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Multi-body quenched disordered XY and p-clock models on random graphs
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The XY model with four-body quenched disordered interactions and its discrete p-clock proxy are studied on
bipartite random graphs by means of the cavity method. The phase diagrams are determined from the ordered
case to the spin-glass case. Dynamic, spinodal, and thermodynamic transition lines are identified by analyzing
free energy, complexity, and tree reconstruction functions as temperature and disorder are changed. The study
of the convergence of the p-clock model to the XY model is performed down to temperature low enough to
determine all relevant transition points for different node connectivity.
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I. INTRODUCTION

The aim of this paper is to provide a general theoretical
framework for the prediction of specific transitions from
incoherent to coherent regimes of multi-body interacting wave
modes in random networks with quenched random valued
interaction couplings. The nature of a highly-correlated phase
at low temperatures specifically depends on the disordered
network of interactions and on the strength of the nonlinear
interaction couplings. When considered nonperturbatively,
quenched disorder, i.e., the disorder that does not change on the
time scales of the wave dynamics, can yield a glassy behavior
in given systems. This includes the possibility of displaying a
large number of degenerate state realizations, so large to yield
an extensive configurational entropy.

In particular, we have in mind random lasers, in which
the feedback is provided by the multiple scattering of light
inside the optically active random media providing gain
[1–10]. In these situations, modes may in general exhibit
complicated spatial extensions and their interaction strengths,
related to the spatial superposition of the electromagnetic fields
modulated by a heterogeneous nonlinear optical susceptibility,
are disordered. These disordered couplings can induce strong
frustration [11], that is: a given set of interacting modes with
a given interaction network is not able to find a single optimal
configuration but only many energetically (or entropically)
competing suboptimal ones.

Representing mode phases, ϕ(t), by means of continuous
planar XY -like spins, �σ (t) = (cos ϕ(t), sin ϕ(t)), and applying
a statistical mechanics approach we can identify different
thermodynamic phases.

XY models with linearly interacting spins are well known
systems in statistical mechanics, displaying important phys-
ical insights and applications, starting from the Berezinsky-
Kosterlitz-Thouless transition in two dimensions [12] and
moving to, e.g., the transition of liquid helium to its superfluid
state [13,14], the roughening transition of the interface of a
crystal in equilibrium with its vapor [15], or synchronization
problems related to the Kuramoto model [16–19]. Statistical
inference on the XY model has been, as well, recently
analyzed [20]. The so-called inverse XY problem deals with
the reconstruction of the network of interactions and with the
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inferring of the interaction couplings from spin configurations.
As mentioned above, our present motivations to study multi-
body XY models are to be mainly found in optics, to describe,
e.g., the nonlinear interaction among electromagnetic modes
[10,21–24].

A so-called random laser is characterized by a multi
scattering medium and a gain material, which may or may
not coincide [25,26]. Lasing action is induced by an external
source pumping the gain material to population inversion.
When enough energy is pumped into the system, i.e., when the
system is above threshold, lasing is triggered. At difference
with ordinary lasers, where the lasing modes are usually the
longitudinal Gaussian modes, in random lasers the spatial dis-
tributions of the modes is in general more complex and difficult
to predict related to the multiple scattering of light caused by
the disorder in the linear refractive index. Moreover, the mode
frequencies, related to the frequencies of the cold-cavity modes
[9,27] and to the gain curve, are not in general equispaced [28].
We know that the strength of the nonlinear interaction is related
to the spatial overlap of the modes while the frequencies of the
nonlinearly interacting modes satisfy the Frequency-Matching
condition [29] (see Sec. II). Then, the characteristics of random
lasers can yield a random network of mode couplings.

To investigate the effect of couplings dilution and their
randomness, we adopt a diluted random graphs description.
This can be, as well, applied to the study of interference effects
among neighborhood modes in light guides [30] or to model
the mode coupling and the related collective behavior of light
in experimentally designed networks of interacting apart lasers
[24,31,32].

In a previous work [22] we analyzed the role of coupling
dilution in statistical mechanical models for lasers, both below
and above threshold. In this paper we move to consider, next
to random dilution, the role of frustration, induced by the
randomness in the value of the couplings, that is extracted
according to a generic distribution over a dominion including
both positive and negative values. Our main predictions are
about the system phase diagram and the configurational
entropy, here termed complexity function, that is a typical
observable for the glassy phase of disordered systems.

Our results indicate that, for negligible nonlinearity, i.e.,
low pumping or high temperature, all the modes will oscillate
independently in a continuous wave noisy regime (“paramag-
neticlike” phase). For a strong interaction and a limited fraction
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of negative nonlinear coefficients, all the modes will oscillate
coherently. This can be realized both as a “ferromagneticlike”
regime or as an unmagnetized ordered mode-locked regime
corresponding to standard ultrashort laser systems [33,34]. In
intermediate regimes, when the probability of having negative
bonds increases, the tendency to oscillate synchronously turns
out to be hindered by disorder-induced frustration, resulting in
a glassy regime, characterized by means of replica symmetry
breaking (RSB) theory. These three regimes are identified by
different sets of marginals, that is, of probability distributions
of the values of the mode phases:

(i) CW.—The continuous wave regime displays a uniform
marginal for all modes.

(ii) ML.—In the lasing mode-locked regime, the majority
of marginals are single peaked around the same value of the
phase as in ferromagneticlike phases, i.e., all these modes
acquire the same phase. When frequencies are added in
the description [22], another mode-locked regime can occur
characterized by marginals single peaked on a phase value
linearly dependent on the mode frequency.

(iii) GRL.—In the frustrated disordered regime a glassy
random laser occurs: Each mode displays a nontrivial single-
peaked (or multi-peaked) marginal, but the peaks are at
different phase values for each mode.

To study the stationary states of this problem, we can use
tools known in the theory of spin glasses. Indeed, the main
original results of this work concern the application of the
1-step replica symmetry breaking cavity method (1RSB-CM)
to continuous spin models on diluted bipartite graphs. The
attention on diluted spin-glass systems has mainly come from
the connection between statistical mechanics of disordered
systems and hard optimization problems. This is the case,
for instance, of the K-satisfiability problem (see for example
[35]), or error correcting codes [36], only to name a few.
Models with finitely connected spins emerge also in neural
networks [37] and immune networks [38].

This paper is organized as follows: In Sec. II we derive the
model starting from the optics problem and we discuss its limit
of validity; in Sec. III we present the cavity method on diluted
factor graphs considering also the scenario in which many
metastable states appear in the phase space. In this section we
introduce the p-clock model used in numerical algorithms. In
Sec. IV the results obtained are shown and discussed; Sec. V
is reserved to a summary of the results and to discussions. In
Appendix A we report more details concerning the derivation
of the analytic expressions, while in Appendix B we report the
details of the numerical implementations.

II. THE MODEL

The leading model for nonlinearly interacting waves, under
stationarity conditions, consists of a system of Langevin
equations with a generalized temperature, whose role is to take
into account random noise forces coming from the interaction
with the outside bath and from spontaneous emission [23,39]:

ȧn = − ∂H
∂a∗

n

+ ηn(t) (1)

where an(t) indicates the complex amplitude of mode n, i.e.,
we are assuming that at the steady state the field can be

expanded as:

E(r,t) =
∑

n

an(t)e−iωnt En(r) + c.c. (2)

with an(t) varying on longer time scales than 1/ωn. ηn(t) in
Eq. (1) is a white noise for which:

〈ηn(t)ηn′(t ′)〉 = 2T δnn′ (t − t ′) (3)

T gives the strength of noise, which, in the stationary regime,
is independent of time and it can be described as an effective
temperature. The Hamiltonian is given by:

H = −
1,N∑
jk

gjka
∗
j ak −

∑
k4

J̃k4a
∗
k1

ak2a
∗
k3

ak4 + c.c. (4)

where {k4} = {k1,k2,k3,k4} and the interaction is among the
quadruplets that satisfy the frequency matching condition, i.e.,

|ωk1 − ωk2 + ωk3 − ωk4 | � δω,

where ωki
is the frequency of mode i, δω is the linewidth; the

gij are nonzero only for frequency overlapping modes.
We recall that the two terms of the Hamiltonian (4) come

from a perturbation expansion, up to third-order, around the
nonlasing solution of the Maxwell-Bloch equations describing
the dynamics of the electric field coupled to two-level atoms
[29,40]. In this approximation, the master equation describing
the dynamics of the complex amplitude an(t) does not take
into account gain saturation, i.e., the fact that in lasers the gain
depends on the intensity of the modes, decreasing as the modes
intensify. Indeed, in closed cavity lasers [34,41,42], the gain
is usually defined through:

g = g0

1 + E/Esat
(5)

where E is the total optical intensity: E ∝ ∑
n a∗

nan that is
related to the total optical power pumped into the system; Esat

is the saturation power of the amplifier. Following Gordon
and Fisher [43], we can introduce a simpler model for gain
saturation that, however, preserves the stability and stationarity
of the laser and simplifies the theory: at any instant g is
assumed to take the value needed for maintaining E constant.
As E is larger than some given threshold (to be determined
self-consistently as a critical point of the theory) it yields
the atomic population inversion necessary to have amplified
stimulated emission. The model variables are then N complex
numbers an satisfying the global constraint on their magnitudes
in the N -dimensional space [23,43],E = ∑

k |ak|2 = constant,
at an effective canonical equilibrium.

Expansion Eq. (2) is not unique and a linear transformation
can be used in order to obtain a diagonal linear interactions
[44]. Writing then the complex amplitudes, ak(t)s, through
their amplitudes and phases, ak(t) = Ak(t)eiϕ(t), Eq. (4)
becomes:

H = −
1,N∑
k

gkkA
2
k −

∑
k4

Ak1Ak2Ak3Ak4

× [
J̃

(R)
k4

cos
(
ϕk1 − ϕk2 + ϕk3 − ϕk4

)
+ J̃

(I )
k4

sin
(
ϕk1 − ϕk2 + ϕk3 − ϕk4

)]
(6)

where J̃ = J̃ (R) + ıJ̃ (I ).
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Under the so-called free-running approximation [23], ac-
cording to which the phases of the lasing modes are assumed
to be uncorrelated and the modes oscillate independently from
each other, the nonlinear interaction concerns the intensity
alone. This case, analyzed previously [45,46], neglects any
phase-locking term that could drive the system into the mode-
locking regime [34]. Within our approach we can include this
term in the description. Moreover, concerning random lasers, it
has been seen that, increasing the optical pumping in presence
of frustration, the lasing threshold occurs after phase locking
[10,47–49].

Being, then, primarily interested in the dynamics of the
mode phases, we will work within the quenched amplitude ap-
proximation: We can consider observing the system dynamics
at a time scale longer than the one of the phases but sensitively
shorter than the one of the magnitudes, thus regarding the
Aks as constants. In this case the first linear term in Eq. (4)
is an irrelevant constant in the dynamics [23,43]. Rescaling
then the nonlinear couplings with the mode amplitudes, i.e.,
J̃Ak1Ak2Ak3Ak4 ≡ J , we obtain the Hamiltonian of the XY

model with four-body interaction terms [50], i.e.,

H = −
∑

k4

[
J

(R)
k4

cos
(
ϕk1 − ϕk2 + ϕk3 − ϕk4

)
(7)

+J
(I )
k4

sin
(
ϕk1 − ϕk2 + ϕk3 − ϕk4

)]
We note that, for the case of zero stochastic noise,

that is T → 0 in Eq. (1), Eq. (4) takes the form of
a nonlinear Schrödinger equation (NLSE) if the free-
running approximation is considered, i.e.,

∑
k4

a∗
k1

ak2a
∗
k3

ak4 →
(
∑

k1,k2
|ak1 |2|ak2 |2). The disordered NLSE in one dimension

is one of the simplest systems where the interplay between
localization, caused by a disordered background, and nonlin-
earity can be studied (for a review see Ref. [51] and references
therein). The main question is whether the nonlinearity is
able to destroy localization eventually leading to equilibration.
This effect is related to very interesting physical phenomena,
e.g., spreading of a localized wave packet or thermalization
[52,53]. An active area of research is also the behavior of
cold atoms and Bose-Einstein condensate in the presence of
both a random potential and nonlinearity: The dynamics of
the disordered Bose-Einstein condensate, following the Gross-
Pitaevskii equation at zero T , describes the phenomenon of the
insulator-superfluid transition [54].

In this paper, instead, we want to focus on the effects of
the quenched disorder in the nonlinear interaction couplings.
The possible disorder in the linear couplings plays here a
minor role. Indeed, it has been shown that the behavior of the
system in the stationary lasing regime is independent on the
distribution of the gkks [48] that can then be considered as
independent of the frequency.

Concerning the nonlinear couplings, we note that the J̃k4 s
depend on the mode spatial extensions and on the nonlinear
optical response tensor χ̂ (3) of the random medium:

Jk4 ∝
∫

V

drχ̂ (3)(r; νk1 ,νk2 ,νk3 ,νk4

)

····Ek1 (r)Ek2 (r)Ek3 (r)Ek4 (r). (8)

Because of the partial knowledge of the mode spatial distri-
bution and the very poor knowledge of the nonlinear response
so far in random media, both theoretically and in experiments,
the distribution describing the values of J ’s can be taken from
any physically reasonable arbitrary probability distribution. If
the lasing transition occurs as a statistical mechanical phase
transition its behavior will be universal and independent from
the details of the coupling’s distribution. We will take, e.g., the
bimodal distribution

P (Jk4 ) = (1 − ρ)δ(Jk4 + J ) + ρδ(Jk4 − J ), (9)

where J is the material dependent mean square displacement
of the couplings distribution and ρ ∈ [0.5 : 1] is the probability
of having ferromagneticlike couplings. As external driving
parameter we will use the dimensionless quantity βJ , that,
in the photonic system, is related to the pumping intensity
P ∝ E/N : βJ = J̃P2/T .

In the following we will restrain to real valued J ’s for
simplicity.

III. REPLICA SYMMETRY BREAKING
PHASE TRANSITION

We present our study on continuous (ϕ ∈ [0 : 2π )) and
discrete (ϕ = 2πm/p, m = 0, . . . ,p − 1) angular spin models
with quenched disordered interaction on bipartite random
regular graphs, i.e., random graphs whose connectivity at
each (variable and functional) node is fixed. In particular,
we analyze the transition to the one-step replica symmetry
breaking (1RSB) clustering of solutions for the marginals
at low temperature occurring in presence of strong, disorder
induced, frustration. In frustrated systems, indeed, the phase
space can decompose into many clusters, termed pure states in
the statistical mechanical framework [55]. In the fragmented
space of solutions any two solutions chosen at random can
belong either to the same cluster or to two disjoint clusters.
The probability of this latter event is equal to the so-called
RSB parameter x ∈ [0 : 1].

Each pure state displays a free energy Fn, n = 1, . . . ,Nstates,
in terms of which we can define a probability measure over
the states n:

wn(x) ≡ e−xβFn

(x,β)
(10)

where

(x,β) ≡
∑

n

e−xβFn (11)

is the partition function in the rescaled effective inverse
temperature βx. From Eq. (10), we can see that the effect of
e−xβFn is to weight the pure state n among the set of all states
as e−βH ({ϕ}) weights the configuration {ϕ} in a single state.
In the next section, we will discuss a method, known as the
1-step replica symmetry breaking cavity method (1RSB-CM),
to compute the properties of the pure states. For example,
we will determine the number of states with free-energy φ,
N (φ) = eN�(φ), where �(φ) is known as the complexity.
Starting from the replica symmetric cavity method (RSCM),
we will proceed quickly with the derivation of the RSB case,
the interested reader can find more details in Refs. [55,56].
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A. Message passing

In order to approach the study of multi-body, else said
nonlinearly, interacting systems we make use of bipartite
graphs. A bipartite graph is made of N variable nodes
(labeled by i,j, . . .) and of M functional nodes (labeled by
a,b, . . .) representing the interactions among variables as a
node connecting the variables. We name the message passing
from i to a as νia , that is the probability distribution of variable
node i in a modified graph where the link between i and a has
been cut. Analogously, ν̂ai is the message from a functional
node a to a variable node i. ν̂ai represents the probability
distribution of variable node i in a modified graph where i is
linked only to a. The set of all messages is termed {ν,ν̂}. We
will indicate with ∂a(∂i) the set of all neighboring nodes of a

(all neighboring function nodes of i).
Within the replica symmetric cavity method (RSCM) [55]

approach, one assumes that, at the steady state, correlations
among variables decrease exponentially with the distance [57],
a property characteristic of pure states [58]. Being in the diluted
case the length of the loops O(log N ), one can consider that if
a link ia is cut the other variables neighbours of a, i.e., ∂a \ i,
become uncorrelated.

The marginals, νia and ν̂ai can then be written as:

ν̂ai(ϕ) = 1

ẑai

∫ 2π

0

l=1,k−1∏
jl∈∂a\i

dϕjl
νjla

(
ϕjl

)

×ψ({ϕj∈∂a\i ,ϕ}|J ) (12)

νia(ϕ) = 1

zia

∏
b∈∂i\a

ν̂bi(ϕ) (13)

being ẑai and zia normalization constants; here ϕj∈∂a\i are
the angles of the variable nodes linked to functional node
a other than i and ψ is the weight of the functional node.
We will consider four-body interaction terms, such that for
an incoming message a → i the functional node a has 3
connections jk , k = 1,2,3, other than i. For the 4-XY model ψ
reads:

ψ({ϕi∈∂a}|Ja) ≡ eβJa cos(ϕi1 −ϕi2 +ϕi3 −ϕi4 ). (14)

Equations (12) and (13) are known as replica symmetric
cavity method (RSCM) equations or belief-propagation (BP)
equations. Once the marginals are known, we can evaluate the
free-energy and the order parameters, such as qyy = 〈σyσy〉.
The free energy reads [56]:

F (ν,ν̂) =
M∑

a=1

Fa +
N∑

i=1

Fi −
∑

(ia)∈E

Fia

Fa ≡ − 1

β
log zcs({ν·a},J )

(15)
Fi ≡ − 1

β
log zs({ν̂·i})

Fia ≡ − 1

β
log zl(νia,ν̂ai)

where E is the set of all edges in the graph connecting variable
and functional nodes; zcs , zs and zl are:

zcs({νia}i∈∂a,J ) =
∫ 4∏

k=1

dϕik νika(ϕik )ψ({ϕik∈∂a}|J ) (16)

zs({νbi}b∈∂i) =
∫ 2π

0
dϕ

c∏
b=1

ν̂bi(ϕ) (17)

zl(νia,ν̂ai) =
∫

dϕνia(ϕ)ν̂ai(ϕ) (18)

where c in Eq. (17) indicates the connectivity of node i;
the subscripts s, cs, and l stand for site, constraint, and link
contribution, respectively.

We are interested in ensembles of random factor graphs.
In this case, Eqs. (12) and (13) become equalities among
distributions [55,56], and the terms in Eq. (15) are averaged
over different realization of the graphs.

The assumptions of the RSCM, i.e., the independence
of messages coming from neighbors nodes, may fail if
correlations do not decrease exponentially. With the one
step replica symmetry breaking ansatz we can overcome this
hypothesis assuming a particular structure of the phase space:
The states are organized in apart clusters, and, within each
one of them, the assumptions of the RSCM are correct [56].
Pure states occur with probability depending on its free-energy
density, cf. Eq. (10). By means of this measure over the
pure states, we study the system introducing an auxiliary
statistical-mechanical problem. The joint distribution induced
by the weights wn(x) on the messages {ν,ν̂} takes the form:

Mx(ν,ν̂) ∝ e−xβF(ν,ν̂)

×
∏
a∈M

∏
i∈∂a

I[ν̂ai = f̂ ({νja}j∈∂a\i ,Ja)]

×
∏
j∈N

∏
b∈∂j

I[νjb = f ({ν̂aj }a∈∂j\b)]. (19)

The identity functions, I, assure that, within each state, the
messages, ν̂ai and νjb, satisfy the RSCM Eqs. (12,13); indeed,
the functions f and f̂ are, respectively,

f
({ν̂aj }a∈∂j\b

) = 1

zjb

∏
a∈∂j\b

ν̂aj

f̂
({νja}j∈∂a\i ,Ja

) = 1

ẑai

∫ ∏
j∈∂a\i

dϕjνja(ϕj ) (20)

×ψ({ϕj∈∂a\i ,ϕi}|Ja)

where zjb and ẑai are the normalization constants

zjb =
∫

dϕ
∏

a∈∂j\b
ν̂aj (ϕ) (21)

ẑai =
∫

dϕi

∏
j∈∂a\i

dϕj νja(ϕj )ψ({ϕj∈∂a\i ,ϕi}|Ja). (22)

The RSCM is introduced starting from the joint probability
distribution of the variable nodes, P (ϕ1, . . . ,ϕN ). Indeed,
through P (ϕ1, . . . ,ϕN ), the system is mapped on a graph and
Eqs. (12) and (13) are used as update rules to find the stationary
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marginal distributions of the variable nodes. When we move
to random graphs, we are interested on the distributions of
the messages, P (ν),Q(ν̂), that take into account the random
environment around the nodes. In this case, as well, from
the joint probability distribution, Eq. (19), we introduce a new
graphical model whose variables are the set of messages {ν,ν̂}.
Then, we use the message passing algorithms to find their
stationary marginal distributions. To be more clear, for each
edge (ia) in a given realization, we will have two distributions,
P (νia) and Q(ν̂ai), yielding the probability of having the
messages νia and ν̂ai . As underlined above, we are interested
in ensembles of random graphs. In this case then, we obtain
a system of equations for the distributions P(ν) and Q(ν̂) of
the distributions P (νia) and Q(ν̂ai), respectively. We obtain
[55,56]:

P (ν)
d= 1

ZEc

∫ c−1∏
b=1

dQb(ν̂b)I[ν = f ({ν̂b})][z({ν̂b})]x (23)

Q(ν̂)
d= 1

Ẑ
EJ

∫ k−1∏
i=1

dPi(νi)I[ν̂ = f̂ ({νi},J )][ẑ({νi},J )]x

(24)

where Ec denotes the expected value over the distribution of
the random connectivity of variable nodes and EJ denotes
the average over the values of the disordered interaction
couplings. The normalization factors z and ẑ, cf. Eqs. (21)
and (22), to the power x enter as weight in Eqs. (23) and (24),
where we recall that x is the RSB parameter, cf. Eq. (10);

these terms come from the weight wn. It is important to
keep in mind the two level of randomness: One is due to
the appearance of many pure states, the other one to the
randomness of the environment around the nodes. Like for
simple message passing, Z and Ẑ appearing in the message
distribution equations are normalization constants. The free
energy of what is called “the replicated” system is given by:

− βF (β,x) = E{Q(ν̂)},c logZs({Q(ν̂)})
+αE{P (ν)},J logZc({P (ν)},J )

− nlEP (ν),Q(ν) logZl(P (ν),Q(ν̂)) (25)

where E indicates the expectation over the variables in the
indexes, α is the expected number of functional nodes per
variable node, and nl is the expected number of edges per
variable. The site, constraint, and link contributions are:

Zs =
∫ c∏

b=1

dQb(ν̂b)[zs({ν̂b})]x (26)

Zcs =
∫ k∏

i=1

dPi(νi)[zcs({νi},J )]x (27)

Zl =
∫

dQ(ν̂)dP (ν)[zl(ν,ν̂)]x (28)

with zcs , zs and zl given by Eqs. (16), (17), and (18), but now
J is a random variable. The internal free energy of the pure
states, φint, is related to the replicated free energy F (β,x) by
a derivative with respect to x: φint = ∂F (β,x)/∂x. We, thus,
obtain:

− βφint(β,x) = E{Q(ν̂)}

[
1

Zs

∫ c∏
k=1

dQk(ν̂k)[zs({ν̂k})]x log zs({ν̂k})
]

+αE{P (ν)}

[
1

Zcs

∫ 4∏
i=1

dPi(νi)[zcs({νi},J )]x log zcs({νi},J )

]

− nlEP (ν),Q(ν)

[
1

Zl

∫
dQ(ν̂)dP (ν)[zl(ν,ν̂)]x log zl(ν,ν̂)

]
(29)

The complexity, �(φint), related to the logarithm of the number
of pure states with free-energy φint, can be evaluated through
the Legendre transform:

�(φint) = β(xφint − F (β,x)) (30)

The distributional Eqs. (23) and (24) depend on the parameter
x, and one eventually finds a self-consistent solution for any
value of x ∈ [0,1]. The total free energy F (β,x), cf. Eq. (25),
depends, as well, on x: In order to describe the thermal
equilibrium distribution we must determine the proper value
of x by maximizing F (β,x) [55,56,59]. Let us analyze more
in detail the two possible scenarios in which solutions cluster
and, consistently, replica symmetry is broken.

1. The dynamic 1RSB phase

In this scenario the 1RSB solution displays x = 1. From
a physical point of view, this is a consequence of the fact

that the internal free energy is in the dominion [φmin,φmax]
where the complexity �(φ) is strictly positive. We will show
that in this case the total free energy F (β,1) is equal to the
paramagnetic one, even if it is obtained from a superposition
of an exponential number of pure states, each one with free
energy φint larger than the paramagnetic one. This phase is
also known as dynamic d − 1RSB phase. We will show the
behavior of the previously introduced wave system for this
case in Sec. IV.

2. The static 1RSB phase

In this scenario the system still decomposes into a convex
combination of pure states but a certain number of states
acquire substantially more weight than all the others: The prob-
ability measure condensates into this subset of states growing
subexponentially with the size (i.e., zero complexity) [55].
The region x = 1 becomes an unphysical solution of negative
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complexity �(φ). The correct probability distributions are
obtained with x = x∗ ∈ [0,1).

We now concentrate on the first case, where the maximum
over x is for x∗ = 1.

B. 1RSB phase with x∗ = 1

In this section we determine the phase diagram of the
XY model with nonlinearly interacting spins looking at the
complexity function �(φ) when x∗ = 1. Another possible
approach to determine critical points in linear systems, as de-
veloped in Refs. [19,60] for XY and Heisenberg spins [61], is
to look for a critical temperature through a bifurcation analysis:
P (ν(ϕ)) is expanded around the paramagnetic solution, i.e.,
P (ν(ϕ)) = 1/(2π ) + �(ϕ), and the RSCM Eqs. (12) and (13)
are expanded as well around the solution �(ϕ) = 0; a linear
update rule is then obtained for �(ϕ) and one can then analyze
if �(ϕ) departs from zero. However, this procedure cannot be
applied to the nonlinear case, since one obtains a nonlinear
update rule and the behavior of �(ϕ) cannot be determined
analytically.

In the rest of this section we will introduce the variables
and the order parameters that we analysed to study possible
1RSB solutions. The details of their derivation, are reported in
Appendix A.

Evaluating �(φ) at x∗ = 1 introduces a simplification in
Eqs. (23) and (24). To understand this result for a moment
let us go back to one specific realization of a graph. Let us
define the average messages, ν̄ib, ¯̂νbi , over the possible states
n = 1, . . . ,Nstates(φ) as:

ν̄ib =
∫

dPib(ν)ν; ¯̂νbi =
∫

dQbi(ν̂)ν̂. (31)

If we look at a single factor graph taken from the ensemble of
random factor graphs we are considering Eqs. (23) and (24)
for the specific distributions of the messages νib and ν̂bi are:

Pib(ν) = 1

Zib

∫ ∏
a∈∂i\b

dQai(ν̂a)

× I[ν = f ({ν̂a})][z({ν̂a})] (32)

Qbi(ν̂) = 1

Ẑbi

∫ ∏
j∈∂b\i

dPjb(νj )

× I[ν̂ = f̂ ({νj },J )][ẑ({νj },J )] (33)

Through Eqs. (21) and (22), we can see that for this case x∗ =
1, the normalization constants, Zib and Ẑbi , can be expressed
in terms of the averages {ν̄, ¯̂ν}:

Zib =
∫ ∏

a∈∂i\b
dQai(ν̂a)z({ν̂a})

=
∫

dϕi

∏
a∈∂i\b

∫
[dQai(ν̂a)ν̂ai(ϕi)]

=
∫

dϕi

∏
a∈∂i\b

¯̂νai(ϕi)

(34)

Ẑbi =
∫ ∏

j∈∂b\i
dPjb(νj )ẑ({νj },Jb)

=
∫

dϕi[
3∏

k=1

dϕjk
dPjkb(νjk

)νjkb]

× eβJ cos (ϕj1 −ϕj2 +ϕj3 −ϕi)

=
∫

dϕi

3∏
k=1

dϕjk
ν̄jkb eβJ cos(ϕj1 −ϕj2 +ϕj3 −ϕi ). (35)

The same can be observed for Zs , Zcs , and Zl . Moreover, from
Eqs. (32) and (33), it can be seen that ν̄ib and ¯̂νib satisfy the
RSCM Eqs. (12) and (13).

Moving to random graphs, we can conclude that, when the
problem is correctly described by x∗ = 1, the distributions of
the average messages ν̄ and ¯̂ν, which we will indicate with
P̄ and Q̄, are solutions of the RSCM equations and, in the
thermodynamic limit, the RS predictions are correct: The total
free energy F (β,1) is equal to the RS one. It, though, consists
of various contributions due to the fact that the thermodynamic
phase is fragmented into many metastable states, each one with
a free energy φint larger than the RS one:

F (β,1) = φint − T �(φint). (36)

Let us suppose that we know the RS results. Either because
we know that a given solution, e.g., the paramagnetic solution,
is the correct solution or because we have run the RS algorithm
up to convergence. We would like to simplify Eqs. (23) and
(24) exploiting our knowledge that in this case the distributions
of ν̄ and ¯̂ν satisfy the RS predictions. To this purpose let us
define:

Rϕ(ν) = ν(ϕ)P (ν)

ν̄(ϕ)
(37)

R̂ϕ(ν̂) = ν̂(ϕ)Q(ν̂)
¯̂ν(ϕ)

. (38)

Starting from Eqs. (23) and (24) we can obtain the distribu-
tional equations (see Appendix A):

Rϕ(ν)
d=

{∫ c−1∏
b=1

dR̂ϕ(ν̂b)I
[
ν = f ({ν̂b})

]}
(39)

R̂ϕ(ν̂)
d= EJ

{∫ 3∏
j=1

dϕjdRϕj
(νj )π

({ϕj }|ϕ; J
)

× I
[
ν̂ = f̂

({νj }; J
)]}

(40)

where we have defined:

π
({ϕjk

}|ϕ; Jb

) =
∏

jk
ν̄jk

(ϕjk
) × ψ({ϕjk

},ϕ|Jb)∫ ∏
jk

dϕjk
ν̄jk

(ϕjk
) × ψ({ϕj },ϕ|Jb)

(41)

that can be seen as the probability of a configuration {ϕjk
}

given ϕ and Jb. In Eq. (39), for simplicity, we have considered
the case of a random regular factor graphs, in which the
connectivity c of each variable node is constant.

To numerically find the solutions of Eqs. (39) and (40) we
can adopt an iterative scheme. Considering Eq. (39), R̂(t)

ϕ (ν̂) is
updated through the following steps:

(1) Let J be drawn according to its distribution. Given ϕ ∈
[0,2π ) and J , generate {ϕj1 ,ϕj2 ,ϕj3} according to π ({ϕj }|ϕ; J ).
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(2) Take the message marginals ν1,ν2,ν3 with distributions
R(t)

ϕj1
,R(t)

ϕj2
,R(t)

ϕj3
. Using the population dynamics algorithm [56],

this can be achieved considering each one of the Rϕj
as a

population of Npop messages. The νj ’s will then be taken
uniformly at random from the Npop messages.

(3) Considering Eq. (40), ν̂ = f̂ ({νj }; J ) will be dis-
tributed as R̂(t+1)

ϕ . Numerically, as for the Rϕj
, R̂(t)

ϕ is a
population of Npop distributions. Then, the new ν̂ will update
one message among them, uniformly at random. Steps 1 to 3
are repeated for all values of ϕ.

To update Eq. (39) we can proceed as follows.
(1) Given ϕ, we take c − 1 i.i.d messages, ν̂1, . . . ,ν̂c−1

extracted with probabilities R̂(t)
ϕ ;

(2) Then, ν = f ({ν̂b}) has distribution R(t+1)
ϕ . As before,

ν will update one of the Npop messages representing the
distribution R(t)

ϕ . Again, steps 1 and 2 have to be repeated
for all values of ϕ.

Once the stationary distribution {R̂(∞)
ϕ ,R(∞)

ϕ } are computed
we can evaluate the order parameters. In spin-glass systems
good order parameters are the inter and intra-state overlaps,
q0 and q1. This latter is also known as the Edward-Anderson
parameter. They read:

q0 =
(∫

dϕμ̄(ϕ) cos (ϕ)

)2

+
(∫

dϕμ̄(ϕ) sin (ϕ)

)2

(42)

depending only on the RS solutions, and

q1 =
∫

dϕμ̄(ϕ) cos (ϕ)

×ERϕ (μ)

[∫
dRϕ(μ)

∫
dϕμ(ϕ) cos (ϕ)

]

+
∫

dϕμ̄(ϕ) sin (ϕ)

×ERϕ (μ)

[∫
dRϕ(μ)

∫
dϕμ(ϕ) sin (ϕ)

]
. (43)

Where, in analogy with Rϕ(ν), cf. Eq. (37), we have defined:

Rϕ(μ) = μ(ϕ)Pμ(μ)

μ̄(ϕ)
(44)

and Pμ is the distribution of the marginal probability distribu-
tions μ(ϕ) of variable nodes. μi(ϕ) of variable node i is related
to the messages coming from all the neighbors of the node:

μi(ϕ) =
∏

b∈∂i ν̂bi(ϕ)∫
dϕ

∏
b∈∂i ν̂bi(ϕ)

. (45)

As before, μ̄(ϕ) indicates the average over the pure states.
Equations (42) and (43) are derived in Appendix A.

C. p-clock model

As we have seen for the ordered case [22], the method
adopted to look for numerical solutions of Eqs. (39) and (40)
is to define the p-clock model looking for a convergence to the
XY model for what concerns its critical behavior. We recall
that in the p-clock model, the variable ϕ can take p values

equally spaced in the [0,2π ) interval:

ϕm = 2π

p
m with m = 0, . . . ,p − 1. (46)

The population dynamics algorithm for the p-clock model is
reported in detail in Appendix B.

The last point concern the starting distributions, the R(0)
m s.

It was seen in Ref. [62] that the temperature of the dynamical
glass transition coincides with the noise threshold of an
associated reconstruction problem: The statistical physics
problem admits a glassy phase if the related reconstruction
problem is successful. Therefore, the 1RSB equations have
solutions different from the RS ones if and only if Eqs. (39)
and (40), with initial conditions R(0)

m (ν) = I(νm′ = p

2π
δm′m), do

not converge to the trivial distributions R(∞)
m (ν) = I(ν = νRS),

∀m ∈ {0, . . . ,p − 1}, as t → ∞; where, for the XY model,
νRS = 1/(2π ). In order to better understand the analysis
that we will show in the following, we briefly sketch this
result introducing the so-called tree-reconstruction problem
[62], which will also clarify the physical meaning of Rϕ(ν)
introduced in Eq. (37).

Consider a source generating a signal that propagates
through the links of a treelike network. The tree reconstruction
deals with the problem of forecasting the signal at the source
knowing the broadcasted signal at the end leaves of the tree.
Let us call Ml the configuration at distance l from the root
(in Ref. [62] this is called the lth generation) and let us define
ηl(m̃) as the probability that the root has value m̃, i.e., it is
pointing in the m̃ angle direction, given Ml ; this reads

ηl(m̃) = P{M0 = m̃|Ml = ml}. (47)

Since ml is chosen randomly according to the broadcast
from the root to the lth generation, ηl(m̃) is in general a
random variable. Let us indicate with R

(l)
m̃ (η) the probability

distribution of ηl(m̃), conditional to the broadcast problem
being started with M0 = m̃:

R
(l)
m̃ (η) = P{ηl(·) = η(·)|M0 = m̃}. (48)

Through R
(l)
m̃ (η) we can determine the probability that the

reconstruction problem is successful:

Psuccess = 1

p

p−1∑
m̃=0

∫
dR

(l)
m̃ (η)ηl(m̃)

where we have considered variables m̃ discrete taking values
in {0, . . . ,p − 1}.

Parallel to R
(l)
m̃ (η), giving the distribution of ηl(·) conditional

on the transmitted signal being equal to m̃, it is also interesting
to consider the unconditional distribution of ηl(·). Using the
Bayes theorem we have:

P{ηl = η|M0 = m̃} = P{M0 = m̃|ηl = η}P{ηl = η}
P{M0 = m̃} . (49)

Using the definition of ηl(·), Eq. (47), we can see that Eq. (49)
coincides with Eq. (37).

The behavior of R
(l)
m̃ (η) as l increases will give information

about the possibility of actually reconstructing the broadcast
signal M0. Indeed, we can define the reconstruction probability
as the probability that the reconstruction is successful minus
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p=12
p=16
p=32
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0.5
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1

FIG. 1. Complexity, �, (bottom) and � ≡ �∞, (top) as functions
of T/J for different p-clock models on random regular graphs with
variable node connectivity fixed to c = 6. The dashed (blue) line and
the empty (green) circles refer to p = 8 and p = 12, respectively.
The dashed-dotted (red) line and the (black) stars refer to p = 16
and p = 32, respectively. At T/J = Td/J both � and � show a
discontinuous jump departing from zero signaling a dynamical glass
transition. As T/J decreases below Td/J , � decreases towards zero.
On the other hand, � increases. Below TK/J , � becomes negative
and the correct solution is obtained with x∗ < 1. For the convergence
of Td/J and TK/J as p increases see Figs. 3 and 4. We can see
that down to T = TK/J , no differences can be appreciated in double
precision between p = 16 and p = 32. The values obtained for � and
� are observed to be independent from ρ, i.e., the fraction of negative
interactions. These results have been obtained with a population size
of Npop = 5 · 105.

the probability of guessing uniformly:

�l = 1

p

p−1∑
m̃=0

∫
dR

(l)
m̃ (η)

[
ηl(m̃) − 1

p

]
. (50)

In terms of the above observable we can say that the problem
is solvable if, in the limit l → ∞, �∞ > 0. The further step
is to determine how we can compute the distribution R

(l)
m̃ (η)

of the distributions of the root ηl(m) given a boundary Ml =
ml . Using the treelike structure of the problem, this can be
done iteratively by a dynamical programming procedure that
induces a recursion equation for R

(l)
m̃ (η). It can be seen that this

coincides with Eq. (39) [62]. The initial condition is then:

R
(0)
m̃ (η) = δ[η − δm̃]. (51)

As it is done in the RSCM, the idea is to use the recursion rule
on diluted graphs that are locally treelike. The reconstruction
problem is then mapped on the statistical mechanical problem
and this latter admits a glassy phase if, and only if, the
corresponding reconstruction problem is solvable, i.e., �∞ >

0. We take as initial condition Eq. (51) and evaluate �∞
to identify the occurrence of a possible glassy phase. As a
comparison, we have also evaluated the complexity function
from Eq. (36), which is expected to jump from zero to a
value � > 0 at the dynamical glass transition, Td , where
the phase space decomposes into an exponential number
of pure states. As expected, the two quantities � and �

display a discontinuity right at the same reduced temperature
T/J ≡ Td/J , as shown in Fig. 1 for various p-clock models
on a bipartite Bethe lattice with c = 6 and k = 4. The tree
reconstruction probability � is, anyway, easier to control
because it fluctuates less than �. We notice that for the

8 12 16
10

−2

10
−1

p

T
d/J

a e−b x

χ2/dof ∼ 0.99; b=2.0

FIG. 2. Dynamical transition values, Td/J , as a function of p for
random graphs with node connectivity fixed to c = 4. The data are
show with their best fit. We can see that in the p → ∞ limit, i.e., the
XY model, no dynamical glass transition is expected for this value of
connectivity and results indicating values of Td/J > 0 are artifacts
of p < ∞.

continuous variable case, ϕ ∈ [0,2π ), Eq. (50) is replaced by

�t = 1

2π

∫
dϕ

∫
dR(t)

ϕ (η)

[
η(ϕ) − 1

2π

]
.

IV. PHASE TRANSITIONS IN THE p-CLOCK MODELS

Eventually, we present the behavior of the dynamic tran-
sition line and the static, Kauzmann-like, transition line as
the number p of values that the phase variables can take
increases. We have considered random graphs with different
connectivities c. The results presented have been obtained with
a population size of Npop = 5 · 105 elements; for this value no
size effects could be observed.

The borderline case to display any transition at all, at least
for p < ∞, is when the connectivity of the variable nodes is
equal to the connectivity of the function nodes, that is 4 in
the model introduced in Eq. (6). In Fig. 2 we show how a
finite Td > 0 is an artifact of taking ϕ discrete in the p-clock
models. Indeed, increasing p, Td tends to zero as a power
law. Consequently, any TK < Td also tends to zero for large
p. Considering larger node connectivity values we observe
a rapid convergence to asymptotic values of Td and TK . This
behavior is exemplified in Figs. 3 and 4 for connectivity c = 5,
while the insets of these figures show the results for c = 6: as
c increases the convergence to the continuous ϕ limit is faster.
Indeed, at the latter case this is reached already for p = 12
both for dynamic and static transitions. In the case c = 6, we
show the asymptotic, i.e., p → ∞, phase diagram in Fig. 5.
Three phases are shown, each one of them both as stable and
metastable: the incoherent wave (aka paramagnetic) regime,
the totally phase coherent (aka ferromagnetic) regime and the
disordered frozen regime in which all phases take a given
fixed value but in random directions. The phase wave regime,
with locked phases but overall zero magnetization, reported in
Ref. [22] is also a solution but it always occurs as metastable
and it is not reproduced here.

At the dynamic transition, determined very precisely by the
tree reconstruction probability, the self-overlap q1 jumps to a
nonzero value. The discontinuity is clearly seen for all p-clock
models investigated, though both its position, i.e., Td , and its
magnitude in the glassy phase vary with p for relatively small

094206-8



MULTI-BODY QUENCHED DISORDERED XY AND p- . . . PHYSICAL REVIEW B 93, 094206 (2016)
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FIG. 3. Dynamical transition values, Td/J (open blue circles), as
a function of p with their best fit (dashed red line) obtained in random
graphs with node connectivity fixed to c = 5. The fitting functions is
ae−bp + T lim

d /J with b = 1.0 and limiting value T lim
d /J = 0.141(7);

χ 2/dof = 0.99. The inset shows the results for random graphs with
node connectivity fixed to c = 6; the limiting value in this case is
T lim

d /J = 0.2536(4). We note that convergence is reached for a lower
value of p in respect to c = 5.

p values, as shown in Fig. 6 for different p-clock models on
random graphs with variable node connectivity c = 6.

V. CONCLUSIONS

In this paper, we have investigated the 4-body XY model
with quenched disordered interactions on bipartite random
graphs. The system is highly diluted with the node participating
in O(1) quadruplets and, by means of the cavity method,
we have analyzed the possible phases from the ordered to
the spin-glass case. To numerically implement the cavity
method up to the 1-step replica symmetry breaking, which
is characterized by the presence of many pure states in the
phase space and it is known to be the stable solution for
nonlinear models, we have introduced the p-clock model
representing, from 2 to ∞, a hierarchy of discretization for
the XY spins. Then, we have studied the dynamical and
spinodal thermodynamic transition lines analyzing the free
energy, the complexity, and the tree reconstruction functions
as both the distribution of the interaction couplings and

10 20 30 40
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0.1

0.15

p

T
k/J

8 20

0.12

0.14

0.16

p

T
k/J

c=6

FIG. 4. Open blue circles refer to the values for the static
(Kauzmann) transition temperature, TK/J , plotted as function of
p obtained in graphs with connectivity c = 5. The inset shows the
results related to graphs with connectivity c = 6. The results for c = 5
are shown with their best fit, dashed (red) line. The fitting function
is: ae−bp + T lim

K /J ; results are: b ∼ 0.25 and T lim
K /J = 0.026(3),

χ 2/dof = 0.99. Concerning the inset for c = 6, convergence to
T lim

K /J = 0.1231(4) is faster.

0.5 0.6 0.7 0.8 0.9 1

0.1

0.3

0.5

ρ

T
/J T

d
(p → ∞) ∼ 0.2536(4)

T
k
(p → ∞) ∼ 0.1231(4)

T
sPM

1RSB−SG

FM

T
c

FIG. 5. Phase diagram obtained for random graphs with node
connectivity fixed to c = 6 in the ρ, T/J plane. Three phases are
found: the paramagnetic phase (PM) corresponding to the continuous
wave phase in the wave system, the ferromagnetic phase (FM), i.e., the
mode-locked regime, and 1RSB spin-glass (SG) phase, i.e., the glassy
regime. The dashed-dotted (cyan) and dotted (black) lines show the
dynamic, Td/J , and static, TK/J , transition lines, respectively, as the
number of negative interaction increases. Td/J , as well as TK/J , does
not depend on ρ. The (blue) circles and the (blue) dashed-dotted line
on the right indicate the boundary between the FM and SG/PM phases
obtained for p = 32, while the (red) crosses and the (red) dotted line
refer to the results for p = 16. With Ts we indicate the spinodal
line, i.e., the value of T/J at which the FM solution appears; Tc is
the critical line and it indicates the value at which the FM solution
becomes firstly stable. For ρ � 0.95 the FM solution vanishes.

the connectivity c of the variable nodes are changed. The
analysis of the convergence of the p-clock model to the
XY model is performed down to temperature low enough
to determine the asymptotic value of all relevant transition
points for different connectivity. The limiting values, as p

increases, of the complexity, the tree-reconstruction and the
Edward-Anderson overlap q1 are analyzed, as well, in function
of temperature. Our results indicate that, given the connectivity
c, the dynamic and thermodynamic transitions are completely
independent of the parameter ρ, Eq. (9), giving the fraction of
positive couplings. This property is clear from the horizontal
lines in the T − ρ plane in Fig. 5. Moreover, looking at
�(φint), � and q1, we can conclude that every unmagnetized
solution of the self-consistent cavity equations is independent
of ρ and the spin-glass solution is also present when the
ferromagnetic solution arises [63]; although, in this case, the

0.14 0.2 0.26T/J

q 1

0.0

0.05

0.95

1

0.85

p=8
p=12
p=16
p=32

FIG. 6. Interstate overlap, q1, obtained for c = 6. q1 departs from
zero at Td/J and increases. Different lines refer to different p-clock
models (see the legend). As we can see p = 16 is already a good
approximation for the p → ∞ limit. As � and �, values of q1 are
shown to be independent on ρ.
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ferromagnetic solution is more favorable. Studying the limit
p → ∞, our results indicate that the minimal connectivity
to have a spin-glass solution for the 4-XY spin model at
temperature above zero is c = 5.

The XY model with pairwise, i.e., linearly, interacting spins
is well known in statistical mechanics, displaying important
physical insights in different fields of condensed matter
physics. In the present case, our interest on the many-body,
i.e., nonlinear, XY model resides in optics, since it turns out
to describe systems of interacting waves with homogeneous
distribution of the intensities. Disorder-induced frustration in
the mode couplings could effectively describe the effects of
the scattering feedback in random lasers, where a spin-glass
phase could be the source of recently observed anomalous
spectral fluctuations in different identical experiments on the
same sample [64–66].

APPENDIX A: 1RSB CAVITY METHOD WITH x∗ = 1: A
SIMPLER RECURSION

In this Appendix we will show how we can obtain the
simpler recursion rules, Eqs. (39) and (40), starting from
Eqs. (23) and (24) knowing that the system is correctly
described by states with φint ∈ [φmin,φmax], i.e., x∗ = 1. Let us
consider the single realization of a graph. Taking a link ib, the
messages νn

ib(ϕ) and ν̂n
bi(ϕ) will in general depend on the state

n. We define the average messages, ν̄ib, ¯̂νbi , with Eqs. (31).
From Eq. (32), using the identity function I[ν = f ({ν̂a})], we
obtain:

ν̄ib(ϕ) = 1

zib

({ ¯̂ν})
∏

a∈∂i\b
¯̂νai(ϕ) (A1)

where zib({ ¯̂ν}) is again the normalization constant (Eq. (21))
depending only on the ¯̂νai with a ∈ ∂i \ b. From Eq. (33),
using again I[ν̂ = f̂ ({νj },J )], we obtain:

¯̂νbi(ϕ) = 1

ẑbi({ν̄})
∫ 2π

0

∏
j∈∂b\i

[dϕj ν̄jb(ϕj )]

×ψ({ϕj∈∂b\i ,ϕ}|Jb) (A2)

as before, ẑbi is the normalization constant [Eq. (22)] de-
pending only on ν̄jb with j ∈ ∂b \ i. Equations (A1) and
(A2) are the belief propagation equations, cf. Eqs. (12)
and (13). Considering ensemble of random graphs, these
become equations among distributions: P̄ (ν) and Q̄(ν̂) are
self-consistent solutions of the RSCM equations. To derive
Eqs. (39) and (40) we consider again an instance of a random
graph. Given a link, ib we can then define:

Rib
ϕ (ν) = ν(ϕ)Pib(ν)

ν̄ib(ϕ)
;

similarly, we define R̂bi
ϕ (ν̂). We recall that Pib(ν) describes

the distribution of the message νib(ϕ) among the different
pure states n = 1, . . . ,Nstates(φ). Through Eq. (32), we can

see that:

Rib
ϕ (ν) = 1

zib

({ ¯̂ν})ν̄ib(ϕ)

∫ { ∏
a∈∂i\b

[dQai(ν̂a)ν̂a(ϕ)]

× I[ν = f ({ν̂a})]
}

=
∫ ∏

a∈∂i\b
dR̂ai

ϕ (ν̂a)I[ν = f ({ν̂a})] (A3)

where we have written ν(ϕ) using I[ν = f ({ν̂a})] and we have
simplified zib({ ¯̂ν})ν̄ib(ϕ) using Eq. (A1). Through the same
steps, we can write:

R̂bi
ϕ (ν̂) =

{∫ 3∏
k=1

(dϕk)
∏

j∈∂b\i

[∫
dRjb

ϕk
(νk)ν̄jb(ϕk)

]

×ψ({ϕk}; ϕ,Jb)I[ν̂ = f ({νk})]
}

×
{∫ 3∏

k=1

(dϕk)ψ({ϕk}; ϕ,Jb)
∏

j∈∂b\i
ν̄jb(ϕk)

}−1

(A4)

We can define:

π ({ϕk}|ϕ; Jb) =
∏

j∈∂b\i ν̄jb(ϕk)ψ({ϕk}; ϕ,Jb)

zπ (ϕ,Jb)

where zπ (ϕ,Jb) is the normalization:

zπ (ϕ,Jb) =
∫ 3∏

k=1

(dϕk)
∏

j∈∂b\i
ν̄jb(ϕk)ψ({ϕk}; ϕ,Jb).

Hence, π ({ϕk}|ϕ; Jb) can be seen as the probability distribution
of {ϕk} given ϕ and Jb. Considering ensemble of random
factor graphs, Eqs. (A3) and (A4) become equalities among
distributions [Eqs. (39) and (40)].

It can be seen that F (β,1), Eq. (25), depends only on the
average messages, {ν̄, ¯̂ν}, coinciding then with the RS free
energy, Eq. (15). Indeed, when x∗ = 1, Zs of Eq. (26) reads:

Zs =
c∏

b=1

(∫
dQb(ν̂b)

) ∫
dϕ

c∏
b=1

ν̂b(ϕ)

=
∫

dϕ

c∏
b=1

(∫
dQb(ν̂b)ν̂b

)
=

∫
dϕ

c∏
b=1

¯̂νb; (A5)

the same can be obtained for Zc and Zl .
The more common order parameters used to describe

the 1RSB solutions are the intrastate overlap q1 and the
interstate overlap q0. The first describes the similarity among
configurations belonging to the same pure state; the latter is
the overlap among configurations belonging to different states.
We expect q0 < q1 if the replica symmetry breaking occurs,
otherwise q0 = q1. From their definitions, q0 and q1 can be
evaluated through:

q0 = EPμ

{(∫
dPμ(μ)

∫
dϕ cos (ϕ)μ(ϕ)

)2

+
(∫

dPμ(μ)
∫

dϕ sin (ϕ)μ(ϕ)

)2}
(A6)
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q1 = EPμ

{∫
dPμ(μ)

[(∫
dϕ cos (ϕ)μ(ϕ)

)2

+
(∫

dϕ sin (ϕ)μ(ϕ)

)2]}
(A7)

where Pμ is the distribution of the marginal probability distributions μ(ϕ), Eq. (45). Pμ is a self-consistent solution of a 1RSB
cavity equation similar to Eq. (23) with c − 1 replaced by c. When x∗ = 1, as we did in Eqs. (37) and (38), we can define:

Rϕ(μ) = μ(ϕ)Pμ(μ)

μ̄(ϕ)
. (A8)

Substituting in Eq. (A6) we obtain Eq. (42). For q1 we have:

q1 =
∫

dϕ1dϕ2 cos (ϕ1) cos (ϕ2)EPμ

∫
dPμ

μ(ϕ1)μ̄(ϕ1)

μ̄(ϕ1)
μ(ϕ2) + cos ↔ sin

=
∫

dϕ1 cos (ϕ1)μ̄(ϕ1)ERϕ1

∫
dRϕ1 (μ)

[∫
dϕ2 cos (ϕ2)μ(ϕ2)

]
+ cos ↔ sin . (A9)

Through similar calculations, when x∗ = 1, we can also use Rϕ and R̂ϕ to simplify the expression for φint, Eq. (29). Indeed,
starting from Eq. (29), we obtain:

− βφint(β) = E{R̂},{ ¯̂ν}

[∫
dϕ

∏c
b=1

(
¯̂νb

∫
dR̂ϕ(ν̂b)

)
log zs({ν̂b})

zs

({ ¯̂νb}
)

]
+ αE{R},{ν̄}

[
1

zcs({ν̄},J )

×
∫ 4∏

j=1

dϕj ν̄j (ϕj )dRϕj
ψ({ϕj }|J ) log zcs

({νj },J
)] − nlER̂,R, ¯̂ν,ν̄

∫
dϕν̄(ϕ) ¯̂ν(ϕ)

∫
dRϕdR̂ϕ log zl(ν,ν̂)

zl(ν̄, ¯̂ν)
. (A10)

The algorithms we have used to evaluate the self-consistent solutions of the 1RSB cavity equations (39) and (40) as well as
Eq. (A10) are discussed in Appendix B.

APPENDIX B: POPULATION DYNAMICS ALGORITHM FOR THE p-CLOCK MODEL APPLIED
FOR THE 1RSB CAVITY METHOD WITH x∗ = 1

Suppose that we have previously run the RSCM algorithm, then we know the distributions of the average messages ν̄ and ¯̂ν.
We will indicate these distributions with P̄ and Q̄, respectively. For every value of m̃ = 0, . . . ,(p − 1), we have a population of
Npop distributions ν, representing the distribution Rm̃, and a population of Npop distributions ν̂, representing the distribution R̂m̃.
In order to update all the p populations of the R̂m̃s we do:

Population Dynamics, for the 1RSB Cavity Method with x∗ = 1

1: For m̃ ∈ {0, . . . ,p − 1}
2: For i ∈ {0, . . . ,Npop − 1}
3: Extract J with distribution PJ

4: Extract uniform at random ν̄1, . . . ,ν̄k−1 from P̄ (ν)
5: Given m̃, J and ν̄1, . . . ,ν̄k−1 extract a configuration {m̃1,m̃k−1} with probability distribution π ({m̃1,m̃k−1}|m̃; J ), cf. Eq. (41); extract
ν1, . . . ,νk−1 uniform at random from R

(t−1)
m̃1

, . . . ,R
(t−1)
m̃k−1

.
6: Then, ν̂i of the population representing R̂

(t)
m̃ equals f̂ (ν1, . . . ,νk−1).

7: End-for
8: End-for

Then, once we have the p populations R̂
(t)
m̃ , we can update the p populations Rm̃ at time t as well:

1: For m̃ ∈ {0, . . . ,p − 1}
2: For i ∈ {0, . . . ,Npop − 1}
3: Extract ν̂1, . . . ,ν̂c−1 uniform at random from the Npop representing R̂

(t)
m̃

4: νi of the population representing R
(t)
m̃ equals f (ν̂1, . . . ,ν̂c−1)

5: End-for
6: End-for
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Similar algorithms can be used to evaluate φint, Eq. (A10), and q1, Eq. (43). It is important to remember the correct normalization
for the ν’s and the ν̂’s now that we are considering the p-clock model, rather than the continuous case:

∫ 2π

0
dϕν(ϕ) = 1 →

p−1∑
l=0

νl = p

2π
. (B1)

R
(t)
m̃ and R̂

(t+1)
m̃ are updated until no differences in double precision can be observed in �, Eq. (50), and q1. To speed up the update

algorithm, we have implemented a parallel CUDA-C code scalable also on multi-GPUs (for p = 32 we used up to 8 GPUs in
parallel).
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