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Spin liquid phases of large-spin Mott insulating ultracold bosons
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Mott insulating ultracold gases possess a unique whole-atom exchange interaction which enables large quantum
fluctuations between the Zeeman sublevels of each atom. By strengthening this interaction—either through the
use of large-spin atoms or by tuning the particle-particle interactions via optical Feshbach resonance—one may
enhance fluctuations and facilitate the appearance of the long-sought-after quantum spin liquid phase—all in the
highly tunable environment of cold atoms. To illustrate the relationship between the spin magnitude, interaction
strength, and resulting magnetic phases, we present and solve a mean-field theory for bosons optically confined to
the one-particle-per-site Mott state, using both analytic and numerical methods. We find on square and triangular
lattices for bosons of hyperfine spin f > 2 that making the repulsive s-wave scattering length through the singlet
channel small—relative to the higher-order scattering channels—accesses a short-range resonating valence bond
(s-RVB) spin liquid phase.
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I. INTRODUCTION

Quantum spin liquids—insulating magnetic phases which
remain disordered down to absolute zero temperature—have
attracted great interest in the nearly 30 years since Anderson
suggested an intimate relation between the cuprate supercon-
ductors and the resonating valence bond state [1,2]. While
theorists now have a good understanding of the topological
orders and fractionalized excitations that characterize these
systems [3,4], the experimental realization of the spin liquid
phase has remained a challenge, and despite success in recent
years [5–7] the pool of spin liquid candidate materials remains
small. The primary difficulty lies in finding systems with
sufficiently large spin fluctuations, and to achieve this in the
solid state—where electron exchange mediates the spin-spin
interactions—one must restrict the search to low-dimensional,
geometrically frustrated, spin-1/2 antiferromagnets [8–12].
We believe, however, that by fundamentally broadening our
search to include other novel systems, we may bypass these
restrictions and expedite the study of this long-sought-after
phase.

In particular, Mott insulating ultracold atoms may provide
an alternate route to the experimental realization of spin
liquids. The spin degree of freedom remains unfrozen in these
optically confined systems [13], and the virtual exchange of a
whole atom mediates the low-energy spin-spin interaction, as
illustrated by Fig. 1. Counter-intuitively, whole-atom exchange
produces fluctuations that increase with the atomic hyperfine
spin f [14], in dramatic contrast to the solid state, where large
spins actually suppress the effect of fluctuations. This peculiar
behavior may cause large-f Mott insulators to exhibit many
exotic phases [15–20], including various atomic spin liquids.
While efforts have focused thus far on SU(N )-symmetric
alkaline-earth-metal atoms [21,22], whole-atom exchange
should induce large fluctuations generically, potentially bring-
ing the spin liquid phase to life in a wide variety of cold atomic
systems. Additionally, the recently developed spin gradient
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demagnetization technique [23] provides access to the entropy
scales where magnetic ordering is expected, making us hopeful
that in the near future experimentalists may directly probe
these strongly correlated magnetic phases.

In this paper, we perform a mean-field theory for spin-f
bosons on a square optical lattice, tightly confined to the Mott
insulating state. We choose to include only the fundamental
low-energy scattering interactions, described by a set of s-wave
scattering lengths aF [24] and tuned via microwave and optical
Feshbach resonances [25–28]. We then show that our model
supports the existence of a short-range resonating valence
bond ground state, for certain values of aF and f . At present,
we omit both anisotropic dipole-dipole interactions and gauge
fluctuations of the mean field, though we briefly discuss their
effects in later sections of this paper. Despite these omissions in
our model, the results indicate that whole-atom exchange may
melt magnetic order and stabilize spin liquid phases in a much
broader class of systems than currently under investigation.

II. GENERAL SPIN- f MODEL

We first write a model that captures the physics of whole-
atom exchange, while fluidly describing bosons of different
spin. To do this we begin with the spin-f Bose-Hubbard
model [29,30],

Ĥ = −t
∑
〈i,j〉

f∑
m=−f

(b̂†i,mb̂j,m + H.c.)

+U
∑

i

2f∑
F=0,2,...

aF P̂ F
i , (1)

where i ranges over all N lattice sites, and 〈i,j 〉 denotes a sum
over all distinct nearest-neighbor pairs. We have written the ki-
netic contribution—parametrized by t—in terms of b̂

†
i,m (b̂i,m)

operators, which create (annihilate) a spin-f boson at site i

with magnetic quantum number m, while we have expressed
the on-site interaction—parametrized by U—in terms of
projection operators P̂ F

i = ∑
M=−F,...,F |F,M〉〈F,M|, which
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FIG. 1. Comparison of superexchange mechanisms. For atomic
gases optically confined to the Mott state (top), superexchange of
whole spin-f atoms leads to magnetic fluctuations on the order of
2f . In the solid state by contrast (bottom), electron superexchange
restricts fluctuations to order 1, which may be small compared to
the total spin on each site. Therefore, large-spin cold atoms could
potentially realize exotic fluctuation-driven states not accessible with
solid state systems. Figure adapted from Ref. [14].

project the two-particle states of site i into the subspace
with total angular momentum F . As mentioned previously,
aF denotes the s-wave scattering length through the total
angular momentum channel F . Throughout this paper sums
over F and M imply a range of F = 0,2, . . . ,2f and M =
−F, . . . ,F , where the absence of the odd-F scattering lengths
ensures proper particle statistics [31]. Furthermore, we only
consider monotonically increasing repulsive interactions, such
that aF > 0 for all F , and aF ′ � aF for F ′ > F . In this
regime, antiferromagnetic interactions dominate—a necessary
condition for the nontrivial magnetic ordering that we seek.

To move to the deep Mott limit, one quenches the kinetic
energy relative to the on-site repulsion [32] (t � U ), allowing
a perturbative expansion of Eq. (1) to second order in t/U . By
doing so, we obtain a spin-spin interaction in the one-particle-
per-site Hilbert space, which in agreement with Refs. [33,34]
yields

Ĥ = −J
∑
〈i,j〉

∑
F

1

aF

P̂ F
i,j , (2)

where the exchange energy is set by J = 4t2/U , and the
projection operator P̂ F

i,j now projects two sites i and j into
total angular momentum state F . The natural decoupling
of the interaction into total angular momentum channels,
each parametrized by a scattering length aF , arises from
the rotational symmetry of the low-energy interaction, which
conserves the total angular momentum of two bosons during
a collision [24].

At this point, one commonly reexpresses the P̂ F
i,j operators

of Eq. (2) in terms of operators which possess a more direct
physical interpretation, such as a polynomial in the Heisenberg
coupling Ŝi · Ŝj , or with tensor operators of increasing rank.
These methods do not move fluidly from one spin f to another,
however, as one must continually define new operators upon
increasing the spin. Although schemes have been developed
to simplify such descriptions [35,36], we instead elect to

return our Hamiltonian to second quantization. While doing
so simplifies study for generic f , it implicitly enlarges our
Hilbert space to include multiply occupied sites. Therefore,
to maintain equivalence between the two Hilbert spaces we
must impose a one-particle-per-site constraint on average [37].
With these considerations in mind, we write our Hamiltonian
in second quantization as

Ĥ = −J
∑
〈i,j〉

∑
F,M

1

aF

Â
FM†
i,j ÂFM

i,j +
∑

i

λi(n̂i − 1), (3)

where we enforce the constraint with a site-dependent La-
grange multiplier λi and the number operator for site i,
given by n̂i = ∑

m b̂
†
i,mb̂i,m. The Â

FM†
i,j (ÂFM

i,j ) pair oper-
ators create (annihilate) a pair of bosons on sites i and
j in total angular momentum state |F,M〉, and relate to
the projection operators via P̂ F

i,j = ∑
M Â

FM†
i,j ÂFM

i,j . Writing
these pair operators in terms of the boson operators yields
the relation ÂFM

i,j = ∑
m,n CFM

m,n b̂i,mb̂j,n, where the presence
of the Clebsch-Gordan coefficients CFM

m,n = 〈f,m; f,n|F,M〉
ensures that the pair operators rotate irreducibly as an object
with angular momentum F . In the form of Eq. (3), we can write
the Hamiltonian for a given atomic hyperfine spin f by simply
including the Clebsch-Gordan coefficients through the even-F
pairing channels, up to 2f . The straightforward calculation of
these coefficients then provides for a much simpler study at
large f .

Next, we mean-field-decouple the pairing operators ÂFM
i,j ,

first by expanding about the ground state expectation values
QFM

i,j = 〈ÂFM
i,j 〉, and then dropping terms of second order in the

fluctuations δÂFM
i,j . This reduces the Hamiltonian to a quadratic

form, given by

Ĥ = −
∑
〈i,j〉

∑
F,M

1

āF

(
QFM

i,j Â
FM†
i,j + QFM∗

i,j ÂFM
i,j

−|QFM
i,j |2) +

∑
i

λi(n̂i − 1), (4)

where henceforth J = 1, and āF = aF /a0 denotes the scatter-
ing length of the F channel relative to the singlet channel, F =
0. As our interest lies in translationally invariant states, we de-
mand bond-independent mean fields, such that QFM

i,j = QFM .
The phase of the complex QFM fields remains a U (1) gauge
freedom of the problem, and while gauge fluctuations may
have important effects on spin liquid mean-field theories [37],
we do not consider them in the present approach.

For the investigation of spin liquid phases, as well as the
study of atomic superconductors with nontrivial Cooper pair-
ing [38], we note that decoupling the ÂFM

i,j operators of Eq. (3)
proves more convenient than the single-mode approximation
used in the study of spinor Bose-Einstein condensates [31]. In
fact, our mean-field Hamiltonian (4) allows direct competition
between exotic paired states described by the QFM

i,j fields and

the spinor BEC phases described by the boson field 〈b̂i,m〉. In
this way, our mean-field theory may reproduce the results
of the well studied spinor BEC mean-field theories while
also allowing for spin liquid ground states. The outcome
of this competition depends fundamentally on the strength
of magnetic fluctuations, as a spin liquid state will only
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appear when sufficiently large spin fluctuations have melted
the magnetic order of the spinor condensate phase.

III. s-RVB ANSATZ

To directly uncover a spin liquid phase in our model,
Eq. (4), we retain only the order parameter of the short-range
resonating valence bond (s-RVB) state—namely, an isotropic
nearest-neighbor pairing amplitude through the singlet chan-
nel. In a pure s-RVB spin liquid state, all F > 0 pairing
channels have zero amplitude, and the spins exist in an equal
superposition of nearest-neighbor singlets. A ground state of
this type preserves spin rotational and translational symmetry,
making it one of the simplest spin liquid mean-field theories
possible for this model. Furthermore, we may reach this s-RVB
limit by taking a0 → 0 with aF>0 fixed, since we then have
ā−1

F → 0 for all F > 0, and we see from Eq. (4) that only
the Q00 pairing contributes. The ability to access this limit
by tuning a single parameter (a0) may prove crucial to the
eventual realization of this phase experimentally.

We employ the s-RVB ansatz explicitly in our formalism
by substituting 〈ÂFM

i,j 〉 = Q00δF,0 in Eq. (4), where the bond-
independent complex number Q00 represents the s-RVB order
parameter. Due to the equivalence of each site by symmetry
we require a translationally invariant constraint, so that λi =
λ. Assuming periodic boundary conditions, we then exploit
the lattice translational symmetry by Fourier-transforming the
bosons via b̂i,m = ∑

k b̂k,meik·Ri /
√

N , where the sum runs over
all wave vectors k in the first Brillouin zone, Ri denotes the
Bravais lattice vector of site i, and N gives the total number
of sites in the lattice.

Introducing the spinor �T
k,m = (b̂k,m,b̂

†
−k,−m) allows us to

compactly write the Fourier-transformed Hamiltonian as

Ĥ =
∑
k,m

�
†
k,mhk,m�k,m

−λN
(2f + 1)

2
+ ZN |Q00|2

2
, (5)

where we have defined the 2 × 2 matrix

hk,m =
(

λ/2 −εkQ
00C00

m,−m

−εkQ
00C00

m,−m λ/2

)
, (6)

where we have fixed the gauge such that Q00 is real. The
lattice contribution to the Fourier transform yields εk =∑

〈(i)j〉 e
ik·(Rj −Ri ), while 〈(i)j 〉 denotes a sum over the Z nearest

neighbors j of an arbitrary site i. Throughout this paper
we explicitly consider a 2-dimensional square lattice with a
lattice spacing of unity, for which Z = 4 and εk = 2(cos[kx] +
cos[ky]). However, we mention that the approach for triangular
lattices follows similarly and produces qualitatively similar
results to the square in all instances which follow.

The Clebsch-Gordan coefficients in Eq. (6) play a crucial
role in writing a 2 × 2-dimensional Hamiltonian for all spin f .
Primarily, the condition of the Clebsch-Gordan coefficients,
that CFM

m,n = 0 unless m + n = M , implies that the s-RVB
state, which requires M = 0, retains only terms in which
n = −m. In other words, the matrix elements of our s-RVB
Hamiltonian only ever connect a spin state m with the
corresponding state −m, a fact which leads to the chosen form

of the spinor �T
k,m. Compared to the general case of Eq. (4),

where we need a 2(2f + 1) × 2(2f + 1)-dimensional matrix
at each f , the s-RVB ansatz produces a dramatic mathematical
simplification.

We now seek the ground state of the s-RVB Hamiltonian (5)
in the presence of the one-particle-per-site constraint. Fol-
lowing the methods of Ref. [39], we move to the basis of
collective excitations γ̂k,μ by finding a linear transformation
Mk,m which diagonalizes the matrix hk,m while preserving
the bosonic commutation relations, [γ̂k,μ,γ̂

†
k′,μ′] = δk,k′δμ,μ′

and [γ̂k,μ,γ̂k′,μ′] = 0. After diagonalizing in this way, we find
that the collective excitations possess a dispersion given by
ωk,m = √

(λ/2)2 − |εkQ
00C00

m,−m|2 for the band corresponding
to magnetic sublevel m, and we note that the m-independence
of |C00

m,−m| = 1/
√

2f + 1 forces complete degeneracy among
these 2f + 1 bands. Additionally, on a square lattice the
dispersion takes a minimum value at k = (0,0) and k = (π,π ),
and the value of ωk,m at these points defines the energy
gap 	 =

√
(λ/2)2 − 16|Q00|2/(2f + 1). This gap will play

a crucial role in the thermodynamic ground state analysis to
come.

IV. RESULTS OF THE s-RVB ANSATZ

To determine the ground state of the s-RVB Hamiltonian in
the thermodynamic limit (N → ∞ with N/V fixed) we solve
the self-consistent equation, Q00 = 〈Â00

i,j 〉, in the presence of

the constraint, ni = 〈b̂†i,mb̂i,m〉 = 1. Writing the constraint in
terms of the dispersion ωk,m yields

nγ + (2f + 1)
∫

d2k

(2π )2

1 − ω̄2
k

2(ω̄2
k + ω̄k)

= 1, (7)

where we define ω̄k = 2ωk,m/λ to clean up the notation a
bit, and nγ denotes the condensate fraction of collective
excitations, created by the γ̂k,μ operators, in states with energy
	. With gapped excitations (	 > 0), it costs finite energy to
occupy these minimum energy states, and so the system prefers
nγ = 0.

By numerically solving the constraint (7) we find two
scenarios shown in Fig. 2. The first occurs for f � 3, where
one may satisfy the constraint with 	 > 0. The gapped
excitations imply that the condensate fraction is zero, and so
the Q00 field characterizes the state completely, making it a
realization of a pure s-RVB spin liquid. On the other hand, for
f � 2 one cannot satisfy the constraint with a gap, implying
	 = 0 at k = (0,0) and k = (π,π ). The collective excitations
condense at these points, and so nγ 
= 0. This restores the

Spin nematic s-RVB spin liquid

f = 1 f = 2 f = 3 f = 4

FIG. 2. Phase diagram of the s-RVB ansatz (αF>0 → ∞) as a
function of f . For f � 2 the ground state is a spin nematic with
〈S〉 = 0 and 〈S2

x 〉 = 〈S2
y 〉 
= 〈S2

z 〉 on each site. For f > 2 however,
degeneracy of the magnetic sublevels enhances fluctuations, and the
ground state becomes a short-range resonating valence bond (s-RVB)
spin liquid.
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validity of the constraint, but one must now describe the state
with a spinor of condensate parameters 〈b̂k,m〉, in addition
to the Q00 field. A spinor of this type breaks spin rotational
symmetry, implying a magnetically ordered ground state for
f � 2. At present, the spinor contains equally weighted m and
−m pairs, and so possesses nematic symmetry with 〈Ŝi〉 = 0
on each site.

The fact that for small spin we have a magnetically
ordered spin nematic ground state, while for large spin we
have a disordered spin liquid phase, results directly from the
increasing number of magnetic sublevels as one moves to large
f . We understand this by noting that the integral in Eq. (7),

〈n̂i,m〉 =
∫

d2k

(2π )2

1 − ω̄2
k

2
(
ω̄2

k + ω̄k

) � 0.19 . . . ,

corresponds to the contribution from the noncondensed bosons
of the m band, 〈ni,m〉, and has a maximum value � 0.19 when
	 = 0. Degeneracy of the 2f + 1 bands then implies that for
	 > 0 we can write 〈n̂i〉 < 0.19(2f + 1), and so to satisfy
〈n̂i〉 = 1 for finite 	, we must have f > 2.

Again, we emphasize that these fluctuation-driven states
result directly from the increasing number of magnetic
sublevels as one moves to larger spin. The enlarged space
through which the spins may interact enhances the fluctuations,
melting magnetic order and driving the system into an s-RVB
spin liquid phase. Despite these positive results, to better
describe the atomic species used in cold atom experiments we
must study the more general problem, which allows scattering
through the F > 0 angular momentum channels.

V. NEMATIC ANSATZ

The most general case of the mean-field Hamiltonian (4) al-
lows scattering through all total angular momentum channels,
F = 0,2, . . . ,2f . However, with all QFM fields allowed, the
increasing size of the interaction space at large f makes the
Hamiltonian increasingly cumbersome to solve numerically.
So to efficiently probe the large-f behavior as a function of
the scattering lengths aF , we retain only the order param-
eter of the spin nematic state, given by 〈ÂFM

i,j 〉 = QF0δM,0.

With this set of mean fields each site will have 〈Ŝ〉 = 0
and 〈Ŝ2

x 〉 = 〈Ŝ2
y 〉 
= 〈Ŝ2

z 〉—the symmetry of a spin nematic.
Fortunately, since this retains only the M = 0 pairing, we may
again write the Hamiltonian with the 2-dimensional spinor
�T

k,m = (bk,m,b
†
−k,−m). This again allows us to diagonalize in

a straightforward manner, but we omit the details due to their
similarity with the s-RVB case covered previously.

We motivate this ansatz by extending our results from the
s-RVB ansatz, as shown in Fig. 2, and by looking to the
phase diagram for the spin 1, 2, and 3 spinor Bose-Einstein
condensates [24,33,40–47]. We find that our region of interest,
parametrized by aF > 0 for all F and aF ′ � aF for F ′ > F ,
lies entirely within the nematic sector of these phase diagrams.
Additionally, our ansatz consists of a linear combination of the
uniaxial and biaxial spin nematic states, which are known to
possess an accidental degeneracy at mean-field level [48,49].
Thus, it provides a suitable trial state for our specific parameter
regime, capable of describing both a nematic spinor condensate
and a Q00-only s-RVB spin liquid phase. We therefore proceed

with this ansatz with the belief that our results describe the
physically accessible states of the general QFM model (4).

While we have simplified the determination of the ground
state for a general set of scattering lengths, a difficulty remains
in how to best present the results graphically. The number of
scattering lengths grows as f + 1, which on a phase diagram
would require the introduction of an additional axis at each
f . To avoid this we seek an approximation which describes
the various scattering lengths with a single parameter. Guided
by the s-RVB case, where we found that a0 → 0 favors the
singlet pairing and induces an s-RVB spin liquid, we shall use
the following approximation for the relative scattering lengths
āF = aF /a0,

āF =
{
α for F > 0,

1 for F = 0,
(8)

where scattering lengths through nonzero angular momentum
channels have equal magnitude, and differ from a0 through the
proportionality factor α. Varying α from 1 to ∞ covers our
original range of the scattering lengths—aF > 0 and āF � 1
for all F—while the α → ∞ limit recovers Eq. (5) directly.
While in real atomic systems the āF>0 are not generically
equal, they effectively appear so when compared to a0 in the
α → ∞ limit, making this approximation especially useful
for describing the spin liquid phase. Most importantly, we
may now construct a phase diagram as a function of f and α,
since α is a parameter common to all spin f .

We note that applying Eq. (8) takes us to an enhanced
symmetry point of the original Hamiltonian (3)—namely, the
bosonic analog to Wu’s hidden symmetry found in large-spin
Fermi gases [16,50]. Our results do not depend on this sym-
metry however, and we may show this by using the alternate
approximation, āF = α′F + 1, where the scattering lengths
have a linear relationship with slope α′. This approximation
does not generically possess symmetry higher than SU(2),
yet the results obtained coincide qualitatively with the results
outlined in the next section using Eq. (8). The qualitative
similarity stems from the fact that in each case, increasing
α or α′ effectively takes a0 → 0, and so the singlet pairing
dominates—the crucial condition for obtaining a spin liquid
phase in this model.

VI. RESULTS OF THE NEMATIC ANSATZ

Figure 3 shows the phase diagram for α = [1,∞) and f =
1,2, . . . ,13. For f � 2 the system always forms a nematic
condensate, in agreement with our s-RVB solution in the α →
∞ limit. On the other hand, for f > 2 the system moves into
the spin liquid phase for α greater than some critical value
αC . As we move to large f , we find that αC decreases and the
spin liquid region grows in size. Again, decreasing a0 relative
to the other scattering lengths increases α, and so by tuning
a single parameter one may access the spin liquid phase for
f > 2 atoms.

We describe the behavior of the spin liquid region as
follows. Increasing α (or α′) biases the system towards
singlet pairing, which causes equal occupation of the Zeeman
sublevels and maximizes magnetic fluctuations. Additionally,
moving to large f increases the number of available magnetic
sublevels, also enhancing fluctuations [14]. The shape of
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s-RVB spin liquid

Spin nematic

FIG. 3. Phase diagram on the square lattice of the nematic ansatz
as a function of f and α, where α = aF>0/a0 parametrizes the
relative scattering lengths, as introduced by Eq. (8). The fluctuations
responsible for the spin liquid state are enhanced by the increasing
number of magnetic sublevels as one moves to large f , and by
increased scattering through the singlet channel (F = 0) as one moves
to large α. For f � 2 the system is nematic for all α, while for α = 1
the spin liquid phase is not accessed at any f . The phase diagram for
the triangular lattice is qualitatively similar in that the s-RVB region
expands to smaller values of α, but condensate order still occurs for
f � 2 at all interaction strengths.

the spin liquid region as shown in Fig. 3 results from the
cumulative effect of these two scenarios. For f � 2, too few
sublevels contribute to produce the necessary fluctuations,
regardless of any biasing towards the singlet channel. With
f > 2 but still small, the system requires strong biasing to
reach the spin liquid phase, while at large f , the multitude of
participating sublevels allows access to the spin liquid phase
with small biasing. In light of this, large-spin atoms would
require the least experimental tuning necessary to obtain the
long-sought-after spin liquid phase.

VII. EXPERIMENTAL ACCESSIBILITY

Upon inspection of the “untuned” scattering lengths, as
conveniently compiled in Ref. [31] for the commonly used
atoms— 87Rb and 23Na with f = 1,2, and 52Cr with f = 3—
we see that a0 and the smallest aF>0 have roughly the same
order of magnitude. In each case, this places them near the
α = 1 region of Fig. 3, and predicts a spin nematic ground state
in agreement with previous theoretical work [24,33,40–47,49].
However, upon tuning a0 to small enough values via optical
Feshbach resonance, a transition to the spin liquid phase may
occur. We note that this transition may even occur for f � 2
atoms as well, since fluctuations beyond mean-field theory
may actually enlarge the spin liquid region.

The relative contribution from the F > 0 pairing channels,

QR =
∑

F>0 |QF0|2∑
F�0 |QF0|2 , (9)

represents a potential order parameter for the spin liquid–to–
spin nematic phase transition. Figure 4 shows the behavior
of this quantity for an f = 3 system when tuned across α.
This quantity is similar to the singlet fraction measured in
Ref. [51], and may allow the observation of a spin liquid

FIG. 4. Relative contribution from the higher-order scattering
channels (F > 0) for an f = 3 system, as captured by the QR

parameter defined in Eq. (9). In the spin liquid phase (α � 18)
all pairings except the singlet pairing Q00 are negligible, while
in the spin nematic phase (α � 18) pairing through the nonzero
angular momentum channels becomes relevant. Measurement of this
parameter could distinguish between the phases.

phase experimentally. Additionally, by spatially resolving
vortices in the QFM

i,j fields via photoassociation intensity
experiments [52–56] one may investigate vison excitations
in the system, in a similar manner to the “vison experiment”
conducted by Moler and collaborators for high-TC cuprate
superconductors [57]. Overall, the increasingly varied tech-
niques used in the preparation and characterization of cold
atomic systems may provide several avenues for the eventual
observation of these novel states.

We expect that the primary challenge remaining in the
quest to observe large-f spin liquids will be to overcome the
anisotropic dipole-dipole interactions. These interactions grow
with the spin as f 2, making them particularly problematic for
large spin, where we expect spin liquid phases to be com-
petitive ground states. For example, several recently trapped
isotopes of dysprosium have an extremely large spin of f = 7
and 8, and the dipole-dipole interactions in these systems are
believed to affect the ground state physics in a nonperturbative
way [58]. Essentially, the dipole-dipole energy sets a lower
bound on the allowed tuning of a0, below which our approxi-
mation breaks down and we must account for these interactions
explicitly [59]. Fortunately, for f = 3 chromium, the dipole-
dipole interactions do not significantly affect the ground state
physics [24], allowing use of our mean-field description (4).

VIII. CONCLUSIONS

In this paper we considered an isotropic mean field theory
which captures the competition between an s-RVB spin
liquid and magnetically ordered condensates. To conclude our
discussion, we will now briefly comment on the existence
of additional phases and the effect of gauge fluctuations and
lattice frustration beyond mean-field theory. First, phases such
as the dimer or plaquette phases are also possible, and in future
studies non-mean-field calculations, such as quantum Monte
Carlo or DMRG, may be used to determine the true ground
state phase diagram for this model. Second, the interplay
between gauge fluctuations and lattice frustration likely plays
a key role beyond mean-field theory, as expected from studies
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of similar large-N models on square, triangular, and kagome
lattices [39,60]. Particularly, on the square lattice we expect
that gauge fluctuations make the spin liquid phase unstable
to forming a dimer phase, while on frustrated lattices, such
as triangular and kagome, the spin liquid phase will be
stable against these fluctuations. We therefore expect lattice
frustration to play a crucial role in the experimental realization
of these phases.

To conclude, Mott insulating ultracold bosonic systems may
provide a rich environment in which to observe and study
the long-sought-after quantum spin liquid phase. Given the

richness of the large-f spin models, there may even be a whole
class of atomic-spin-liquid-like phases, each with different
spin, lattice geometry, dimensionality, and interaction range.
Fortunately, as the experimental control and manipulation of
large-spin atoms improves, we only edge closer to the exciting
time when we may capture the elusive spin liquid phase in the
novel environment of cold atoms.
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Nature (London) 415, 39 (2002).
[33] A. Imambekov, M. Lukin, and E. Demler, Phys. Rev. A 68,

063602 (2003).
[34] K. Eckert, Ł. Zawitkowski, M. J. Leskinen, A. Sanpera, and M.

Lewenstein, New J. Phys. 9, 133 (2007).
[35] R. Barnett, A. Turner, and E. Demler, Phys. Rev. Lett. 97, 180412

(2006).
[36] R. Barnett, A. Turner, and E. Demler, Phys. Rev. A 76, 013605

(2007).
[37] X. G. Wen, Phys. Rev. B 44, 2664 (1991).
[38] T.-L. Ho and S. Yip, Phys. Rev. Lett. 82, 247 (1999).
[39] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[40] T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998).
[41] C. M. Puetter, M. J. Lawler, and H.-Y. Kee, Phys. Rev. B 78,

165121 (2008).
[42] C. V. Ciobanu, S.-K. Yip, and T.-L. Ho, Phys. Rev. A 61, 033607

(2000).
[43] M. Ueda and M. Koashi, Phys. Rev. A 65, 063602 (2002).
[44] F. Zhou and G. W. Semenoff, Phys. Rev. Lett. 97, 180411

(2006).
[45] R. B. Diener and T.-L. Ho, Phys. Rev. Lett. 96, 190405 (2006).
[46] L. Santos and T. Pfau, Phys. Rev. Lett. 96, 190404 (2006).
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