, n, is indicated below each orbit, and we have explicitly shown the two distinct classes of γ orbits. A relatively large range of magnetic
field is used 4T < B < 1000T to capture all of the QO frequencies. The system size is Lx = 223.

The Fermi surface with and without interlayer tunneling,
with the choice of tb = ta/3 and a chemical potential of
μ = −2.5306ta , is shown in Fig. 2.

In the absence of t⊥, the addition of a magnetic field
maps Eq. (1) to two copies of the Hofstadter problem.
Upon coupling the layers, and for fields at arbitrary polar
(θ ) and selected azimuthal angles (φ), we can always pick
a gauge that preserves translation symmetry along the in-
plane direction of the magnetic field, ê. This allows us to
take the Fourier transform along ê and map Eq. (1) to a
modified Harper’s equation. For simplicity, we will consider

the case in which the magnetic field lies in the y − z plane,
with the generalization to arbitrary orientation deferred to
Appendix A. With B = B(0, sin θ, cos θ ), we can choose
the gauge

A = (0,2π�x,−2π�x tan θ ), (4)

where � = B cos θ is the density of magnetic flux quanta per
x − y lattice plaquette (in units in which the plaquette area
is 1).
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FIG. 4. The evolution of QOs in the DOS ρ(μ) for various values
of the inverse quasiparticle lifetime δ. The interlayer tunneling t⊥ =
0.005ta and the rest of the parameters are detailed at the end of Sec. II.

Upon Fourier transforming the Hamiltonian in the ŷ

direction we have H = ∑
ky ,σ

Ĥky,σ :

Ĥky,σ =
∑
x,λ

{
tx̂,λ(c†(x+1,ky );λ;σ + c

†
(x−1,ky );λ;σ )

+
[

2tŷ,λ cos (2π�x − ky) + 4πg̃�σ

cos θ

]
c
†
(x,ky );λ;σ

×
}
c(x,ky );λ;σ

+
∑

x

t⊥
(
e−i2π�ac tan θ c

†
x,ky ;2;σ cx,ky ;1;σ + H.c.

)
,

(5)

where ac is the ratio of interbilayer spacing to the in-plane lat-
tice constant. Equation (5) has three properties that make it par-
ticularly amenable to numerical analysis: (i) the two spins σ =
±1/2 are decoupled and can be studied independently; (ii) for
arbitrary (irrational) values of �, the spectrum of H is inde-
pendent of ky in the thermodynamic limit [60], allowing us to
suppress the ky summation; (iii) the resulting one-dimensional
problem concerning Ĥky,σ is a block tridiagonal matrix, whose
inverse (and by extension, the Green’s function) can be calcu-
lated recursively as described in Appendix C, allowing efficient
evaluations of its physical properties on system sizes as large
as Lx ∼ 107 sites along the x̂ direction. In the remainder of the
paper, we will be presenting calculations of QOs in the density
of states (DOS) ρ at chemical potential μ, defined as

ρ(μ) = − 1

πLx

Tr(Im[Ĝ])

= − 1

πLx

∑
x,λ

Im[G(x,λ),(x,λ)(μ)],
(6)

where G(x,λ),(x,λ)(μ) represents the diagonal entry of the
Green’s function

Ĝ(μ) = [(μ + iδ)Î − Ĥky,σ ]−1. (7)

The small imaginary term iδ gives a finite lifetime to the
quasiparticles and broadens the Landau levels.

Choice of Parameters

For a range of values, the qualitative aspects of our results do
not depend sensitively on the values of most of the parameters
that enter the model (with the exception of the pattern of
magnetic breakdown, which we shall see is extremely sensitive
to the value of t⊥). However, to facilitate comparison with
experiment, we chose parameters so that the k-space area
enclosed by the elliptical Fermi pockets in the absence of
interlayer tunneling is S0 ≈ 530T = 1.91%BZ, the mean
cyclotron effective mass m∗ ∼ 1.6me, and the electron’s spin
g factor is g = 2. (See Appendix D for further discussion.) In
the absence of any direct experimental information concerning
the ellipticity of the Fermi pockets, we have arbitrarily adopted
a moderate anisotropy

√
3 (i.e., the major axis of the ellipse is√

3 times larger than its minor axis.)
These considerations lead us to take tb = ta/3, g̃ = 0.87

and μ = −2.5306ta . Since all our calculations are carried
out at T = 0, the overall scale of energies is unimportant,
but when referring to quantitative features of the electronic
structure of YBCO, we will take ta = 400 meV, in which case
a characteristic inverse lifetime is δ = 0.005ta ≈ (2 ps)−1. We
convert flux quanta per unit cell � into units of the actual
magnetic field B, by using a unit cell area of YBCO to
be νunit cell = 3.82 Å × 3.89 Å. This means that B is related
to the flux per unit cell (in units of the flux quantum) by
B = (h/e) × (�/νunit cell) ≈ � × 27800. The values of the
interlayer tunneling t⊥ and the inverse lifetime δ are treated as
unknowns; exploring the changes in the QO spectrum which
occur as they vary is one of the principal purposes of this study.

III. SEMICLASSICAL CONSIDERATIONS

Before undertaking the numerical solution of this model,
it is useful to outline the results of a semiclassical analysis
to anticipate the basic structure of the QOs in the simplest
situation in which B is perpendicular to the planes. As we
are considering weakly coupled bilayers, we will always
assume that t⊥ � t ≡ √

tatb, so the bilayer split Fermi surfaces
have narrowly avoided crossings at four symmetry related
points, as shown in Fig. 2(b). Electrons adhere strictly
to semiclassical orbits only so long as �ωc � t2

⊥/t since
magnetic breakdown at these four points becomes significant
otherwise. (Here ωc ∼ φt is the cyclotron frequency.) Taking
this magnetic breakdown into account, there are five distinct
classes of semiclassical orbits, as shown in the middle panel of
Fig. 3, each enclosing a k-space area which, when converted
into an oscillation frequency, correspond to five oscillation
frequencies separated by �f ≈ 90T for the model parameters
we have defined. (These correspond to the frequencies labeled
α, β, γ , δ, and ε in the spectrum in the lower panel of the
figure, whose calculation is discussed in the next section).
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FIG. 5. The raw Fourier transform of the density of states oscillations as the interlayer tunneling t⊥ is increased (left to right), and the
inverse lifetime δ is increased (top to bottom). Larger values of t⊥ suppress the central frequencies and enhance the satellite frequencies which
correspond to orbits of the true bilayer split Fermi surface. Shorter quasiparticle lifetimes (larger δ) lead to decreased harmonic content. The
field range used here is 20T < B < 100T , with 210 data points.

The largest and smallest orbits represent the true structure
of the Fermi surface, so these two frequencies (α and ε) must
dominate the QO spectrum when �ωc � t2

⊥/t . Conversely,
in the limit �ωc 
 t2

⊥/t , where to good approximation we
can set t⊥ = 0, the spectrum is dominated by the central
frequency (γ1), in which the electron orbits are confined to
a single plane of the bilayer, and hence correspond to the
ellipses in Fig. 2(a) [61]. More complex spectra, including
those with the three peak structure seen in experiment, occur
only when �ω ∼ t2

⊥/t . This, we shall see, allows us to estimate
the magnitude of t⊥ directly from experiment. We will return
again to a semiclassical analysis below, in order to understand
still more subtle features of the QO spectrum which appear
when the magnetic field is tilted relative to the Cu-O plane.

IV. NUMERICAL RESULTS

In presenting our results, we will adopt two complementary
approaches. We first study an idealized theoretical limit of
infinitesimally small broadening (δ → 0, i.e., infinite quasi-
particle lifetime) and without Zeeman splitting, where a sharp
Landau level structure of the density of states is present and
easy to interpret. These numerical ‘experiments’ are done for
a very large range of field strengths. We subsequently study
the model over an experimentally realistic range of magnetic
fields with the inclusion of Zeeman splitting, while tuning
the broadening and interlayer tunneling t⊥, and subsequently
examining the angular dependences. While we predominantly
highlight the robust qualitative features of this model, we
also focus on the quantitative aspects of magnetic breakdown,
which are treated exactly in our numerical studies.

In Fig. 3 we show the density of states as a function
of magnetic field strengths for a c-directed field. The top
panels show data where the broadening is infinitesimal at
δ = 0.0001ta and there is no Zeeman splitting. Each Landau
level is split due to the presence of two coupled layers, while
the peaks in the density of states rise linearly with B as
expected for free fermions. The lower panel of Fig. 3 shows the
Fourier transform of this data over a large range of magnetic
fields (4T < B < 1000T ). Here the high harmonic content of
the oscillations is clearly seen, with comparable-in-magnitude

first and second harmonics. For the first harmonics, there are
five peaks clustered around a central frequency of f = 530T ,
as expected from semiclassical considerations, while at higher
frequencies there are all the expected harmonic combinations
giving rise to a complicated spectrum.

A. Dependence on interlayer tunneling and lifetime

We now study the model over an experimentally realistic
range of magnetic fields with a finite Zeeman coupling,
g̃ = 0.87. Figures 4 and 5 show the evolution of the QOs
as the interlayer tunneling t⊥ and Landau level broadening
δ are varied, where we have reduced the range of magnetic
field to 20T < B < 100T to conform roughly with the range
explored by current experiments in YBCO. The figures are
constructed from 210 data points. As is clear from Fig. 4 the
form of the oscillations is radically altered as the lifetime is
decreased (δ in Eq. (7) is increased), with the sharp Landau
level structure of the spectrum becoming broadened. This leads
to oscillations with little harmonic content, while the amplitude
of the oscillatory signal is also sharply suppressed.

Figure 5 shows the Fourier transform [62] of ρ as both the
interlayer tunneling t⊥ is increased (from left to right) and the
inverse lifetime δ is increased (from top to bottom). Several
qualitative features of the results are immediately apparent. (1)
As the inverse lifetime δ is increased (and the oscillations of
ρ become less singular), the peaks in the Fourier transform
are also broadened while the higher frequency peaks are
preferentially suppressed in amplitude, leading to oscillations
with little harmonic content. This has a simple semiclassical
interpretation: Higher frequency peaks correspond to longer
semiclassical orbits and so are suppressed in amplitude by
the decreasing quasiparticle lifetime [63]. (2) The competition
between different semiclassical orbits is sensitively controlled
by the interlayer tunneling t⊥: as t⊥ is increased, the gaps
between bonding and antibonding Fermi surfaces increase, and
the weight of QOs rapidly shifts from the central frequency at
530T (corresponding to the third orbit in Fig. 3 which involves
two magnetic breakdowns across the true Fermi surface of the
bilayer) to the side frequencies at (530 ± 90)T (corresponding
to the second and fourth semiclassical orbits in Fig. 3),
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and is eventually dominated by the outermost frequencies at
(530 ± 180)T (reflecting the ‘true’ bonding and antibonding
Fermi surfaces of the bilayer).

Indeed, a particularly appealing feature of our approach is
its exact treatment of magnetic breakdown. The immediate
quantitative observation from Fig. 5 is that maintaining the
large (experimentally observed) ratio of the amplitude of the
central 530T frequency to that of the satellite frequencies
at 530 ± 90T requires very small values of the interlayer
tunneling t⊥ < 0.01ta . This is at least an order of magnitude
below the typical values of t⊥ ∼ 0.1ta assigned by band
structure studies [52,53] and ARPES studies [55] on overdoped
YBCO, but agrees remarkably with ARPES measurements of
the underdoped regime. We discuss the consequences of this
observation in Sec. V.

B. Polar angle (θ ) dependence of the QOs

We now move on to cases where the magnetic field is tilted
away from the principal c axis of this model and study the
dependence of the QOs on the polar and azimuthal angles,
θ and φ; we also comment briefly on the corresponding
dependence seen in YBCO. Key experimental features include
the presence of spin zeros near θ ≈ 51.5◦ and θ ≈ 63.5◦,
with the notable absence of a Yamaji angle that is typical of
simple s-wave warping of a three-dimensional Fermi surface.
Spin zeros (as well as the general θ dependence) arise due to
Zeeman splitting of spinful electrons. This coupling effectively
shifts the chemical potential (and hence the area of each orbit)
oppositely for each species σ , by an amount that is proportional
to the applied field δf = σγB. Such a B dependent shift of
the Fermi surface area for each spin species becomes a shift
of the bare (spinless) frequency f0 of oscillations, so that the
amplitude of oscillations for the p’th harmonic acquires a field
independent (but θ dependent) factor:

ρ

(
1

B
,θ

)
∝

∑
σ=±1/2

cos

(
2πp

(f0 + σγB)

B cos θ

)

= 2 cos

(
πpγ

cos θ

)
cos

(
2πp

f0

B

)
. (8)

A more careful analysis shows that this field independent
amplitude takes the form A(θ ) = cos (πpg m∗

2me cos θ
), where in

practice the factor πpgm∗/2me is related to our definition of
g̃ as discussed in Appendix D.

Figure 6(a) shows the polar angle θ dependence of the
Fourier transform of QOs for the model system in Eq. (1). The
azimuthal angle is fixed at φ = 45◦ throughout the calculation.
As expected, no Yamaji-like resonance is seen because of the
absence of a truly three-dimensional dispersion. Figures 6(b)–
6(d) shows the θ dependence of the QO amplitude A(θ ) at
the three main frequencies. We see characteristic spin zeros
in the primary frequency f = 530T near θ0 = 51.5◦ and θ1 =
63.5◦. The dashed lines show fits of the amplitude to the form
given in Eq. (8)—remarkable agreement is found. We note
that the positions of the spin zeros are different for the QOs at
frequencies 440T , 530T , and 620T , despite the fact that the g

factor (our parameter g̃) has been defined to be the same for
all orbits. This robust feature of our model can be attributed to
the different effective mass of these three orbits which enters

FIG. 6. (a) The Fourier transform of the DOS QOs for various
polar angles θ of the magnetic field �B (different angles have been
arbitrarily offset). (b)–(d) Extracted peak heights in the Fourier
transform (we have used both amplitude and phase information)
versus the polar angle θ . The parameters are δ = 0.005ta , t⊥ =
0.005ta . The dashed lines are the theoretical fits of the angular
dependence due to spin splitting [Eq. (8)] which is caused by Zeeman
effect.

the formula cos (πpgm∗/2me cos θ) and is explored further in
Appendix D.

C. Azimuthal angle (φ) dependence of the QOs

Another notable feature of QO experiments in YBCO
is the dependence of the amplitude of the oscillations on
the azimuthal angle φ. The oscillation amplitudes exhibit a
fourfold anisotropy, which increases with increasing polar
angle θ . Here, we show that these features can be reproduced
in our model of a single bilayer, with the caveat that strong
anisotropy is only natural for selected orbits that involve both
layers of the bilayer (β orbit at 440T , δ orbit at 620T , and γ2

orbit at 530T ).
In analyzing the behavior of QOs for different azimuthal

angles, much information can be gleaned from semiclassical
intuitions. First, note that the semiclassical orbits γ1 at the
central 530T frequency in Fig. 3 are predominantly confined
to a single layer of the bilayer. Such 2d orbits are only affected
by the field perpendicular to the layer, therefore no observable
azimuthal dependence is expected. On the other hand, all other
semiclassical orbits shown in Fig. 3 involve tunneling events
from one layer to the next, upon which electrons may obtain
a phase proportional to the horizontal magnetic field B sin θ .
This means that there is weak fourfold dependence arising
from γ2 orbits, wherever the signal is dominated by the 530T

frequency; conversely, a large fourfold modulation arises from
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FIG. 7. (a) A schematic diagram showing how the in-plane
component of the flux enclosed by a given semiclassical orbit (δ
orbit in Fig. 3) is determined. The red curve is the semiclassical orbit,
while gray ellipses are the Fermi surfaces. Note that the in-plane
directions are in momentum space, while the vertical separation is
in real space. The vertical region enclosed (shaded gray) has a (real
space) area of δk�2

Bc. (b) The φ dependence of QO amplitude A1(φ)
as in Eq. (9) for various values of the polar angle θ for δk = 0.6417
defined in our model as well as the case of a larger δk = 0.8417. The
anisotropy is clearly more apparent for larger θ and/or δk.

the 530 ± 90T frequencies, and so is pronounced near to spin
zero angles {θ0,θ1} of the main 530T frequency.

Within the semiclassical framework, we can obtain an
analytic expression for the amplitude as a function of azimuthal
angle φ by determining the amount of in-plane directed
magnetic flux enclosed by a given breakdown orbit. Figure 7(a)
shows the geometry of a particular breakdown orbit for QOs
at 620T , where the total horizontal flux is the real space
area corresponding to the shaded region, multiplied by the
field component B sin θ sin φ. Semiclassically, we find the
real space area enclosed by the orbit to be δk�2

Bc, where
�2

B = h/eB cos θ is the square of the magnetic length, and
δk is the distance between the (avoided) crossings of the
Fermi surfaces [see Fig. 7(a)]. Thus, the in-plane flux enclosed
by this orbit is �yz = δk �

eB
c × B tan θ cos φ = cδk tan θ sin φ

with our choices of units. Similarly, there are three other
possible enclosed fluxes related by C4 rotations and given by
�−yz = −�yz, and �±xz = ±cδk tan θ cos φ. The resulting
�j , j = ±xz,±yz each give an additional constant initial
phase to the in-plane fluxes that determine the QOs of the

FIG. 8. The relative amplitude of the QOs at frequency 620T

for polar angles θ = 63.5◦ and θ = 51.5◦, respectively. The QO
amplitude at φ = 0 is maximal and set as the unit 1 for each of
the data sets. The solid curve is the theoretical expectation value
according to Eq. (9) and the expected C4 rotation symmetry is clearly
present. The parameters used in our numerical calculations of the
DOS QOs are t⊥ = 0.005, δ = 0.001 and 11T < B < 100T .

corresponding reconstruction, which add up to give the overall
amplitude:

A1(φ) ∝
∑

j

exp
(
i�j

) ∝ 2 cos �xz + 2 cos �yz

∝ 2 cos (cδk tan θ cos φ) + 2 cos (cδk tan θ sin φ). (9)

Examples of the azimuthal angular dependence given by
Eq. (9) are shown in Fig. 7(b), whose form confirms C4 rotation
symmetry. For smaller values of the polar angle θ (and thus
a smaller overall factor cδk tan θ ), the φ angular dependence
is suppressed. We note that the magnitude of the anisotropy
depends sensitively on δk. An example of the QO amplitude
variation for a larger δk = 0.8417 as compared to the original
δk = 0.6417 is also included in Fig. 7(b).

It is straightforward to verify that the angular dependence
of the QOs at 440T has the same result as Eq. (9), while at
530T we need to consider both the γ1 and γ2 orbits:

A′
1(φ) ∝ M + 2 cos (cδk tan θ (cos φ + sin φ))

+ 2 cos (cδk tan θ (cos φ − sin φ)) (10)

where M is a complex constant for the contribution from γ1

orbits which sensitively depends on the parameters including
t⊥ and B.

Another immediate consequence of this expression is that
the maximum in QO amplitudes at the side frequencies at
(530 ± 90)T occurs when the field is aligned with the principal
axes of the ellipses. Given that experimentally, the maximum
of the oscillation amplitudes is seen to occur for fields along
the a and b crystallographic directions, it is natural that the
principal axes of such elliptical pockets must lie along the a and
b directions, i.e., such azimuthal dependence seemingly rules
out proposals where the principal axes of the Fermi pockets
are oriented at 45◦ to the a and b crystallographic directions.
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FIG. 9. The relative amplitude of the QOs at frequency 530T for
polar angles θ = 60◦. The solid curve is the fit to theoretical form
given by Eq. (10) with M = −13.5. The parameters used in our
numerical calculations of the DOS QOs are t⊥ = 0.005, δ = 0.001,
and 11T < B < 100T .

Returning to the model at hand, we calculated numerically
the density of states QOs with selected values of the azimuthal
angle tan φ = 0,1,2,3,4 (plus symmetry related values) and
various polar angles. The resulting QO amplitudes at frequency
620T and polar angles θ = 63.5◦ and θ = 51.5◦ are shown in
Fig. 8 and are fully consistent with the semiclassical expression
derived in Eq. (9). In particular, the selected θ values are the
spin zeros of the central frequency at f = 530T of the QOs,
where the effect of the side frequencies at (530 ± 90)T are
enhanced. In addition, fourfold anisotropy is also seen for the
QO amplitudes at frequency 530T and polar angle θ = 60◦
as shown in Fig. 9. It fits well to Eq. (10) with parameter
M = −13.5.

V. IMPLICATIONS FOR THE CUPRATES

We have shown that a simple model of criss-crossed
elliptical electron pockets can reasonably account for the
most striking experimental observations of QOs in the bilayer
cuprate YBCO. In particular, we have shown that a three peak
structure in the Fourier transform of QOs follows naturally
from the ansatz of broken mirror symmetry [64] and weak
bilayer splitting. The choices of tight-binding and Zeeman-
splitting parameters that best capture this physics have been
analyzed semiquantitatively. We have also demonstrated that
major features of both the azimuthal and polar angular
dependence of the QOs can be qualitatively reproduced by
this simplified model of a single bilayer.

A central feature of our analysis involves the small effective
interlayer tunneling t⊥ required to account for the prominence
of the central 530T frequency relative to those at 530 ± 90T .
In certain situations, a singular k dependence [52,53,65] of
the bare interlayer tunneling, t

(0)
⊥ (k) ≈ t

(0)
⊥ (cos kx − cos ky)2,

arises due to the local quantum chemistry. In this case the
small value of the effective t⊥ could reflect the location of the
electron pockets along the “nodal” direction in the Brillouin
zone where |kx | = |ky |, rather than any nontrivial many-body

effect. However, there are strong reasons to doubt that the
bilayer tunneling in YBCO has such strong k dependence.
On theoretical grounds, LDA studies [52,53] have found
that the tunneling between the ‘dimpled’ planes of a YBCO
bilayer remains substantial even along the nodal direction
with t

(0)
⊥ (kn) ≈ 120 meV, compared to an antinodal value of

t
(0)
⊥ (kan) ≈ 150 meV.

This LDA prediction is supported by ARPES measurements
on YBCO in the overdoped regime [55] where an almost
isotropic bilayer splitting of �εkn

= 2t⊥(kn) = 2Zt
(0)
⊥ (kn) ≈

130 meV in the nodal direction, compared to an antinodal split-
ting �εkan

≈ 150 meV leads to a near isotropic quasiparticle
weight of Z ≈ 0.5. This is in sharp contrast to underdoped
samples, where despite the theoretical (LDA) prediction of a
doping independent t

(0)
⊥ , the nodal bilayer splitting is difficult

to resolve. These experiments give an upper bound of the nodal
quasiparticle weight in the underdoped regime of Zn < 0.065,
while an estimate based on the rescaled values of the spectral
weight yields Zn ≈ 0.03. Such estimates agree remarkably
well with our estimate of the effective value of t⊥ necessary to
account for the QO’s in underdoped YBCO. The constraint of
the quasiparticle weight Z̃ � 0.05 strongly suggests that the
effective Fermi liquid parameter t⊥ = Z̃t

(0)
⊥ is renormalized

significantly downwards.

A. Comparison with previous proposals

There have been many proposals [33–44] for the origin
of the Fermi surface reconstruction in the cuprates. Given
recent observations of (seemingly ubiquitous [16–31]) in-
commensurate CDW order, a prime candidate for the Fermi
surface is one where nodally located electron pockets are
produced by incommensurate CDWs which are at least biaxial,
involving ordering at �Qx = (Q,0,1/2) and �Qy = (0,Q,1/2).
This idea, along with the invocation of breakdown orbits due
to bilayer splitting to account for the three peak structure of the
Fourier transform, was first advanced by Harrison, Sebastian,
and co-workers [10,35]. In this scenario, a diamond shaped,
nodally located electron pocket is split by bilayer tunneling
[with the above mentioned (cos kx − cos ky)2 form factor].,
with all three observed frequencies involving orbits where the
electron tunnels from one layer to the next. The nodal location
also serves to suppress simple isotropic (s-wave) hopping
in the c axis direction, leading to an absence of a Yamaji
resonance.

The model discussed in the present paper, while similar
in spirit to that of Harrison and Sebastian, possesses crucial
differences of symmetry and effective dimensionality. Under
the assumption that QO experiments probe the physics of
a single bilayer, mirror symmetry between the two layers
of this bilayer must be broken in order for breakdown
orbits to be present in a purely c-axis directed magnetic
field—otherwise a conserved bilayer parity associated with
the split Fermi surfaces would prevent all magnetic breakdown
(see Appendix B). Indeed, there is evidence for such broken
symmetry in the low field charge order [31,43]. Once mirror
symmetry is broken, a natural consequence is that the central
530T frequency reflects a semiclassical orbit where electrons
are confined to a single layer of the bilayer, and if so, is
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FIG. 10. Fourier transform of torque quantum oscillation in
YBa2Cu3O6.58. Analysis of the full field range, from 18.5 to 62.6T

(red curve), reveals spectral features not present in Fig. 1 but that
correspond well with the frequencies shown in Fig. 3. Analysis of
the oscillations between 18.5 and 26T only (blue curve) shows that
spectral weight is shifted away from the main γ peak and toward
the side lobes. The blue curve has been multiplied by a factor of 10
and truncated at 700T for clarity. Note that spectral features below
≈150T are removed as part of the background-subtraction procedure,
and thus this data does not address the possibility of a 90T frequency
that has been reported in transport measurements [48].

naturally the most prominent in the regime of small interlayer
tunneling [66]. We have demonstrated that the experimental
observations can be generally accounted for in the context of
a minimal model of a single bilayer. In contrast to previous
proposals, this model requires no specific 3d structure of the
Fermi surface and makes no specific assumptions about the
nature of the order that reconstructs the Fermi surface. With
the recent high field x-ray scattering experiments [67] giving
evidence of an unexpected, distinct high-field character of the
CDW order, we view this lack of specificity as a virtue.

B. Further tests from experiments in YBa2Cu3O6.58

The magnetic breakdown scenario makes two specific
predictions for QO experiments in bilayer cuprates:

(1) Oscillations taken over a sufficiently large field range
should show five spectral features distributed symmetrically
about the main frequency, plus multiple higher harmonics from
combination orbits.

(2) The weight of the various frequency components of the
quantum oscillations should be field dependent, with orbits that
require fewer breakdown events dominating at low fields.

Figure 10 shows torque magnetometry data taken on
YBa2Cu3O6.58 at 1.5K . Multiple spectral components, beyond
the three main peaks identified in previous studies but
consistent with those presented in Sec. III, are clearly visible
with this extended field range (18.5 to 62.6T ). Appendix E
demonstrates that these peaks (particularly α and ε) are not
artifacts of the Fourier transform, but are instead physical
components of the oscillatory signal.

Transforming the data over a limited low-field range, from
18.5 to 26T (blue curve in Fig. 10), shows that the main 530T

peak is indeed no longer dominant. Semiclassically [68], the
probability of tunneling through any one of the four junctions
between the bilayer split Fermi surfaces (Fig. 2) is P = e−B0/B ,
where B0 is the characteristic breakdown field. The probability
of avoiding breakdown (Bragg reflection) at a junction is
(1 − P ). While this expression is not exact (unlike the
breakdown treatment in Sec. III), particularly at fields large
compared to B0, it gives intuition as to why the spectral weight
shifts at lower fields: The γ orbit shown in Fig. 3 requires four
breakdown events, while the α (ε) orbit requires none and
the β (δ) orbit requires two. Note that the field range used to
obtain the blue curve in Fig. 10 is insufficient to resolve the
splitting of these peaks. Finally, the dominance in amplitude of
lower frequencies over higher frequencies originates [63] in the
suppression of larger orbits due to quasiparticle scattering [69].
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APPENDIX A: FORM OF THE HAMILTONIAN
FOR GENERAL ANGLES φ

For additional azimuthal angles as tan φ = 1/M where M ∈
Z (or equivalently tan φ = M by symmetry):

�B = B(ẑ cos θ + x̂ sin θM/
√

M2 + 1 + ŷ sin θ/
√

M2 + 1)

(A1)

we can no longer keep the translation symmetry along the
ŷ direction for arbitrary B with the chosen Landau gauge,
however, we can define the new magnetic unit cell with the new
lattice vectors x̂ ′ = x̂, and ŷ ′ = Mx̂ + ŷ along �B in plane or
equivalently x ′ = x − My, y ′ = y. Once again we can choose
a proper gauge so that the translation symmetry along the ŷ ′
direction is preserved:

A = (0,2π�(x − My),−2π�ac tan θ

× (x − My)/
√

M2 + 1 tan θ )

= (0,2π�x ′, − 2π�x ′ac tan θ/
√

M2 + 1), (A2)

where � = B cos θ is the magnetic flux through the plaquette
in the x − y plane, and �ac tan θ/

√
M2 + 1 is the flux through

the x − z plaquette. The hopping matrix elements no longer
depend on y ′, therefore we can Fourier transform into the
corresponding k′

y momentum basis. The resulting Hamiltonian
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FIG. 11. Fourier transforms of QOs in the density of states for two models (a) with mirror symmetry and (b) without mirror symmetry.
In (a) we consider identical Fermi surfaces with an interlayer tunneling of the form t⊥(k) = t⊥ cos2(2ky), while in (b) the mirror symmetry is
weakly broken by considering orthogonal Fermi surfaces with a weak mass anisotropy (tb = 0.95ta) and the interlayer tunneling has the same
form as before. The bilayer bonding and antibonding Fermi surfaces are almost identical in both cases, yet the QO frequencies are dramatically
different: Mirror symmetry forbids breakdown orbits in (a).

(for each k′
y and spin σ ) becomes:

Ĥk′
y ,σ

=
∑
x,λ

tx,λ[c†x+1,λcx,λ + H.c.] + 4πg̃�σ

cos θ
c
†
x,λcx,λ

+
∑
x,λ

ty,λ[c†x−M,λcx,λ exp(i2π�x − k′
y) + H.c.]

+
∑

x

t⊥[c†x,2cx,1 exp(i2π�xac tan θ/
√

M2 + 1)

+H.c.], (A3)

where we have suppressed the k′
y and σ labels in the fermion

operators. The Hamiltonian is still block tridiagonal, and its
physical properties including DOS can be efficiently calculated
using the recursive Green’s function method.

APPENDIX B: MIRROR SYMMETRY AND THE ABSENCE
OF BREAKDOWN FREQUENCIES

Here we discuss in further detail the absence of magnetic
breakdown when a mirror symmetry relating the two planes
of the bilayer is present. The essence of this symmetry
argument is the following: In the presence of a magnetic
field semiclassical dynamics correctly captures the motion of
electrons, while magnetic breakdown is allowed as long as
there exist matrix elements that take electrons from one orbit
to the next. However, if there is a mirror plane perpendicular

to the magnetic field, the mirror parity of the states remains a
good quantum number even in the presence of a magnetic field.
There are necessarily no matrix elements between states with
different quantum numbers, and so breakdown processes are
forbidden by this symmetry. We emphasize that this argument
is also applicable in the limit of a single bilayer, i.e., when kz

is not a good quantum number.
This symmetry may be viewed at a more operational level

by considering the Hamiltonian of a bilayer with identical
dispersions ε(k) in each layer. In the absence of a field, this
takes the form

H =
∑

k

�kĤk�k

=
∑

k=kx ,ky

(c†k,1 c
†
k,2)

(
ε(k) t⊥(k)
t⊥(k) ε(k)

)(
ck,1

ck,2

)
, (B1)

where t⊥(k) is the (in general) momentum dependent tunneling
between layers.

Mirror symmetry relating the two layers of the bilayer is
akin to the statement that the Hamiltonian commutes with the
x-Pauli matrix, τ̂x :

[Ĥk,τ̂x] = 0, where τ̂x =
(

0 1
1 0

)
. (B2)

It should be clear that this operation swaps the two planes
of the bilayer and so implements that mirror operation that
we are referring to. The addition of a magnetic field B is
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typically implemented via a Peierls substitution, resulting in
a dramatic change to the structure of the Hamiltonian and
eigenstates. In particular, working in Landau gauge we only
preserve translation invariance in a single direction, so in
general the eigenstates will be labeled by a generalized Landau
level index n and transverse momentum ky . However, as long
as the magnetic field does not break this mirror symmetry, i.e.,
B = Bzẑ, it remains the case that eigenstates of Ĥ are also
eigenstates of τ̂x , i.e.,

[Ĥ ,τ̂x] = 0 (B3)

Ĥ |n,ky,±〉 = E(n,ky ,±)|n,ky,±〉 (B4)

τ̂x |n,ky,±〉 = ±|n,ky,±〉. (B5)

Note that these are the exact eigenstates of the system,
and they are necessarily orthogonal. Also notice that none
of these statements depend on the form of the interlayer
tunneling t⊥(k).

The absence of magnetic breakdown is then most easily
understood by considering the structure of the energy spec-
trum. Oscillations in any physical quantity arise because of
periodicity in the structure of the energy spectrum as a function
of 1/B. The discrete twofold mirror symmetry means that
the Hamiltonian separates into two independent blocks, so
that the energy spectrum for these + and − sectors can be
solved independently. Because these sectors can be treated
as independent systems, as the magnetic field is varied, each

sector produces a single fundamental frequency in quantum
oscillations. This results in two (possibly degenerate) quantum
oscillation frequencies, with neither magnetic breakdowns nor
beat (sum or difference) frequencies.

Figures 11(a) and 11(b) provide confirmation of these
symmetry arguments. In Fig. 11(a) we have considered
identical dispersions ε(k) = −2t(cos kx + cos ky) − μ with
t = 1 and μ = −2.8t , and t⊥(k) = −0.1t cos2 (2ky). This
form of the interlayer tunneling is both technically simple
to implement and produces nodes in the bilayer splitting. As
is clear from the Fourier transform, no magnetic breakdown
is present, and only two fundamental frequencies are seen
when the interlayer tunneling is present. In Fig. 11(b) we
weakly break the symmetry by considering dispersions of
the form ε(k) = −2(ta cos kx + tb cos ky) − μ in one layer,
and ε(k) = −2(tb cos kx + ta cos ky) − μ in the next layer,
with tb = 0.95ta . In the absence of interlayer tunneling, only
one frequency is seen in QOs (these pockets have identical
areas), but a finite interlayer tunneling leads to multiple
breakdown orbits.

APPENDIX C: RECURSIVE GREEN’S FUNCTION
METHOD FOR THE DOS OF A TRIDIAGONAL

BLOCK HAMILTONIAN

As is shown in the main text, the Hamiltonian in ky

and σ basis only involves finite-range coupling and is block
tridiagonal

Ĥky,σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
...

. . . ĥx−1,σ t̂

t̂ ĥx,σ t̂

t̂ ĥx+1,σ . . .
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (C1)

ĥx,σ =
(

2ty,1 cos(2π�x − ky) + 4πg̃Bσ

cos θ
t⊥ exp(i2π�acx tan θ )

t⊥ exp(−i2π�acx tan θ ) 2ty,2 cos(2π�x − ky) + 4πg̃Bσ

cos θ

)
, (C2)

t̂ =
(

tx,1 0
0 tx,2

)
. (C3)

We are interested in the DOS ρσ (μ) of spin σ electrons at chemical potential μ defined as

ρσ (μ) = − 1

πLx

Tr(Im[Ĝσ (μ)]) (C4)

Ĝσ (μ) = [(μ + iδ)I − Ĥky,σ ]−1, (C5)

where we have used the fact that the physical quantities are independent of ky in the thermodynamic limit to suppress the
summation over the ky index.

To obtain the diagonal elements of the Green’s function Ĝσ (μ), we note the inverse of the following block tridiagonal matrix
may be calculated recursively

Ĝ−1
σ (μ) = (μ + iδ)I − Ĥky,σ =

⎛
⎜⎜⎜⎜⎝

a1,1 a1,2

a2,1 a2,2 a2,3

a3,2 a3,3 a3,4

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠, (C6)

where ai,i = (μ + iδ)I − ĥx,σ and ai,i+1 = ai,i+1 = t̂ . This is accomplished by the following recursive algorithm, which consists
of two independent sweeps (and hence the computation is linear in the size Lx):
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For increasing i = 1,2, . . . ,N − 1 we define

cL
i = −ai+1,i

(
dL

i

)−1
, (C7)

with dL
1 = a1,1 and dL

i = ai,i + cL
i−1ai−1,i ; for decreasing i =

N,N − 1, . . . ,2 we define

cR
i = −ai−1,i

(
dR

i

)−1
, (C8)

where dR
N = aN,N and dR

i = ai,i + cR
i+1ai+1,i , then the

diagonal blocks of Ĝσ (μ) = [(μ + iδ)I − Ĥky,σ ]
−1

are given
by

Ĝi,i = ( − ai,i + dL
i + dR

i

)−1
, i = 1,2,3, . . . ,N. (C9)

APPENDIX D: EFFECTIVE MASSES OF ELECTRON
POCKETS AND ZEEMAN SPLITTING COEFFICIENT g̃

1. Value of g̃ coefficient for Zeeman splitting
in our tight-binding model

The effective mass of a band structure is defined as

m∗ = �
2

2π

∂Sk

∂μ
, (D1)

where Sk is the k-space area enclosed by the Fermi surface
at chemical potential μ. The dispersion relation in our tight-
binding model in one of the single layers is equivalent to the
third orbit in Fig. 3

εk = −2ta cos kxa − 2tb cos kyb

� −2ta − 2tb + tak
2
xa

2 + tbk
2
yb

2 (D2)

near the bottom of the band, where a and b are the sizes of the
unit cell. At chemical potential μ the Fermi surface is close

to an ellipsis with k0
x =

√
μ

taa2 and k0
y =

√
μ

tbb2 , thus the area

FIG. 12. Different slopes of Sk versus μ suggest the effective
masses are different for the different orbits. The areas of α, γ , and
ε orbits are obtained from exact calculations of the Fermi surface,
while for β and δ orbits the areas are based on interpolation between
the α, γ , and ε orbits (shown as the thinner lines). The vertical line
is the value of μ = −2.5306ta chosen throughout our calculations.

enclosed by the Fermi surface

Sk = πk0
xk

0
y = πμ

ab
√

tatb
. (D3)

The effective mass of the model near the band bottom is

m∗ = �
2

2ab
√

tatb
. (D4)

By definition, the Zeeman splitting is

EZeeman = ±g

2
μBB = ± gπ�

2

2abme

�

cos θ

= ±π
√

tatb
gm∗

me

�

cos θ
, (D5)

where μB = e�/2me is the Bohr magneton and � is the
dimensionless quantity of the number of magnetic flux quanta
�0 = h/e per x − y plaquette. Note that g = 2 for electron
spin and m∗/me ≈ 1.6 in YBCO, ta = 1 and tb = 1/3,

EZeeman � ±0.92 × 2π�/ cos θ. (D6)

In fact, the quadratic approximation in εk in Eq. (D2)
underestimates the effective mass m∗ due to the higher
order terms we have neglected. A more careful treatment
and comparison between the numerical and theoretical θ

dependence suggests the best choice is

EZeeman � ±0.87 × 2π�/ cos θ, (D7)

suggesting g̃ = 0.87 in connection with Eq. (5).

2. Effective mass for different semiclassical orbits

While g̃ = 0.87 determines the effective mass of the
electron pocket in a single layer and the central peak in the QO
power spectrum, it is conceivable that the effective mass of the
other viable semiclassical cyclotron orbits associated with the
side peaks be different, as their enclosed areas are necessarily
modified. Figure 12 shows the enclosed areas of these orbits
as the chemical potential is varied, and the effective mass
extracted from the corresponding slope according to Eq. (D1).
This is fully consistent with that obtained from the fit to QO
amplitude versus θ angle of the magnetic field �B in Fig. 6.

APPENDIX E: FOURIER TRANSFORM ANALYSIS

Fourier transforms of finite data sets are known to introduce
frequency ‘artifacts’ into power-spectrum plots. These artifacts
originate in the choice of how the data is truncated. For
example, a ‘boxcar’ function—whereby the signal is simply
truncated at the start and end—introduces high-frequency
components due to the sharp cutoffs at the data boundaries.
Modern signal processing solves this through ‘apodization,’
whereby the data is brought to zero in some way at the
boundary. The choice of apodization function depends on what
features in the data are of interest.

The data in Fig. 10 were processed using a Kaiser
window, designed to resolve closely-spaced frequencies while
suppressing side lobes (at the expense of absolute amplitude
determination, which was not important for this analysis). The
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FIG. 13. (a) The inset shows two simulated data sets: One is apodized with a boxcar function (black), and the other uses equation (E1)
with α = 1.7 (red). The Fourier transform of the boxcar-apodized data shows multiple side lobes introduced from the sharp cutoff. The data
apodized with the Kaiser window has a main peak suppressed by about a factor of two, but with the first side lobe suppressed 20 times more
than that in the boxcar data. (b) The inset shows simulated data from equation (E2) before the window is applied. The Fourier transform uses
the Kaiser window with α = 1.7—the same as the red curve in Fig. 13(a) and in Fig. 10 in the main text. Note that there are no extraneous
side lobes.

weighting function w for N data points is defined as

w(n) =
I0

(
πα

√
1 − (

2n
N−1 − 1

)2)
I0(πα)

, (E1)

where I0 is the zeroth modified Bessel function of the first kind
and α controls the roll-off of the weighting function (chosen
to be 1.7 for this work). Figure 13(a) shows the effect of such
a windowing function on a signal and its Fourier transform.

Simulated QO data is shown in the inset of Fig. 13(b). The
data contains only the three central frequencies: 440, 530, and

620 T. Specifically, the function is

τ = e−150/B

(
cos

(
2π440

B
− π

)
+ cos

(
2π530

B
− π

)

+ cos

(
2π620

B
− π

))
. (E2)

Note the lack of side lobes near 350 and 710 T: This
demonstrates that the α and ε peaks in Fig. 10 are not artifacts
of the data analysis.
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