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Spin density wave instabilities in the NbS2 monolayer
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1Centro Atómico Constituyentes, GIyANN, CNEA, Avenida General Paz 1499, San Martı́n, Buenos Aires, Argentina
2Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, Avenida Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
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In the present work, we study the magnetic properties of the NbS2 monolayer by first-principles calculations.
The transition metal dichalcogenides (TMDCs) are a family of laminar materials presenting exciting properties
such as charge density waves (CDWs), superconductivity, and metal-insulating transitions. 2H -NbS2 is a
particular case within the family, because it is the only one that is a superconductor without exhibiting a
CDW order. Although no long-range magnetic order was experimentally observed in the TMDCs, we show here
that the single monolayer of NbS2 is on the verge of a spin density wave (SDW) phase. Our calculations indicate
that a wavelike magnetic order is stabilized in the NbS2 monolayer in the presence of magnetic defects or within
zigzag nanoribbons, due to the presence of unpaired electrons. We calculate the real part of the bare electronic
susceptibility and the corresponding nesting function of the clean NbS2 monolayer, showing that there are strong
electronic instabilities at the same wave vector associated with the calculated SDWs, also corresponding with one
of the main nesting vectors of the Fermi surface. We conclude that the physical mechanism behind the spin-wave
instabilities are the nesting properties, accentuated by the quasi-2D character of this system, and the rather strong
Coulomb interactions of the 4d band of the Nb atom. We also estimate the amplitude of the spin fluctuations and
find that they are rather large, as expected for a system on the verge of a quantum critical transition.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDCs), MX2 (X = S,
Se, or Te), constitute a family of compounds with fascinating
physical properties such as charge-ordered phases and super-
conductivity. They are characterized by a laminar structure
similar to that of graphite. Each monolayer is actually a trilayer,
composed by a plane of metal atoms sandwiched by two planes
of S, Se, or Te. Within one trilayer, the atoms are covalently
bound while separate trilayers are held together mainly through
weak van der Waals interactions. In pristine TMDCs there are
two different bulk structures (polytypes), abbreviated by 1T

and 2H , corresponding to the either octahedral or trigonal
prismatic coordination of the M atom. The primitive cell of
the 1T and 2H polytypes contains one and two monolayers,
respectively.

Bulk TMDCs can present strikingly different behaviors
depending on the polytype. For instance, charge density wave
(CDW) transitions occur in both 1T and 2H structures but
with very different structural and electronic properties. Some
1T systems are Mott insulators while in the 2H family there
is no trace of Mott physics. In particular, the 2H -MX2 can
be either metallic [such as Nb(S,Se)2 and Ta(S,Se)2] or band
insulators (such as MoS2 and WS2), depending on the filling
of the d band. Notably, also both polytypes can present a
superconducting state. Many works have been devoted to
studying the driving force of the CDW and its relation to
superconductivity (SC). Naturally, the quasi-two-dimensional
structure of these laminar materials is prone to a nesting
scenario characterized by parallel pieces of the Fermi surface
at a given “nesting” vector, qn. The traditional understanding
would be that under this nesting condition, the electron system
might become unstable and induce a CDW transition in the
Peierls-like manner and/or a SDW one. However, it has been
shown for 2H -NbSe2 and 2H -TaSe2, two prototypes of CDW

systems, both by angle-resolved photoemission experiments
(ARPES) and ab initio calculations, that the charge-ordering
wave vector, qCDW , is different from qn, indicating that a
simple nesting model [1,2] cannot account for the CDW
in these materials. Instead, an enhancement of the electron-
phonon coupling at qCDW has been proposed to be the driving
force. More recently, ARPES data supported by theoretical
calculations of the k-resolved susceptibility suggested that the
CDW instability is dominated by finite energy transitions from
states far away from the Fermi surface. In any case, the general
consensus is that the CDW in these systems is not of pure
electronic origin [3].

Among the TMDCs, 2H -NbS2 is a particular case, because
it is a superconductor like 2H -NbSe2, with a similar Tc,
but no CDW ordering has been observed experimentally.
First-principles calculations have shown that the CDW is
suppressed in this material due to anharmonic effects [4].
These results suggest that since the superconducting properties
are very similar to those of the isoelectronic 2H -NbSe2,
either the nature of the ordered phase is not relevant for
the superconducting state or there are other types of insta-
bilities unexplored up to now. As was recently reviewed in
Refs. [5,6], the TMDCs present many properties that are
similar to the ones observed in the unconventional cuprates
and Fe-based superconductors; a pseudogap behavior is one
of them. However, no SDW or any other kind of long-range
magnetic order has been observed in any of these TMDCs until
now.

Experimentally, exfoliation techniques used to obtain
graphene have been adjusted to TMDCs to produce analogous
samples of lower dimensionality, be they a few monolayers,
a single monolayer, and even nanoribbons or flakes. Another
way to lower the dimensionality in TMDCs is through the
intercalation with organic molecules or transition metals.
Interestingly, it has been very recently observed, through
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optical and electrical transport measurements, that CDW
effects in NbSe2 are strongly enhanced in monolayers [7].

The fact that Nb is a 4d transition metal with important
electronic exchange interactions and the feasibility of lowering
the dimensionality of this type of laminar system motivated us
to study the electronic properties of the NbS2 monolayer. The
absence of CDW order makes NbS2 particularly appealing due
to this relative simplicity.

In a previous work, we have shown by means of ab initio
calculations that NbS2 zigzag nanoribbons of different widths
develop a wavelike pattern in their magnetic moments [8].
In the present work, we generalize the study of the magnetic
instabilities and gain insight into the physical mechanism that
drives the observed magnetic solutions. By calculating the real
part of the bare electronic susceptibility in the constant matrix
element approximation [9] and the corresponding nesting
function we show that the nesting properties of the NbS2

monolayer, together with the rather strong Coulomb exchange
interaction of the 4d band, put this system to be on the
verge of the SDW transition. As expected for a system close
to a quantum critical magnetic transition, there should exist
large spin fluctuations. We have estimated the amplitude of
these fluctuations through the fluctuation-dissipation theorem
obtaining a value that is consistent with this scenario. We
reinforce this picture by showing that doping, defects, or ribbon
edges can stabilize spin density waves in NbS2 monolayers.

The paper is organized as follows. In Sec. II we describe
the computational details. In Sec. III we study the electronic
properties of the NbS2 monolayer and the magnetic solutions
that are obtained when placing defects or creating ribbon
edges. We then analyze the static bare susceptibility of the
monolayer and show the wavelike magnetic patterns to be
SDW states. The estimation of the spin fluctuations of this
system are described at the end of this section. Finally, we
present our conclusions in Sec. IV.

II. COMPUTATIONAL DETAILS

Previous works have shown that ab initio calculations
based on density functional theory (DFT) correctly describe
the CDW phase in several 2H -MX2 (see for example
Refs. [10–13]). In this work, to study the magnetic properties
of the NbS2 monolayer, the calculations were preformed
using both the VASP [14–16] and WIEN2k [17,18] codes.
The cross-check is particularly necessary in the case of the
pristine NbS2 monolayer since, as will be shown below,
there are several competing phases very close in energy. For
the exchange correlation potential the generalized gradient
approximation as parametrized by Perdew et al. [19] was
employed. The atom positions were modified until all forces
were smaller than 0.02 eV/Å. To model the monolayers, a
supercell with 13 Å vacuum in the perpendicular direction was
used in order to avoid interactions between monolayers since
periodic boundary conditions were applied in all directions.
The k-point grid in the first Brillouin zone was 23×23×1.
For calculations of the Fermi surface and susceptibility it was
enlarged to 200×200×1, and an 8 meV Fermi temperature
smearing was used. Only the VASP code was employed to
analyze nanoribbons, which were simulated using a supercell
with a 20 Å vacuum region in the two perpendicular directions.

The k-point grid in these cases was 35×1×1. We perform
spin-polarized (SP) and non-SP calculations, with and without
considering the spin-orbit interaction (SO), and discuss its
effects in the results obtained.

III. RESULTS

To our knowledge, the experimental structural parameters
of the hexagonal NbS2 monolayer have not been reported
yet. The available data correspond to bulk samples [20]. The
obtained structural parameters, a and zc (zc being the height
of the S atom relative to the Nb plane), of the relaxed NbS2

monolayer are very close to the ones measured in the bulk. The
relaxed monolayer has a slightly larger lattice constant a and a
small increase of zc. The obtained values are a = 3.34 Å and
zc = 1.56 Å, which are within 1% and 5% of the experimental
ones for the bulk, respectively [21].

The most stable solution for the NbS2 monolayer, both
with and without SO coupling, is the non-SP one, if the
calculations are carried out in the primitive cell (1×1). There
is also a ferromagnetic phase, very close in energy, with
0.3 μB/Nb and 0.4 μB/Nb, with and without SO, respectively.
The corresponding band structure (without SO) is shown in
Fig. 1(a). There are six full S p-type bands, one band crossing
the Fermi level of mainly Nb-dz2 character (A′

1 of the D3h

group) and four empty Nb-d bands with E′ and E′′ symmetries.
Due to the strong covalency of this material, there is a strong
p-d hybridization effect between the full and empty bands. In
Fig. 1(b) we show the corresponding Fermi surface and the
first Brillouin zone. One of the main nesting vectors is in the
�M direction, indicated by arrows joining parts of the Fermi
surface.

When a larger supercell is considered, nontrivial magnetic
configurations appear. We study here a 4×4 supercell and
observe that a wavelike pattern in the magnetic moments of
the Nb atoms, shown schematically in Fig. 2(a), competes in
energy with the non-SP solution. When using the WIEN2k
code, without SO, the obtained wavelike configuration is
energetically more favorable (by 2 meV/Nb) than the non-
SP case. The maximum value of the magnetic moments is
0.4 μB/Nb. However, when the SO coupling is included in
the calculation, the non-SP solution becomes more stable
than the wavelike magnetic one with an energy difference

FIG. 1. (a) Non-SP band structure of the NbS2 monolayer,
without SO. The single band crossing the Fermi level (zero energy)
is primarily of Nb-dz2 character. (b) Corresponding Fermi surface of
the NbS2 monolayer. The first Brillouin zone is drawn in the center
of the plot. b1 and b2 are the reciprocal lattice primitive vectors. One
of the main nesting vectors is indicated by arrows.
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FIG. 2. Schematic representation of the magnetic moments (with-
out SO) of the Nb atoms in a 4×4 supercell. All values, in μB , are
approximate and intended as a guide for the eyes only. (a) Wavelike
configuration that competes in energy with the non-SP solution in
pristine NbS2. (b) Configuration obtained with a single Fe adsorption.
The Fe atom has a magnetic moment of −2.6 μB . a1 and a2 are the
lattice primitive vectors and the 4×4 supercell is repeated twice along
each direction.

of 4 meV/Nb. The energetics obtained with VASP is similar
except for the fact that one can also find an intermediate, nearly
degenerate ferromagnetic state, less than 1 meV/Nb from the
non-SP one. The magnetic moments in the ferromagnetic case
are 0.16 μB/Nb. It is important to remark that all the solutions
are very close in energy and the values of the magnetic
moments are highly dependent on the atomic positions and
lattice constants. Also, the shape of the magnetic patterns is
constrained by the periodic boundary condition of the 4×4
supercell.

The existence of several magnetic configurations competing
in energy and the high sensitivity to structural parameters point
towards a system with a very large magnetic susceptibility.
These wavelike solutions can be fully stabilized if a chemical
perturbation is introduced. As an example, we show in
Fig. 2(b) a schematic representation of the Nb magnetic
pattern obtained for a 4×4 supercell of NbS2 with a single
Fe atom adsorbed on the monolayer. Similar solutions are

obtained by substitutional doping with, for instance, Co or Fe
vacancies or through other adsorbed species. Small changes in
the atomic positions or lattice constants, or the introduction
of the spin-orbit interaction, do not destroy the magnetic
patterns. The configuration is similar to the one in Fig. 2(a),
corresponding to the pristine monolayer. However, unlike
the later case, the wavelike configurations are energetically
far more favored than the non-SP solution, especially if the
defect introduces unpaired bonds or a magnetic moment in the
monolayer. For example, the energy differences in the 4×4
supercell are of around 5 meV/Nb for a substitution of Nb by
Fe or Co, of 25 meV/Nb for an Nb vacancy, and of 38 meV/Nb
for the Fe adsorbtion in Fig. 2(b).

If the hexagonal symmetry of the monolayer is broken
by making an infinite line of defects or considering quasi-
1D ribbons, the magnetic oscillations occur along a single
direction. In Fig. 3(b), we show the obtained magnetic
moments of the individual Nb atoms across NbS2 zigzag
ribbons, in the relaxed and unrelaxed structures of equal width.
The zigzag cut of the ribbon is presented in Fig. 3(a); on
top, the lattice primitive vectors of the monolayer in real
and reciprocal space are shown. If the zigzag edge is taken
parallel to a1, then the width N is defined as the number of
formula units in the ribbon primitive cell in the direction
perpendicular to a1. Successive rows of Nb atoms are then
numbered starting on the Nb-terminated edge. The magnetic
moments in Fig. 3(b) correspond to ribbons with N = 20.
The wavy pattern is also present in ribbons of smaller width
(shown in Ref. [8]); however the periodic character is clearer
for large N due to a less important finite-size effect. As in
the case of the monolayers with point defects, these magnetic
solutions are very robust and appear in both the relaxed and
unrelaxed cases. Despite their low dimensionality, the NbS2

ribbons are structurally very rigid. Relaxation affects mainly
the positions of the edge atoms (rows 1 and 20), changing
their magnetization. The difference in the wavelength of the
pattern is due to the slightly smaller lattice constant of
the relaxed ribbon. When the SO coupling is considered, the
oscillations have a slightly larger amplitude. We note that, as
in the monolayer case, this pattern is stabilized by a magnetic
perturbation, namely, the ribbon edges. If the edge magnetism
is removed, the wavelike configuration disappears. In order to

FIG. 3. (a) Top view of the NbS2 zigzag ribbon structure. Large spheres stand for transition metal atoms, small spheres for chalcogen
atoms. The real space (a1,2) and reciprocal space (b1,2) lattice vectors of the NbS2 monolayer are explicitly plotted. The ribbons are periodic
in the a1 direction and the corresponding edge is marked by the dashed line. Rows of Nb atoms are numbered consecutively, starting on the
Nb-terminated edge. (b) Magnetic moments of the individual Nb atoms across the unrelaxed and relaxed NbS2 zigzag ribbons of width N = 20,
without SO.
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confirm this, we performed calculations on ribbons with edges
passivated by hydrogen (not shown). Similarly to the better
known case of MoS2 zigzag ribbons [22], H passivation of all
dangling bonds removes the edge magnetism and, in the NbS2

ribbon, the wavelike pattern as well.
The fact that the wavelike magnetic patterns are present

in the unrelaxed perturbed systems is indicating that the
magnetic state is of purely electronic origin. We claim that
these magnetic patterns are actually SDW instabilities of the
NbS2 monolayer that are stabilized by magnetic point defects
or ribbon edges. In order to get insight into the microscopic
origin of these magnetic instabilities, we calculate the real
part of the bare electronic susceptibility in the static limit
and constant matrix approximation [9], χ ′

0(q), and the nesting
function, Nf (q), for the NbS2 monolayer. The real part of
the susceptibility reads χ ′

0(q) = ∑
k

fk+q−fk

εk−εk+q
, where fq is the

Fermi function and εk is the band energy. In the case of
the monolayer, only one band crosses the Fermi level, so that
the band index is omitted. The interband contributions in this
case do not affect the shape of χ ′

0(q).
In the simplest case, where there is no periodic lattice

distortion, the SDW becomes stable when the criterion
χ ′

0(q) · Vq > 1 is met, Vq being the exchange matrix element
interaction in the local approximation [9]. The orientation of
the SDW is given by the direction of q in real space, and
its period by 2π/|q|. The amplitude of the SDW and the
energy gained by the system are determined by the product
χ ′

0(q) . Vq . If Vq changes slowly in reciprocal space, a SDW
will occur at the wave vector q for which χ ′

0(q) is maximum,
provided the mentioned criterion is satisfied. The imaginary
part of the susceptibility, χ ′′

0 (q), gives information on the
nesting properties. It is related to the so called nesting function
Nf (q) = limω−>0

χ ′′
0 (q)
ω

= ∑
k δ(εF − εk)δ(εF − εk+q), where

εF is the Fermi level.
In Fig. 4 we show the calculated χ ′

0(q) for the NbS2

monolayer in the full first Brillouin zone. The susceptibility
has several local maxima for different q vectors. The highest
maximum is found at qn ≈ 0.2b1 = (0.2,0)4π/

√
3a and its

symmetry equivalent vectors. In Fig. 5, we show the calcu-

FIG. 4. Real part of the static noninteracting susceptibility χ ′
0(q)

of the NbS2 monolayer (non-SP) in the full first Brillouin zone,
without SO. Values are in 1/eV. The arrow points out the absolute
maximum, which is along the �M direction. The red line marks the
edges of the irreducible Brillouin zone.

FIG. 5. (a) Real part of the static noninteracting susceptibility
χ ′

0(q) and (b) nesting function Nf (q) of the NbS2 monolayer along
the �MK� path, with (dashed) and without (solid) SO. The arrows
indicate the absolute maximum of χ ′

0(q).

lated χ ′
0(q) and Nf (q) along the high-symmetry directions

�-M-K-�. The most relevant feature to note from this plot
is that the nesting vector for which Nf (q) is maximum is
qn. It matches with the one that maximizes χ ′

0(q); both are
indicated with arrows in the plot. We note that the calculated
χ0(q) depends weakly on the calculation settings and structural
parameters being, in fact, very similar to the ones obtained for
the undistorted NbSe2 and TaSe2 monolayers (without SO)
[12]. When the SO coupling is included, the band crossing εF

splits, giving rise to a concomitant splitting at qn in Nf and a
slight broadening in χ ′

0(q).
The direction of the magnetic wave pattern shown in

Fig. 3(b) is exactly the direction of qn, which is perpendicular
to the ribbon edge [see Fig. 3(a)]. We estimate the wavelength
of the resulting SDW from a least-squares fit of the magnetic
moments obtained for the NbS2 nanoribbon of N = 20 (by
considering 12 innermost rows only). We get λ = 13.88 Å and
λ = 13.43 Å for the unrelaxed and relaxed cases, respectively.
Both values are very close (within 4% and 8%, respectively)
to the wavelength corresponding to qn. It is expected that for
ribbons with larger widths, the outcoming λ’s should be even
closer to 2π/|qn|. The magnetic patterns of the monolayer
[Fig. 2(a)] should also approach this wavelength if a supercell
larger than 4×4 is considered.

In view of this analysis we claim that the wavelike patterns
obtained for the doped NbS2 monolayers and ribbons are
SDWs originating in the nesting of the 2D Fermi surface. In
the presence of SDWs the NbS2 monolayer remains metallic.
The competing SDW phase presents a partial band splitting,
while several dispersive bands still cross εF .

It is important to remark that besides the high susceptibility
and ribbon edges, or other perturbations, a SDW will not
be stable in a given system if Vq is not large enough. To
show an example of such a situation, we study the magnetic
configuration of the TaS2 zigzag ribbon with N = 20. The
exchange interaction in 4d metals (such as Nb) is stronger
than in the 5d elements such as Ta, due to the stronger spatial
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FIG. 6. Magnetic moments of the individual Ta atoms across the
TaS2 zigzag ribbon of width N = 20, unrelaxed (without SO). Rows
of Ta atoms are numbered consecutively starting on the Ta-terminated
edge.

localization of the d orbitals with smaller quantum principal
number. In Fig. 6 we present the magnetic moments of the
individual Ta atoms in the ribbon. Although there is a wavelike
pattern, the oscillation decays rapidly towards the center. In
this system the SDW is weaker. We alert the reader that the
data of Fig. 6 correspond to an unrelaxed ribbon, without SO,
merely used as a way to demonstrate the importance of the
exchange interactions in the strength of SDW phases. The
actual, physical TaS2 zigzag ribbon may be subject to CDW
phases and stronger SO effects.

It is well known that DFT calculations in their local spin
density approximation (LSDA) or in the gradient-corrected
GGA overestimate the tendency towards long-range magnetic
order in systems that are close to a quantum critical transition.
The main reason behind this is the underestimation of quantum
fluctuations in LSDA or GGA functionals, these fluctuations
being particularly important in critical systems. Recently, an
assessment of the magnitude of the spin fluctuations beyond
LSDA or GGA calculations has been made for a prototypical
critical material as Pd [23], and even more recently, for
the ferromagnetic-paramagnetic transition of Ni3Al under
pressure [24]. We propose that the NbS2 monolayer is close
to a quantum critical transition as well. A way to calculate
the intensity of the zero-point spin fluctuations is through the
fluctuation-dissipation theorem that reads

ξ 2 = 2�




∫
d3q

∫
dω

2π
Imχ (q,ω), (1)

where ξ is the deviation of the spin density from its mean-field
value, 
 is the Brillouin zone area, and χ (q,ω) the dynamical
susceptibility of the pristine NbS2 monolayer.

Due to the complexity of getting the full dynamical
susceptibility, in particular within a first-principles material-
specific approach, it is usual to do approximations. One way
to estimate ξ is to consider in Eq. (1) the noninteracting
Imχ0(q,ω) = ∑

k[f (εk) − f (εk+q)]δ(εk+q − εk − �ω). Here,
εk are the Kohn-Sham eigenvalues as before [25]. When
introducing Imχ0(q,ω) in Eq. (1), we get ξ = 0.2 μB . This
value is an underestimation of the quantum fluctuations of

the system, since an enhancement of the spin fluctuations is
expected when considering the scattering of the electron-hole
pairs due to all the electron-electron interactions [26]. In spite
of this, the obtained value for ξ is still quite large, within the
same order of magnitude as the calculated static magnetic
moments of the magnetic configurations that compete in
energy with the nonmagnetic one. We conclude that the spin
fluctuations can mitigate the long-range magnetic instabilities
in the pristine NbS2 monolayer but, as shown before, they can
be stabilized with doping, impurities, defects, or edges.

It is worth noting that similar values for the static magnetic
moments and the fluctuations (ξ ) were obtained for Pd by using
GGA for the exchange-correlation functional [23] and these
fluctuations (paramagnons) were recently detected through
inelastic neutron scattering experiments [27].

IV. FURTHER DISCUSSION AND CONCLUSIONS

In this work we have studied, by means of first-principles
calculations, the magnetic properties of the NbS2 monolayer.
We have shown that this system presents a high magnetic
susceptibility, large spin fluctuations, and is on the verge of
a SDW phase. We have also shown that the SDW states can
be stabilized either by doping, defects, impurities, or ribbon
edges. The physical mechanism behind the SDWs is of pure
electronic origin driven mainly by the nesting properties of
this two-dimensional material and a rather strong Coulomb
interaction in the 4d band of the Nb atoms.

Even if no long-range magnetic order has been exper-
imentally observed in NbS2, either in bulk, thin films, or
the monolayer, as far as we know, there are no reported
experimental works investigating the spin fluctuations of these
systems. Since our results indicate that the monolayer is
close to a quantum critical magnetic transition, these kinds
of measurements become highly desired.

On the other hand, bulk NbS2 shows a superconducting
phase below T = 6 K with similar characteristics to its
analogous 2H -NbSe2. In this last case, the system does
show an ordered phase (CDW) whose connection with the
superconducting one is still under debate. Although there has
been no suggestion other than the electron-phonon coupling for
the pairing mechanism of the superconductivity in the TMDC
family [4,28], it is difficult to avoid making a conjecture
regarding a possible connection of the SDW instabilities
predicted in this work and the superconductivity in NbS2.
However, this issue deserves further studies and it is beyond
the scope of this paper.
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[22] A. R. Botello-Méndez, F. López-Urı́as, M. Terrones, and H.
Terrones, Nanotechnol. 20, 325703 (2009).

[23] P. Larson, I. I. Mazin, and D. J. Singh, Phys. Rev. B 69, 064429
(2004).

[24] L. Ortenzi, I. I. Mazin, P. Blaha, and L. Boeri, Phys. Rev. B 86,
064437 (2012).

[25] The calculated χ0 is not exactly noninteracting because we use
the GGA eigenvalues. It is usually called this in the literature
and we continue with this terminology.

[26] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism
(Springer, Berlin, 1985).

[27] R. Doubble, S. M. Hayden, Pengcheng Dai, H. A. Mook, J. R.
Thompson, and C. D. Frost, Phys. Rev. Lett. 105, 027207
(2010).

[28] M. Calandra and F. Mauri, Phys. Rev. Lett. 106, 196406 (2011).

094434-6

http://dx.doi.org/10.1103/PhysRevB.88.035108
http://dx.doi.org/10.1103/PhysRevB.88.035108
http://dx.doi.org/10.1103/PhysRevB.88.035108
http://dx.doi.org/10.1103/PhysRevB.88.035108
http://dx.doi.org/10.1103/PhysRevB.86.155125
http://dx.doi.org/10.1103/PhysRevB.86.155125
http://dx.doi.org/10.1103/PhysRevB.86.155125
http://dx.doi.org/10.1103/PhysRevB.86.155125
http://dx.doi.org/10.1016/j.physc.2015.02.023
http://dx.doi.org/10.1016/j.physc.2015.02.023
http://dx.doi.org/10.1016/j.physc.2015.02.023
http://dx.doi.org/10.1016/j.physc.2015.02.023
http://dx.doi.org/10.1016/j.physc.2015.03.002
http://dx.doi.org/10.1016/j.physc.2015.03.002
http://dx.doi.org/10.1016/j.physc.2015.03.002
http://dx.doi.org/10.1016/j.physc.2015.03.002
http://dx.doi.org/10.1038/nnano.2015.143
http://dx.doi.org/10.1038/nnano.2015.143
http://dx.doi.org/10.1038/nnano.2015.143
http://dx.doi.org/10.1038/nnano.2015.143
http://dx.doi.org/10.1109/TMAG.2013.2257708
http://dx.doi.org/10.1109/TMAG.2013.2257708
http://dx.doi.org/10.1109/TMAG.2013.2257708
http://dx.doi.org/10.1109/TMAG.2013.2257708
http://dx.doi.org/10.1088/0305-4608/3/4/022
http://dx.doi.org/10.1088/0305-4608/3/4/022
http://dx.doi.org/10.1088/0305-4608/3/4/022
http://dx.doi.org/10.1088/0305-4608/3/4/022
http://dx.doi.org/10.1103/PhysRevB.80.241108
http://dx.doi.org/10.1103/PhysRevB.80.241108
http://dx.doi.org/10.1103/PhysRevB.80.241108
http://dx.doi.org/10.1103/PhysRevB.80.241108
http://dx.doi.org/10.1103/PhysRevB.72.195114
http://dx.doi.org/10.1103/PhysRevB.72.195114
http://dx.doi.org/10.1103/PhysRevB.72.195114
http://dx.doi.org/10.1103/PhysRevB.72.195114
http://dx.doi.org/10.1103/PhysRevB.66.195101
http://dx.doi.org/10.1103/PhysRevB.66.195101
http://dx.doi.org/10.1103/PhysRevB.66.195101
http://dx.doi.org/10.1103/PhysRevB.66.195101
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1088/0953-8984/9/50/013
http://dx.doi.org/10.1088/0953-8984/9/50/013
http://dx.doi.org/10.1088/0953-8984/9/50/013
http://dx.doi.org/10.1088/0953-8984/9/50/013
http://dx.doi.org/10.1088/0957-4484/20/32/325703
http://dx.doi.org/10.1088/0957-4484/20/32/325703
http://dx.doi.org/10.1088/0957-4484/20/32/325703
http://dx.doi.org/10.1088/0957-4484/20/32/325703
http://dx.doi.org/10.1103/PhysRevB.69.064429
http://dx.doi.org/10.1103/PhysRevB.69.064429
http://dx.doi.org/10.1103/PhysRevB.69.064429
http://dx.doi.org/10.1103/PhysRevB.69.064429
http://dx.doi.org/10.1103/PhysRevB.86.064437
http://dx.doi.org/10.1103/PhysRevB.86.064437
http://dx.doi.org/10.1103/PhysRevB.86.064437
http://dx.doi.org/10.1103/PhysRevB.86.064437
http://dx.doi.org/10.1103/PhysRevLett.105.027207
http://dx.doi.org/10.1103/PhysRevLett.105.027207
http://dx.doi.org/10.1103/PhysRevLett.105.027207
http://dx.doi.org/10.1103/PhysRevLett.105.027207
http://dx.doi.org/10.1103/PhysRevLett.106.196406
http://dx.doi.org/10.1103/PhysRevLett.106.196406
http://dx.doi.org/10.1103/PhysRevLett.106.196406
http://dx.doi.org/10.1103/PhysRevLett.106.196406



