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Long-lasting hybrid quantum information processing in a cavity-protection regime
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Implementing complex sequences of gates is crucial for any quantum computing architecture to become
practical. This requires long-lived qubits which can be manipulated many times without errors. Here we propose
a scheme to process hybrid qubits consisting of spin ensembles coupled to superconducting resonators in a
cavity-protection regime, which enhances their coherence time by orders of magnitude. We perform numerical
experiments for the quantum simulation of the XY model and the quantum Fourier transform, by including all
the main decoherence mechanisms and assuming system parameters that are guaranteed by present technology.
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I. INTRODUCTION

Hybrid quantum devices constitute one of the most promis-
ing platforms to build quantum computing architectures,
such as quantum simulators or solvers of specific quantum
algorithms [1]. In particular, spin ensembles (SEs) coupled to
superconducting qubits [2,3] and resonators [4–8] represent
a concrete possibility for prospective quantum technologies:
Photons may serve as quantum buses thanks to their high
mobility [9,10], whereas spins are preferential candidates
to build reliable quantum memories based on their long
coherence time. A considerable step further in this direction
was recently made by our proposed scheme for quantum in-
formation processing with hybrid spin-photon qubits replacing
the superconducting units to encode information [11–13]. In
such a novel setting a single manipulation tool (the tunability of
resonators frequencies) is sufficient to implement a universal
set of gates. However, inhomogeneous broadening (IB) of SEs
remains the major challenge to overcome before any of these
proposals can practically be realized. It was recently pointed
out that a strong spin-cavity coupling can provide a protection
mechanism for spin-based memories as long as the spin flip
energy is close to the resonator frequency [14,15]. Such a
mechanism was recently demonstrated experimentally under
resonant conditions [16]. Nevertheless, while great attention
has been focused on the storage of excitations in the SE, a
proposal to implement single or sequences of gates with high
fidelity by long-lived SEs is still lacking.

In the present paper, we address this unsolved issue by
operating the hybrid spin-photon qubits in a cavity-protected
regime, thus exploiting the spins not only for storing but also
for processing quantum information for long times. We show
that by combining a suitable spin-1 system with a proper time-
dependent tuning of the resonators frequency, a universal set
of gates can be implemented with coherence times no longer
limited by IB. This paves the way to the actual scalability
of this hybrid architecture. On the one hand, scalability is
made possible by the inherent definition of the long-lived
qubits, represented by coupled SE-resonator devices that can
be repeated in an array. On the other hand, the mobility of
photons and the use of spin-1 ensembles are crucial to perform
two-qubit gates between physically distant qubits, without
much more demanding SWAP gates. These resources make
the class of problems that can be realistically addressed much

larger. As test examples, we report full numerical experiments
for the digital quantum simulation of the XY model on a pair
of qubits and for the quantum Fourier transform on a chain
of three qubits, which constitutes the fundamental building
block of the Shor’s factoring algorithm [17]. The robustness
of the scheme is demonstrated by realistically including the
main sources of decoherence in a master equation formalism
and working with state-of-the-art parameters. Remarkably,
the experimental realization of the present proposal only
requires assembling elements that have already been separately
demonstrated.

II. SETUP AND HYBRID QUBIT ENCODING

Each qubit is encoded in a coplanar superconducting
waveguide resonator, containing at most one photon, strongly
coupled to an ensemble of N effective S = 1 spins. For the
sake of clarity, we first describe the system in the absence of
inhomogeneous broadening. The resonator quantized electro-
magnetic field is described by the boson Hamiltonian Ĥph =
ω

μ
c (t)â†

μâμ, where μ labels the resonator of tunable frequency
ω

μ
c (t). Let m = 0 be the ground state of the single spins,

separated from the m = −1 and m = 1 states by excitation
frequencies ω−1 and ω1. By applying the rotating-wave
approximation, the SE-resonator coupling can be modeled as

ˆ̃Hspin-ph =
∑

m=−1,1

N∑
j=1

gm(âμ |mj 〉μ μ〈0j | + H.c). (1)

Here j labels the individual spins within the ensemble.
Then it is convenient to introduce the collective spin low-
ering operator β̂μ,m = 1√

N

∑N
j=1 |0j 〉μ μ〈mj | and its adjoint

β̂
†
μ,m. In the limit of small number of excitations, the

Holstein-Primakoff approximation holds. Hence, β̂μ,m and
β̂
†
μ,m are boson operators [5], obeying the commutation relation

[β̂μ,m,β̂
†
μ,m] = 1. Therefore, the collective spin excitations

behave like independent harmonic oscillators, described as
boson fields Ĥspin = ∑

m ωmβ̂
†
μ,mβ̂μ,m. Within this framework,

the SE-photon interaction takes the form:

Ĥspin-ph =
∑

m=−1,1

Gm (âμ β̂†
μ,m + â†

μβ̂μ,m), (2)
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where the collective SE-photon interaction Gm = √
Ngm has

been enhanced by
√

N , if compared to the single spin coupling
strength.

We now suppose to initialize the system by preparing each
spin in its ground state: |φ0〉μ ≡ |01...0N 〉μ, with a single
photon in the resonator. If the resonator frequency is tuned
to match the spin gap ω−1, the SE can absorb the photon
and collectively evolve into the state |φ1〉μ = β̂

†
μ,−1|φ0〉μ.

Within the single-excitation subspace of the system formed
by the cavity mode and the SE, we introduce the hybrid
dual-rail encoding of the qubit μ: The logical state |0〉μ
(|1〉μ) corresponds to zero (one) photons and a single (zero)
quantum in the m = −1 spin oscillator in cavity μ. A similar
encoding was introduced in our previous works [11,12], but
considering effective spin-1/2 ensembles. Here, the m = 1
oscillator represents an additional degree of freedom that is
exploited to temporarily store the photonic component of
the qubit when performing two-qubit gates between distant
qubits [13].

The elementary unit of the scalable array is shown in
Fig. 1(a): It consists of two logical resonators encoding
two qubits, and an interposed auxiliary cavity containing a
nonlinear three-level system such as a transmon, which is used
for two-qubit gates. This is described by

Ĥtr = �01|ψ1,μ〉〈ψ1,μ| + (�12 + �01)|ψ2,μ〉〈ψ2,μ|
+ (g01âμ|ψ1,μ〉〈ψ0,μ| + g12âμ|ψ2,μ〉〈ψ1,μ| + H.c.).

(3)

FIG. 1. (a) Elementary unit of the scalable setup. Logical res-
onators include an ensemble of S = 1 spins placed at the antinode of
the magnetic field (rotational lines) of the cavity mode. The auxiliary
resonator contains a transmon coupled to the electric field. The
frequency of each resonator is tuned by means of a SQUID [21]. (b)
Evolution of the super-radiant mode coupled to a bath of dark modes,
calculated for different values of the spin-resonator detuning δ, while
keeping the collective spin-resonator coupling G−1 to 30 MHz.
We have assumed a Gaussian distribution for the spin gaps, with
FWHM � = 1 MHz. The system is initialized into an eigenstate of
the single-qubit Hamiltonian, in order to point out the effect of the
coupling with the dark modes. By decreasing δ, the system is more
protected. δ = 6 G−1 ensures that only 1% of the wave function is
lost for long times.

Photon hopping is induced by capacitive coupling between
neighboring resonators,

Ĥph-ph = −κ
∑

μ

(â†
μâμ+1 + H.c.). (4)

In the following, logical cavities will be labeled with odd μ,
while auxiliary ones with even μ.

III. INHOMOGENEOUS BROADENING OF
THE SPIN ENSEMBLE

A certain degree of spin inhomogeneity is unavoidable
in real SEs and may result from slightly disordered spin
environments or from random magnetic fields produced by
surrounding nuclear magnetic moments. Among the N levels
corresponding to one spin flip, a unique “super-radiant”
collective spin-excitation couples to the resonator, while the
other N − 1 “dark modes” are decoupled from the photon field.
However, due to IB, the super-radiant excitation spontaneously
decays into the quasicontinuum of dark modes within a
timescale of order �/�, � being the width of the distribution
of gaps in the SE. A possible way to deal with IB is to revert the
associated Hamiltonian evolution by echo techniques [18–20],
but implementing them within our encoding would be very
demanding and would also require to tune the resonator quality
factor in order to avoid emitting a microwave echo from the
inverted spin ensemble.

Here we exploit only the tunability of individual resonator
modes [8,21] to solve the problem and efficiently implement
quantum gates. These are performed by keeping the SE in
a “cavity-protection” regime [14–16]: A strong SE-resonator
coupling induces an energy gap between the computational
(super-radiant) and the noncomputational (dark) modes [14],
thus effectively decoupling them. In the nonresonant regime,
the energy shift of the super-radiant mode is of order G2

−1/δ,
where δ = ω−1 − ωc(0) is the detuning between the bare
resonator frequency and SE gap. By assuming a Gaussian
broadening of width �, the cavity-protection condition is ful-
filled if 2G2

−1/δ � �. However, reducing δ leads to unwanted
oscillations of a significant fraction (∼G−1/δ) of the wave
function between logical states |0〉μ and |1〉μ. Nevertheless,
these oscillations can be compensated within our scheme,
because they merely represent single-qubit rotations.

As a first step, we numerically determine the time evolution
of the single-qubit wave-function |ψ(t)〉μ, coupled to a bath
of dark modes, using the formalism of Ref. [15], outlined in
Appendix A. To properly account for the effect of inhomo-
geneous broadening, we consider a distribution of the spin
transition frequencies and of the spin-resonator couplings.
Since we are interested in a very large number of spins N ,
we describe them by a continuous, Gaussian spectral density,
spread around its central frequency ω

μ
c , with full width at half

maximum (FWHM) �. The time evolution of the system wave
function is then computed by the Laplace transform method,
along the lines of Ref. [15].

Results are shown in Fig. 1(b) for a state initially prepared
in |ψ(0)〉μ = cos θ

2 |0〉μ + sin θ
2 |1〉μ, which is an eigenstate of

the single qubit Hamiltonian [Eq. (B1)] with cot θ = δ
2G−1

.
Thus, the observed evolution of |ψ(t)〉μ is entirely due to the
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coupling of the qubit with the dark modes. We have assumed
a realistic coupling G−1 = 30 MHz and a SE with FWHM
� = 1 MHz [8,15]. Figure 1(b) clearly shows that the cavity-
protection mechanism is enhanced on decreasing the detuning
δ: For δ = 6 G−1 only ≈1% of the wave function is lost in the
dark modes at long times. As expected, this is lower than the
upper bound (�2δ2/2 log 2G4

−1 ≈ 2.8%) obtained in Ref. [14].
Hence, in this regime the SE coherence time increases by
orders of magnitudes and approaches the intrinsic single-spin
time. The damping induced by IB can then be safely neglected.
Similarly to what was done in the previous section with βμ,m

and β
†
μ,m, the spin excitations are described in the following

by the boson operators b̂μ,m = 1
ḡm

√
N

∑N
j=1 g

j
m|0j 〉μ μ〈mj | and

b̂
†
μ,m, where we have used ḡm ≡

√∑
j |gj

m|2/N to indicate the
average single spin-photon coupling strength. The collective
SE-photon interaction is then given by

√
Nḡm. The next task is

to embed this cavity-protection mechanism within an efficient
quantum computation scheme. This is by no means trivial, due
to the unwanted oscillations of the wave function induced by
the small detuning, which must be properly taken into account.

IV. QIP WITH AN INHOMOGENEOUSLY BROADENED SE

A. Choice of the spin system

The robustness of the scheme also relies on the choice of
a suitable spin system. The ideal spin system has a narrow
distribution of the energy gaps, which decays faster than a
Lorentzian. Good candidates are spin systems with gaussian
broadening, possibly isotropic and diluted in a nonmagnetic
matrix, so as to avoid dipolar interactions, which typically lead
to Lorentzian line shapes. Moreover, the spin gaps should be
close to the frequency of current circuit QED resonators.

Hence, the best systems are the so-called S ions (like Fe3+

or Gd3+) whose orbital angular momentum vanishes because
of Hund’s rules. This makes them practically insensitive
to disorder in the environment. In addition, the number of
nuclear spins should be minimized, as these produce random
quasistatic magnetic fields causing IB. Linewidths as small as
a fraction of Gauss are indeed observed in diluted magnetic
semiconductors, such as Fe3+ in ZnS [22,23], whose nuclei are
mostly spinless. Even narrower lines are observed for P-doped
Si [24]. We note that the use of S > 1 spins increases G−1, and
thus the protection mechanism. The proper choice of the spin
system leads to a degree of cavity protection much higher than
that reported in the milestone experiment of Ref. [16], where
the SE consisted of standard NV centers. This is not an ideal
choice, since the spin-photon coupling is small (∼8 MHz),
and the gap distribution is broad (∼9 MHz) and relatively
fat-tailed.

To keep the experimental demonstration as easy as possible,
we assume ω

μ
c = 14 GHz for the logical, and 10.2 GHz for

the auxiliary resonators, lower than the frequencies employed
in Ref. [6]. SEs fitting our scheme with a 14 GHz resonator
can be easily found: Fe3+ impurities in the same Al2O3 matrix
employed in Ref. [6] display suitable gaps with an applied
magnetic field of ∼70 mT forming an angle of ∼70◦ with
the anisotropy axis (given an easy-plane anisotropy with D =
5.15 GHz [25]).

B. Elementary quantum gates

In the hybrid encoding, single-qubit rotations, R̂x and
R̂y , are obtained by temporarily bringing the frequency of
the μth cavity, ω

μ
c , into resonance with the spin gap ω−1,

whereas R̂z is obtained by a nonresonant variation of ω
μ
c

(see Appendix C). As demonstrated by analytical calculations
reported in Appendix B, the main consequence of working in
a protected regime is the occurrence of unwanted one-qubit

oscillations with frequency ν =
√

G2
−1 + δ2/4. These can be

incorporated in the implementation of gates by choosing a
starting time t̃s = 2nπ/ν. However, gate starting times ts
cannot be chosen at will. For instance, the axis of one-qubit
rotations in the x,y plane is selected by ts [12]. The problem of
matching the two constraints is solved by adding a“rephasing
gate,” consisting in significantly increasing δ (thus freezing
unwanted oscillations) for a time �ts = ts − t̃s , with δ �ts =
4πn. We stress that the time interval �ts is orders of magnitude
shorter than that characterizing the damping due to IB. Hence,
this temporary loss of cavity protection has no effects on the
overall computation.

Two-qubit controlled-phase gates are implemented by
sequentially moving the photonic component of logical res-
onators into the same auxiliary cavity, and inducing a two-step
Rabi-flop involving the transmon (see Appendix C). The only
part that is affected by the unwanted oscillations is the photon
hopping between logical and auxiliary cavities, whose starting
time needs to be chosen again as ts = 2nπ/ν.

To test the performance of this scheme we first numerically
determine the fidelity of a universal set of gates. In all the cal-
culations reported below we also include decoherence effects.
These are mainly due to photon loss and pure dephasing of the
transmon [12], parameterized by the resonators quality factor
(Q) and by the transmon dephasing time (T tr

2 ) in the Lindblad
equation of motion:

˙̂ρ = −i[Ĥ ,ρ̂] +
∑

μ

ω
μ
c

Q
Lâμ

[ρ̂] + 1

T tr
2

∑
μ,i

L|ψi,μ〉〈ψi,μ|[ρ̂]. (5)

Here Lx̂[ρ̂] = − 1
2 (x̂†x̂ρ̂ + ρ̂x̂†x̂) + x̂ρ̂x̂† and Ĥ is the full

system Hamiltonian (see Appendix D). Additional sources of
decoherence do not significantly affect the qubits dynamics,
even on the timescale of several quantum gates (hundreds of
ns, see numerical experiments reported below). Indeed, in the
presently studied regime of parameters for the transmon T tr

1 >

T tr
2 , typically in the range T tr

1 ∼20–60 μs [27]. Furthermore,
in single spins the pure dephasing time can reach the value
of 0.1–1 ms [28], while the spin spontaneous emission time
is completely negligible in most SEs at low temperatures
(see, e.g., Ref. [28]). As far as photons are concerned, it
has been experimentally shown that pure dephasing of the
cavity modes is practically negligible (see, e.g., Ref. [29],
where the measured value of the dephasing time approximately
corresponds to twice the value of the photon decay time).

We list in Table I results obtained in the simulation of
elementary quantum gates. It is worth noting that fideli-
ties are very high, even with the inclusion of the most
important decoherence channels and by operating in the
cavity-protection regime. In the reported simulations, we
assume the resonator frequency ωc(0)/2π = 14 GHz and the
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TABLE I. Fidelity (F) and duration of single- [R̂x(φ) and R̂z(φ)]
and two-qubit gates (controlled-NOT) [26], and to simulate the
elementary terms of a generic two-body spin Hamiltonian (for λτ =
π/2). Single-qubit rotations corresponds to simulating single-spin
terms in the spin Hamiltonian (with φ = bτ ). The fidelity has been
computed on a random initial state, by assuming a Lindblad dynamics,
with Q = 106 and T tr

2 = 10μs, and operating in a cavity-protected
regime with δ = 6 G−1.

R̂x(π/2) R̂z(π/2) ÛCNOT Ĥ(2)
yy Ĥ(2)

zz Ĥ(2)
yz

t 6.3 ns 0.5 ns 86.2 ns 86.2 ns 64.5 ns 86.2 ns
F 99.77% 99.85% 98.75% 98.66% 99.02% 98.50%

photon hopping κ = 30 MHz. For the SE we use excitation
frequencies ω−1/2π = 14.18 GHz, ω1/2π = 12 GHz and
SE-photon couplings G−1 = 30 MHz, G+1 = 33 MHz. For
the auxiliary resonator we assume a frequency ωc(0)/2π =
10.2 GHz, transmon gaps �01/2π = 9.2 GHz, �12/2π =
8.3 GHz and transmon-photon couplings g01 = 30 MHz,
g12 = 40 MHz. At last, we use a detuning δ = 6 G−1 for cavity
protection. These parameters correspond to state-of-the-art
technology [1,10].

V. NUMERICAL EXPERIMENTS

Here we report numerical experiments demonstrating the
performance of our scheme in the implementation of some
interesting quantum computation algorithms.

A. Digital simulation of the XY model

As a first example we consider a digital quantum simula-
tor [30]. Digital techniques have been recently proposed in a
superconducting circuitry architecture [13,31] and proof-of-
principle demonstrations on a limited number of qubits have
just been realized [32]. They are based on the decomposi-
tion [33] of the evolution operator of the target Hamiltonian Ĥ
into the product of terms acting on short time intervals τ . Since
many problems can be mapped into a spin Hamiltonian, we
focus on elementary terms consisting of one- (Ĥ(1)

α ) and two-
qubit (Ĥ(2)

αβ ) Hamiltonians, of the form: Ĥ(1)
α = bŝα and Ĥ(2)

αβ =
λŝ1αŝ2β . The corresponding time evolution operator can be
implemented by means of single- and two-qubit gates [34].
The fidelities calculated for the simulation of these elemen-
tary steps (Table I) are very high, thus demonstrating the
effectiveness of our scheme. A proof-of-principle experiment
that could be readily performed is the simulation of the dy-
namics resulting from an XY interaction (ĤXY = λ[ŝ1x ŝ2x +
ŝ1y ŝ2y]) between two spins s = 1/2, which is also the central
step in the simulation of hopping processes in fermion
Hamiltonians.

Figure 2(a) shows that the time evolution is very well
reproduced (solid circles). These results can be compared
with those obtained in a nonprotected regime (large spin-
resonator detuning). The effect of IB is assessed by including
in the master equation a damping term acting on the SE
collective excitations γ

∑
μ,m Lb̂μ,m

[ρ̂], with γ = �/2π = 1
MHz (empty circles), representing the irreversible leakage of
the spin excitation in the dark modes [14,35]. It is evident

FIG. 2. (a) Simulation of the XY model with two hybrid qubits.
Lines represent the exact evolution, whereas points are calculated
with the Lindblad formalism (Q = 106, T tr

2 = 10 μs) within the
cavity protection regime (solid circles) or not (empty). (b) Time
dependence of the expectation values of number operators during
the first half of the simulation of HXY for the point τλ = π/2. The
operator n̂a = â

†
2â2 + |ψ1,2〉〈ψ1,2| + 2|ψ2,2〉〈ψ2,2| represents the total

number of excitations in the auxiliary resonator.

from Fig. 2(a) that in the nonprotected regime IB would lead
to completely unreliable results. We have also checked that a
reduction of the transmon pure dephasing time from 10 to 1 μs

does not significantly affect the simulation.
The expectation values of relevant operators in the com-

putation of Hxx are reported as a color map in panel (b),
where the oscillations of the boson occupations due to the
cavity-protection regime can be clearly noticed. We finally
stress that the scheme, besides defeating IB, enables the
implementation of a large number of two-qubit gates in
parallel.

B. Quantum Fourier transform

We now consider a chain of three qubits. An interesting
proof-of-principle example is the implementation of the
quantum Fourier transform (QFT), which constitutes the basic
building block of powerful algorithms, such as Shor’s and
the quantum phase estimation algorithms [17]. The quantum
circuit implementing QFT is shown in Fig. 3(a): It consists of
three Hadamard and three controlled-phase gates. Figure 3(b)
is a schematic view of the hardware at different times: Logical
resonators are represented by squared, odd-numbered boxes,
while auxiliary resonators are circular and even-numbered.
The implementation of the QFT involves two-qubit gates
between physically distant qubits: Here a controlled-R̂z(π

4 )
between qubits 1 and 5 is required [highlighted box in panel
(a)]. It is important to note that to achieve this we do not
need to fully transfer the state of qubit 1 into cavity 3 by
means of a sequence of error-prone two-qubit gates, because
the 1-3 SWAP is replaced by a much less demanding photon
hopping process. Once the photon components of the two
qubits involved in the controlled operation have been brought
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FIG. 3. (a) Quantum circuit implementing the QFT on three
qubits. Each Hadamard gate can be decomposed into the product
of two rotations: Ĥ1 = iR̂y(π/2)R̂z(π ). (b) Sketch of the three-qubit
setup and of the elementary operations (numbered from I to IV)
required to transfer a photon from logical resonator 1 to logical
resonator 3. Here we show the |111315〉 component of the wave-
function, with the excitations (red arrows) stored into the photonic
degrees of freedom (blue lines). Red (continuous and dashed) lines
represent the excitation energies of the spin oscillators (m = −1
and m = 1, respectively). (c) Expectation values of the photon (âμ)
and spin boson (b̂μ,m) occupations in the photon-transfer process

shown in (b), with the state initialized into 1√
3
|010305〉 +

√
2
3 |111315〉.

Oscillations of â5 and b̂5,m are not shown for clarity.

into neighboring logical resonators, the controlled-phase gate
is implemented, and the photon components are finally brought
back. We now illustrate this photon-transfer process, by
reporting in Fig. 3(c) the time dependence of boson excitations,

for a simple initial state 1√
3
|010305〉 +

√
2
3 |111315〉. In the idle

phase (step I), each qubit is subject to oscillations between its
photon and spin components, induced by the cavity-protected
regime. After an integer number of oscillations, the photonic
component of qubit 3 is absorbed into the m = 1 spin oscillator
(II). Simultaneously, cavity 1 is brought into resonance with
the neighboring auxiliary resonator 2, thus inducing a photon

hopping (III). Then the same process is repeated with cavities
2 and 3, while detuning the auxiliary resonator 4 in order
to avoid unwanted hoppings (IV). Finally qubits 1 and 5 are
kept far from resonance for ∼ns to rephase their oscillations
with those of the qubit 3 (V). We note that the photon
component of qubit 3 is stored into the m = 1 spin oscillator
only for the time required to the photonic component of
qubit 1 to cross the resonator (∼15 ns). We have performed a
numerical experiment by solving Eq. (5) for the whole QFT
implementation for several random initial states. We find an
average fidelity of about 93.6%, which is remarkably good
since all the most important decoherence mechanisms have
been taken into account. The total time required for the QFT
on three qubits is about 300 ns.

VI. CONCLUSIONS

In conclusion, we have shown that a quantum computation
scheme based on a hybrid spin-photon qubit encoding can
solve the major issue of inhomogeneous broadening, by
operating in a cavity-protected regime. We have corroborated
this result by performing extensive numerical experiments on
test examples, using parameters corresponding to state-of-the-
art technology and concretely proposing spin systems suitable
for an experimental implementation. The very high fidelity
obtained in the simulation of paradigmatic algorithms, together
with the enhanced coherence times of SEs opens the path to
the scalability of the proposed architecture to a large array of
resonators.
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APPENDIX A: TIME EVOLUTION OF THE
INHOMOGENEOUSLY BROADENED SPIN ENSEMBLE

In this appendix, we study the dynamics of an inhomoge-
neously broadened ensemble of N spins coupled to a coplanar
resonator. To this aim, we employ the formalism developed in
Ref. [15]. For simplicity, we represent each spin as a two-level
system, described by Pauli spin raising (σ̂+

j = |−1j 〉〈0j |) and
lowering (σ̂−

j = |0j 〉〈−1j |) operators. The other degrees of
freedom (e.g., the auxiliary spin level) are sufficiently detuned
to produce no sizable effect on the system dynamics.

We introduce the vector |ξ 〉 ≡ (α0,α1, . . . ,αN ), whose
components represent the probability amplitudes of the ex-
citation in the resonator mode and in each spin, respec-
tively: α0 = 〈∅|âμ|ξ 〉, αj = 〈∅|σ̂−

j |ξ 〉. Here |∅〉 is the state
with no photons and the spins in |φ0〉μ ≡ |01...0N 〉μ and
j = 1, . . . ,N . Using this notation, the logical states |1〉μ ≡
â†

μ|∅〉 and |0〉μ ≡ b̂
†
μ,−1|∅〉 correspond to (1,0, . . . ,0) and

(0,g1
−1, . . . ,g

N
−1)/ḡ−1

√
N , respectively. The time evolution of
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|ξ 〉 can be modeled by the effective Hamiltonian [15]:

Ĥeff = ω̃μ
c â†

μâμ +
N∑

j=1

ε
j

−1

1 − σ̂ z
j

2

+
N∑

j=1

g
j

−1(âμσ̂+
j + â†

μσ̂−
j ). (A1)

Inhomogeneous broadening of the spin ensemble corresponds
to a distribution of spin-resonator couplings, g

j

−1, and of

transition frequencies, ε
j

−1, for the different spins. In the
reported calculations, we have assumed a continuous, Gaus-
sian distribution. ω̃

μ
c = ω

μ
c (0) − i�/2 is the complex photon

frequency, with � = ω
μ
c (0)/Q the photon loss rate and Q the

quality factor of the resonator. Ĥeff obeys a Schrödinger-like
equation d

dt
|ξ (t)〉 = −iĤeff|ξ (t)〉. The time evolution of the

qubit wave function is computed by the Laplace transform
method, i.e.,

|ξ (t)〉 = L−1[(s + iHeff)
−1|ξ (0)〉], (A2)

where L[f (t)] ≡ F (s) = ∫ ∞
0 estf (t)dt . The choice of a con-

tinuous, Gaussian spectral density function for the spin
frequencies allows one to obtain a closed expression for the
scalar product 〈ξ (t)|ξ (0)〉 = 〈ξ (0)|eiĤeff t |ξ (0)〉. In particular,

we report in the text the time evolution of a single-qubit wave
function initialized in the state cos θ

2 |0〉μ + sin θ
2 |1〉μ, with cot

θ = δ
2G

.

APPENDIX B: SEMIRESONANT EVOLUTION

Here we describe the evolution induced by the single-
qubit Hamiltonian in a semiresonant regime, such that the
spin-cavity detuning is comparable to the SE-cavity coupling
strength. Contrary to what done in Appendix A, here we do
not consider each individual spin transition, but we focus
on the collective spin excitation (no matter its precise form)
coupled to the resonator mode. The one-qubit Hamiltonian
Ĥ1q , within the single excitation subspace, can be written as
Ĥ1q = G(|0〉〈1| + |1〉〈0|) + δ|1〉〈1|, i.e., in matrix form:

H1q =
(

0 G

G δ

)
, (B1)

The eigenvectors of Ĥ1q can be recast in the form
|ψ−〉 = cos θ

2 |0〉 − sin θ
2 |1〉 and |ψ+〉 = sin θ

2 |0〉 + cos θ
2 |1〉,

with θ = acot δ
2G

and corresponding eigenvalues E± = δ
2 ±√

G2 + δ2/4. The unitary operator which describes the semi-
resonant evolution, in interaction picture is

U = e−i δτ
2

⎛
⎝cos ντ + iδ√

δ2+4G2 sin ντ − 2iGe−iδt0√
δ2+4G2 sin ντ

− 2iGeiδt0√
δ2+4G2 sin ντ cos ντ − iδ√

δ2+4G2 sin ντ

⎞
⎠

where τ = t − t0, t0 is the time at which U starts to act and
we assumed Schrödinger and interaction picture coincident at
t = 0. The oscillation frequency is ν =

√
G2 + δ2/4. Notice

that this expression is valid only if the semiresonant evolution
is followed by a phase gate R̂z[−(ωc − ω−1)τ ].

APPENDIX C: SINGLE- AND TWO-QUBIT GATES

1. Single-qubit rotations

One- and two-qubit gates are induced by “shift pulses,” in
which the frequency of cavity μ is varied by a quantity δ

μ
c

for a suitable amount of time. In the idle state, the modes
ω

μ
c and ω

μ+1
c of neighboring cavities are far detuned and

the effect of Ĥph-ph is negligible. Single-qubit gates can thus
be performed independently on each qubit, which can be
individually addressed.

Off-resonance pulses are used to obtain a rotation about the
z axis of the Bloch sphere. These induce a phase difference
between the |0〉 and |1〉 states of the hybrid qubits, thus
performing (a part from a global phase) the R̂z gate:

Rz

(−δμ
c T

) =
(

eiδ
μ
c T /2 0
0 e−iδ

μ
c T /2

)
. (C1)

where we have assumed steplike pulses of amplitude δ
μ
c and

duration T .
This coincides with a rotation around the z axis up

to an overall phase, being R̂z(ϕ) = e−iσ̂zϕ/2 = e−iϕ/2�(ϕ)
and σα=x,y,z the Pauli matrices. Conversely, resonant pulses

are employed to transfer the excitation between SEs and
resonators. This produces (a part from a Rz rotation, see
Ref. [12]) a generic rotation in the x-y plane of the Bloch
sphere:

Rxy(θ ) =
(

cos (θ/2) −ie−iδ
μ
c t0 sin (θ/2)

−ieiδ
μ
c t0 sin (θ/2) cos (θ/2)

)
, (C2)

with θ = Ḡ−1T . By properly tuning the initial time we can
obtain rotations about x (δμ

c t0 = 2kπ ) or y (δμ
c t0 = (4k +

1)π/2) axis, while the pulse duration controls the rotation
angle. See Ref. [12] for a detailed derivation.

2. Controlled-phase gate

The Controlled-phase (Cϕ) two-qubit gate is represented
by the matrix:

UCϕ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iϕ

⎞
⎟⎠ . (C3)

It can be implemented by means of two-step semiresonant
Rabi oscillations of the transmon state between |ψ0,μ+1〉 and
|ψ2,μ+1〉. We describe here the Cϕ multistep pulse sequence
on two qubits initialized in the state |1μ1μ+2〉:

(1) The first step corresponds to the hopping of the
photon from logical cavity μ to the auxiliary resonator μ + 1

094432-6
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(interposed between qubits μ and μ + 2), by means of a π

pulse that brings the two cavities into resonance.
(2) As a second step, the frequency of resonator μ + 1

(ωμ+1
c ) is tuned to �01 by means of a π pulse, which induces

the transition to the intermediate state |ψ1,μ+1〉 of the transmon.
(3) A π pulse is exploited to induce the hopping of a second

photon from logical cavity μ + 2 to the auxiliary resonator.
(4) Then a pulse of duration �t = π√

g2
12+δ2

12/4
, where δ12 =

�12 − ω
μ+1
c is the detuning between the resonator mode and

the |ψ1,μ+1〉 → |ψ2,μ+1〉 transition of the transmon, adds a
phase ϕ = π − π δ12√

δ2
12+4g2

12

to the system wave function [36].

(5) Finally, the repetition of the first three steps brings the
state back to |1μ1μ+2〉, with an overall phase ϕ. By properly
setting the delay between the two π pulses corresponding to
the previous steps (or by performing single-qubit phase shifts),
the associated hopping processes yield a zero additional phase.

Conversely, the other basis states do not acquire any
phase, due to the absence of at least one of the two photons
(see Ref. [12]). Hence, the above sequence implements the
Cϕ gate. The use of an ensemble of effective S = 1 spins
ensures the possibility of implementing Controlled-phase
gates between distant qubits (labeled A and B below), with
no need of performing highly demanding and error-prone
sequences of two-qubit SWAP gates. This is done by absorbing
the photon component of each qubit μ interposed between A
and B into the corresponding m = 1 spin oscillator, while the
photon components of A and B cross the resonator μ in moving
into the same auxiliary resonator. This temporary storage is
essential to avoid the simultaneous presence of two photons
within the same resonator, which could corrupt the state of the
qubit.

We finally stress that long-range two-qubit interactions are
a key resource for the digital simulation of many interesting
physical Hamiltonians, such as those involving interacting
fermions in two or higher spatial dimensions, and for important
algorithms, such as the quantum Fourier transform, which
are often intractable for classical computers. We note that

a large number of these long-range two-qubit gates can be
implemented in parallel in the actual setup.

APPENDIX D: DENSITY MATRIX MASTER EQUATION

The time evolution of the system density matrix ρ̂ is
described within a Markovian approximation and a Lindblad-
type dynamics, with the Liouville-von Neumann equation of
motion [37]:

d

dt
ρ̂ = −i[Ĥ ,ρ̂] +

∑
μ

�μLx̂μ
[ρ̂] +

∑
i

γμLx̂
†
μx̂μ

[ρ̂], (D1)

being �μ and γμ, respectively, the damping and pure-
dephasing rates of the field x̂μ. The Lindblad term for an
arbitrary operator x̂ is given by

Lx̂[ρ̂] = − 1
2 (x̂†x̂ρ̂ + ρ̂x̂†x̂) + x̂ρ̂x̂†. (D2)

The density matrix approach followed in the present paper
allows us to include the effects of relaxation and pure
dephasing on each element involved in the scheme. If the
operator x̂μ destroys an excitation in the system, terms like
Lx̂μ

[ρ̂] account for energy losses, while pure dephasing
processes are described by L

x̂
†
μx̂μ

[ρ̂]. For instance, the
Lindblad term accounting for photon loss into resonator μ

takes the form Lâμ
[ρ̂] = − 1

2 (â†
μâμρ̂ + ρ̂â†

μâμ) + âμρ̂â†
μ,

while pure dephasing of the transmon μ is
expressed by

∑
i=1,2 |ψi,μ〉〈ψi,μ|ρ̂|ψi,μ〉〈ψi,μ| −

1
2 (|ψi,μ〉〈ψi,μ|ρ̂ + ρ̂|ψi,μ〉〈ψi,μ|). These are the most
important contributions to decoherence, as shown in previous
works [12]. We represent each field as a matrix in the
Fock-states basis, and truncate it at a number of total
excitations previously checked for convergence. The total
Hamiltonian and the density matrix master equation of the
whole system are built by tensor products of these operators.
Then, the equation of motion for ρ̂ is numerically integrated,
in the interaction picture, by using a standard Runge-Kutta
approximation.
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and P. Bertet, Phys. Rev. Lett. 107, 220501 (2011).

[8] Y. Kubo, I. Diniz, A. Dewes, V. Jacques, A. Dréau, J.-F. Roch,
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Auffèves, Phys. Rev. A 84, 063810 (2011).

[16] S. Putz, D. O. Krimer, R. Amsüss, A. Valookaran, T. Nöbauer,
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