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Local inversion-symmetry breaking controls the boson peak in glasses and crystals
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It is well known that amorphous solids display a phonon spectrum where the Debye ∼ω2 law at low frequency
melds into an anomalous excess-mode peak (the boson peak) before entering a quasilocalized regime at higher
frequencies dominated by scattering. The microscopic origin of the boson peak has remained elusive despite
various attempts to put it in a clear connection with structural disorder at the atomic/molecular level. Using
numerical calculations on model systems, we show that the microscopic origin of the boson peak is directly
controlled by the local breaking of center-inversion symmetry. In particular, we find that both the boson peak
and the nonaffine softening of the material display a strong correlation with a new order parameter describing
the local inversion symmetry of the lattice. The standard bond-orientational order parameter, instead, is shown to
be inadequate and cannot explain the boson peak in randomly-cut crystals with perfect bond-orientational order.
Our results bring a unifying understanding of the boson peak anomaly for model glasses and defective crystals
in terms of a universal local symmetry-breaking principle of the lattice.
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I. INTRODUCTION

The phonon spectrum of defect-free crystals is well under-
stood, since the advent of modern solid-state physics in the
middle of the 20th century [1]. At low frequency and long
wavelength, the linear dispersion relation between frequency
and momentum results from the breaking of translational
symmetry due to the periodic lattice, a manifestation of the
Goldstone theorem, and gives rise to the D(ω) ∼ ω2 Debye
law in the density of states (DOS), in 3D. At higher frequen-
cies, phonon propagation through Brillouin-zone boundaries
may appear as sharp peaks in D(ω), known as van Hove
singularities [2]. In the presence of structural disorder, the
spectrum of vibrational modes presents very different features
which remain poorly understood. The most striking anomaly
in glasses is the deviation from the Debye law which manifests
itself as the well-documented excess of low-frequency modes
visible as a peak in the normalized DOS D(ω)/ω2. This effect
is widely known as the boson peak anomaly, and is a universal
feature in glasses [3], although it has often been observed in
crystals as well [4–6].

The Ioffe-Regel crossover [7] defines the frequency ωIR

at which the phonon mean-free path becomes equal to its
wavelength. Very close to this frequency, is the crossover
frequency ω∗ from ballistic phonons in the linear regime ω ∼ q

to quasilocalized modes characterized by diffusive propaga-
tion. This crossover is supposed to play an important role for
the boson peak in glasses, where local disorder gives rise to
scattering at sufficiently small wave-vector q, as well as in
defective crystals where vacancies and interstitials act as local
scattering centres [3,8–10]. This effect has been attributed,
among other mechanisms, to the lowest van Hove singularity
in the spectrum of the reference crystalline system, shifted to
lower frequencies by disorder-induced level-repulsion effects
[11]. However, no clear or unifying understanding of the role
of local structure has emerged for the boson peak in glasses
and defective crystals using standard tools such as, e.g., the
bond-orientational order [12,13], to characterize the effect of
structural disorder. Intriguingly, a recent experimental study
has shown that the low-ω peak in the DOS is very similar for

the silica glass and the α-quartz crystal with matched density
[6]. It was also found that the low-ω peak in the reduced DOS of
α-quartz could be accurately reproduced by DFT calculations
with just standard phonon physics and interpreted as the lowest
van Hove singularity, as shown also in Ref. [14].

Here we present numerical results for both model glasses
and defective crystals with randomly cut bonds, and a new con-
ceptual framework to explain the boson peak based on a unify-
ing local symmetry principle. We identify the microstructural
key factor, which controls the boson peak in both these models
of glasses and crystals, with the local center-inversion sym-
metry measured not with respect to the center of the unit cell,
but, crucially, with respect to any atom taken as a local center
of symmetry. Given the small number of physical parameters
in our model, we discuss each of them carefully in terms of
whether they correlate or not with the boson peak. The local
breaking of inversion symmetry appears to be the only micro-
scopic structural signature that correlates with the emergence
of the boson peak in both the glass and the defective crystal,
without leading to contradictions or paradoxes. We show that
model glasses and defective crystals having the same average
atomic connectivity Z, as well as the same density and inter-
atomic interaction, display the same boson peak in spite of hav-
ing very different values of bond-orientational order. The pro-
posed framework thus naturally provides a unifying framework
to explain the boson peak in glasses and defective crystals.

II. STATE OF THE ART

Over the last decades, the vibrational density of states of
glasses has been intensely studied from the point of view of
theory and simulations, and it is impossible to give a full
account of all models. Here we limit ourselves to some of
the models that have been applied to experimental data and
which connect to our main interest. Among the early models,
Thorpe [15] used a scalar elastic potential for central-force
components of interatomic interaction supplemented with
bond-bending terms to achieve a description of the DOS
of amorphous silicon. Subsequently, a model was proposed,
which is known as the soft-potential model [16] and is
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largely based on anharmonicity. Within this framework, the
anharmonic part of the soft potential causes a redistribution
of local oscillator frequencies with a ∼ω4 scaling in the DOS,
which then crosses over into a linear ∼ω scaling. The crossover
gives rise to a boson peak in the DOS.

Another model developed and extensively studied since
the 90’s is based on the concept of shifted and smeared
van Hove singularity. In crystals, van Hove singularities are
discontinuities in the slope of the DOS which occur when
the dispersion curve is flat, i.e., when dω/dq = 0 at the
Brillouin-zone boundaries. In Ref. [17], a scalar model of
a crystal with disorder in the spring constants was studied
and the disorder was gradually increased to the point that
the van Hove singularity appeared shifted to much lower
frequency and much smeared. Since scalar models cannot
distinguish between longitudinal and transverse modes, and
bear little resemblance to real materials, this model was
refined for a vector model by Taraskin et al. [11]. Here it
became clear that it is the transverse van Hove singularity
which gets shifted to low frequency thus producing a close
resemblance with the boson peak observed experimentally in
glasses. Subsequent calculations by Zorn [18] suggest that the
eigenvalues corresponding to the lowered transverse van Hove
singularity are presumably those which contribute the most to
the boson peak. In these models, it is clear that the local atomic
packing and structure play a major role in transforming the
eigenvalue statistics and distribution of a perfect crystal into
the one typical of glasses and defective crystals.

One of the most popular models of the boson peak was
proposed by Schirmacher [19], and is based on the concept of
heterogeneous elasticity. The starting point is the assumption
that the shear modulus is a spatially varying quantity due to
structural disorder. The microscopic details of atomic arrange-
ments are not specified and the model is entirely a macroscopic
one. Yet, the model is elegant because the assumption of
Gaussian quenched disorder allows one to employ the standard
tools of statistical field theory to arrive at expressions for
both longitudinal and transverse elastic Green functions that
are used to calculate the DOS. The assumption of Gaussian
disorder has been later generalized to non-Gaussian disorder
within the scheme of coherent potential approximation [20].
Overall, this model provides a picture of the boson peak as
a consequence of the crossover from phonon physics (at very
large wavelengths) into random-matrix physics at length scales
where the effect of disorder becomes important.

More recently, important studies, both experimental and
computational, have focused on the comparison between
crystal polymorphs and glassy phases with the same atomic
composition, such as, e.g., vitreous silica and α quartz, at
matched densities [6]. It was found that the two systems have
a very similar reduced DOS in the boson peak region, and
that the boson peak of the glass appears as a smoothened
version of the van Hove peak in the crystal. The latter peak
in the crystal was shown to be as a lowered and smeared
van Hove singularity, as clarified by first-principles numerical
calculations [14]. Also the specific heat for the two systems
was found to be identical.

While most theoretical models are limited in their ability to
describe the microscopic disorder, numerical simulations have
been used in an attempt to identify the microscopic signature of

structural disorder which is directly responsible for the boson
peak. The most common parameter used to this aim is the
bond-orientational order parameter [12,13], which quantifies
the spread in the angular orientations of the bonds connecting
the atoms in the lattice. Our main contribution below is to
show that in model systems, which share many features of
real systems in terms of DOS and elastic properties, the
bond-orientational order parameter does not correlate with the
boson peak. Instead, the breaking of local inversion symmetry
displays a much stronger correlation and proves to be a good
candidate for a microscopic structural signature of disorder
which could be used as a universal order parameter to link the
low-frequency non-Debye peak in the DOS to the underlying
atomic structure. This microscopic interpretation is proved
here for random network models of glasses and for defective
crystals. It remains to see in future studies if this concept
can prove useful also for defect-free non-centro-symmetric
crystals such as α-quartz [14].

Finally, the boson peak in glasses has been found to be
dominated by transverse modes and to correlate strongly with
softening of the shear modulus [3]. We will show below that
both the boson peak and the softnening of the shear modulus
can be linked to the phenomenon of nonaffine displacements
which is caused by the breaking of local inversion symmetry.

III. SIMULATION MODELS

In our simulations, we use a random network created
by first randomly placing N = 4000 soft spheres in a box
and letting them interact via a truncated Lennard-Jones
(LJ) potential V (r) = (1/r12 − 2/r6 + 0.031)�(2 − r). The
system is brought to a metastable lower energy state by a Monte
Carlo energy-relaxation algorithm [21]. Bonds are formed only
between nearest neighbors and the bond length is distributed
around the mean value R0 = 0.94. The volume of the box
is chosen such to create a dense network with an average
coordination number Z = 9, which is almost delta-distributed.
The fact that the coordination is the same for all atoms implies
the absence of regions which are locally under-coordinated
or overcoordinated (with respect to the average Z), hence
the local rigidity is uniform throughout the sample [22]. To
simulate systems with lower Z, we randomly cut bonds from
the initial configuration, while keeping a narrow distribution of
Z. We studied systems with coordination numbers from Z = 9
down to Z = 6. The density is kept at a constant value N/V =
1.467 and we implemented periodic boundary conditions to
avoid surface effects. To reduce noise we calculate our results
for ten independent realizations, over which we then take
averages.

In the final step to create our model glass, we then
used the so obtained configurations to generate harmonic
random-network (RN) model glasses, where the Lennard-
Jones interactions between nearest neighbors are all replaced
by harmonic springs with pair potential V (r) = (κ/2)(r −
R0)2, with spring constant κ = 1. A sample realization of
the model RN glass is shown in Fig. 1 for the marginally
stable (isostatic) network Z = 6. We also generated harmonic
FCC crystals with the same density and spring constant as the
RN glass, and randomly cut bonds to vary Z and to induce
the breaking of inversion symmetry. This procedure allows us
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FIG. 1. (a) One realization of our random network for Z = 6.
The dots represent atoms which are connected by harmonic springs.
Local inversion-symmetry is evidently broken by the randomness
and lack of correlation in bond orientations. (b) Schematic 2D
picture of a regular lattice where locally the removal of a bond
breaks the inversion-symmetry on atom i. The main consequence
of inversion-symmetry breaking induced by the cutting of the bond
is the imbalance of NN forces (arrows) acting on atom i when
it reaches its affine position under strain. The net force acting on
atom i in its affine position has to be released through an additional
nonaffine displacement. The atom i also acts as a scattering and
quasilocalization center [8] for incoming vibrational excitations.

to use all the tools of lattice dynamics and nonaffine linear
response theory to analyze the DOS and the shear modulus.
The lattice dynamics is governed by the equation of motion
for the displacement ui of atom i, üi = −κ

∑
j nij · (ui − uj ),

with oscillating solutions ui(r,t) = ui(r) exp iωt , leading to
ω2ui = κ

∑
j nij · (ui − uj ). Here, nij denotes the unit vector

pointing from atom i to atom j . Using the latter relation, the
time-independent part of the displacement is related to the
dynamical (Hessian) matrix [23] H

ij
= (∂2U/∂rα

i ∂r
β

j )γ→0,

where α,β = x,y,z and its eigenvalues λ, via ω2ui = H
ij
uj =

λui . Hence, λ = ω2, upon recalling that the atomic mass
is m = 1. In this way, the phonon density of states D(ω)
is obtained from the diagonalization of the Hessian matrix,

from which one obtains the set of eigenvalues λ. Different
eigenvalues are obtained from different realizations of the
same sample, and averaging over the realizations leads to the
distribution ρ(λ)dλ = D(ω)dω. The DOS is thus calculated
for different values of connectivity Z, for both the model RN
glasses and the FCC crystals with randomly cut bonds, which
allows us to vary Z by keeping the density constant. Also,
bonds are severed to always keep a very narrow distribution of
Z in all the samples, which ensures that spatial fluctuations of
the affine part of the elastic constants is negligible.

IV. NONAFFINE LATTICE DYNAMICS

The Hessian matrix is also a key quantity to evaluate the
nonaffine elastic response of disordered solids. The latter is
closely connected with the local inversion symmetry of the
lattice [24]. In glasses, when applying shear stress to the
solid, the atoms tend to reach a new position (affine position)
proportional to the applied shear strain γ . In the affine position,
the forces transmitted to any atom i by its nearest neighbors
(NN) cancel each other out only if atom i is a local center of
symmetry. If the atom is not a center of symmetry for the NN
bonds, as schematically depicted in Fig. 1(b), the NN forces
[arrows in Fig. 1(b)] cannot cancel each other out and a net
force acting on atom i in the affine position has to be released
via an additional nonaffine displacement. This is always
true for glasses [Fig. 1(a)], but also for crystal lattices with
defects or with randomly cut bonds [Fig. 1(b)], and also for
intrinsically non-centro-symmetric crystals like, e.g., quartz
[6,25]. In the latter systems, however, the covalent character
of interatomic bonding, with its noncentral component of
interaction, makes the applicability of analytical theories of
nonaffine lattice dynamics not yet established due to the
difficulty of analytically evaluating Hessian matrices with
noncentral interactions. In the harmonic approximation, the
total NN force acting on i under a strain γ can be expressed
as f

i
= �iγ , where �i = −κR0

∑
j nijn

x
ijn

y

ij (see Ref. [24]).
The vector �i plays a very important role because it encodes
the local inversion symmetry of the lattice. As one can easily
verify, �i = 0 if atom i is a local center of symmetry, while
�i �= 0 if the lattice does not have local inversion-symmetry.

Hence, in non-centro-symmetric and disordered lattices, a
net total force f

i
= �iγ �= 0 acts on any atom i in its affine

position. Under the action of this force, the atoms have to

FIG. 2. Shear modulus as a function of connectivity. (a) Shear modulus for the RN model glass. (b) Shear modulus of the FCC crystal with
randomly cut bonds.
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perform an additional nonaffine displacement into their final
nonaffine equilibrium positions, which is an internal work
contributing negatively to the free energy of deformation,
F (γ ) = FA(γ ) − FNA(γ ). The first term, FA, is the contri-
bution from the affine displacements, which is the sum of all
the bond-stretching energies, and can be calculated based on
the Born-Huang lattice dynamics. The second term, −FNA,
contains the reduction of the elastic free energy due to the
nonaffine relaxation of the system caused by the lack of local
inversion symmetry. Recalling that the shear modulus is given
by G = ∂2F/∂γ 2, the local inversion-symmetry breaking thus
causes the shear modulus of disordered solids to be lower
compared to defect-free centrosymmetric crystals, and as
shown in several previous works [24,26,27]:

G = GA − GNA = GA − �α
i

(
H

αβ

ij

)−1
�

β

j . (1)

Here the second, nonaffine (negative) contribution to the
shear modulus G is identically zero only for defect-free
centrosymmetric crystal lattices. Next, we shall use this
formalism to evaluate the shear modulus for our model glasses
and randomly-cut FCC crystals as a function of the atomic
connectivity Z. The results are shown in Fig. 2.

V. ANALYSIS OF SHEAR ELASTICITY: RANDOM
NETWORK VERSUS DEFECTIVE FCC

Both our model systems follow the well known G ∼
(Z − 6) scaling with respect to the isostatic point Z = 6 found
in many previous works. While it is well established [24,26]
that GA ∼ Z, we note here, importantly, that the nonaffine
contribution GNA also depends on Z, and, in particular,
it decreases with increasing Z. In fact, while the affine
contribution GA for the glass is in nearly exact quantitative
agreement with analytical mean-field predictions for random
isotropic networks [26], the nonaffine contribution decreases
linearly upon increasing Z, which deviates from the mean-field
theory [26]. From Fig. 2 , we find that the following law
is obeyed: GNA = a − b(Z − 6) for both the RN glass and
the defective FCC crystal, where a and b are numerical
coefficients. For the FCC crystal the nonaffinity vanishes
in the limit of the perfect crystal with Z = 12, and thus
a = 6b. Overall, the nonaffinity decreases with increasing Z

in qualitatively the same way for both RN lattice and defective
crystal, which suggests a common microscopic structural
origin for this behavior, as discussed below.

VI. VIBRATIONAL DENSITY OF STATES: RANDOM
NETWORK AND DEFECTIVE FCC

We shall now consider the density of states of both RN
glass and defective FCC crystal, for the same conditions
investigated for the shear modulus above. The results are
shown in Fig. 3. At large Z values, we observe that, at the
lowest frequencies, the parabolic Debye law D(ω) ∼ ω2 is
visible, for both glass and crystal. The only difference in the
spectrum is at higher frequencies where two peaks emerge
in the FCC spectrum which are reminiscent of the typical
peaks in the phonon spectrum of perfect FCC crystals [2];
the latter spectrum is eventually recovered at Z = 12, which
we checked. At lower Z, where breaking of local inversion

FIG. 3. Vibrational density of states D(ω) calculated for the RN
glass (solid line) and for the randomly-cut FCC crystal (dotted line),
for four different values of atomic connectivity Z = 6,7,8,9. The
solid arrow indicates the approximate position of the boson peak
frequency, ωBP, while the dashed arrow indicates the position of the
lowest van Hove peak, ωVH. For Z = 6, ωBP ≈ 0. The low-energy
part of the spectrum, including the boson peak, appears practically
identical for the RN glass and for the randomly cut FCC crystal.

symmetry becomes important, the Debye regime shrinks and
the boson peak becomes more prominent. Both spectra are
quite similar to those of harmonic, stress-free random packings
[28]. We also verified that the boson peak frequency scales with
connectivity as ωBP ∼ (Z − 6).

The latter scaling can be explained in terms of the crossover
between the elastic-continuum regime (ballistic phonon prop-
agation) and the random-matrix-dominated regime (diffusive-
like propagation), as suggested in Ref. [9].

The most striking fact, in Figs. 3 and 4, is that the
low-frequency part of the spectrum, including the boson
peak, is practically identical for the RN glass and for the
randomly-cut FCC crystal. This is an important observation
which calls for a mechanistic explanation. The structural origin
of the boson peak in our system is unlikely to be linked
to spatial fluctuations of the local elastic modulus, because

FIG. 4. Vibrational density of states normalized by the Debye
behavior, D(ω)/ω2, for the same data of Fig. 3.
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the Z distribution is very narrow by construction, hence the
connectivity and the shear modulus are supposedly spatially
homogeneous. Furthermore, anharmonic effects, also invoked
in the past to explain the boson peak [16], obviously play no
role here because atoms, in our simulations, are connected by
strictly harmonic springs. One is then tempted to look for an
explanation based on microstructure. What is really puzzling,
however, is that the glass and the randomly-cut FCC crystal
display the same boson peak and low-frequency spectrum,
in spite of having widely different microscopic structure and
disorder. In the RN lattice, NN bonds can have any orientation
and the NN unit vector orientation is distributed nearly at
random (isotropically) in the solid angle (apart from some
weak correlations due to the self-organization of the network).
In the randomly cut FCC crystal, instead, the NN bonds,
basically with no exceptions, can have very few orientations
only, which are dictated by the crystallographic structure.

VII. ANALYSIS IN TERMS OF THE
BOND-ORIENTATIONAL ORDER PARAMETER

This important microstructural difference between the
glass and the randomly cut crystal becomes evident upon
quantifying the bond-orientational order in the two systems.
To this aim, we employ the standard bond-orientational order
parameter F6, which has been used many times on glasses and
defective crystals [12,13,29]. For each pair of NN atoms i and
j , one first defines the correlator of NN orientations,

S6(i,j ) =
∑6

m=−6 q6m(i)q∗
6m(j )∣∣∑6

m=−6 q6m(i)
∣∣∣∣∑6

m=−6 q6m(j )
∣∣ ,

where qlm(i) is the usual definition of the local bond-
orientational order parameter in terms of spherical harmonics
[12]. One then defines the local bond-orientational order
parameter as f6(i) = 1

Z(i)

∑
j �[S6(i,j ) − S0

6 ], where S0
6 is a

threshold equal to 0.7, as discussed in [29], while Z(i) is
the connectivity of atom i and � the Heaviside function. We
finally average f6(i) over all atoms in the system to obtain F6.
The latter parameter measures the degree of correlation among
bond orientations, or in simple words, how many bonds are
aligned along the same directions. Hence, F6 has its largest
value and is equal to 1 for crystal lattices where all bonds are
aligned along the crystallographic orientations.

We thus find F6 ≈ 1 for our randomly cut FCC crystal
under all conditions, as shown in Fig. 4. This was expected
from the fact that practically all surviving (nonsevered) bonds
in our randomly cut crystal are perfectly aligned with the
crystallographic directions, and thus have a very high degree
of correlation reflected in the F6 being close to 1. This is
different from other defective crystals like those studied in Ref.
[13], where bond-orientational disorder is important because,
e.g., interstitial atoms introduce bond-orientations which differ
from those prescribed by the crystal lattice. The fact that some
bonds are not oriented along the crystallographic axes leads, in
that case, to F6 values significantly below 1. We also calculated
F6 for our model RN glass, and in this case we find a much
smaller value, about 0.3, consistent with the large degree of
bond-orientational disorder in our RN glass. We thus face
the question of why such widely different degrees of bond-

orientational order, for glass and crystal, can coexist with the
same boson peak.

In effect, it appears that the microstructural mechanisms
proposed in the past to explain the boson peak, cannot be
responsible for the boson peak in our randomly cut FCC
crystal. We have already showed above that the key mechanism
which controls the softening of the shear modulus in disordered
solids is the local inversion-symmetry breaking which is active
in both the glass and the randomly cut crystal, see Fig. 1.
Within the nonaffine response formalism used in our analysis,
the nonaffine part of the modulus GNA is also closely related
to the density of states D(ω), and hence to the boson peak, via
Eq. (34) of Ref. [24]. This fact strongly supports the concept
we propose here that the local inversion-symmetry breaking is
directly related to the emergence of the boson peak. In order
to confirm this hypothesis, we shall now quantify the degree
of inversion-symmetry breaking in the two systems.

Bond-orientational disorder is known to play a role in the
glassy behavior of orientationally disordered organic crystals
[30,31]. It is important to notice, however, that, in those
systems, orientational disorder is also coupled to anisotropy of
the organic molecules. The combination of local orientational
disorder and molecular anisotropy leads to breaking the
local inversion symmetry, such that the same mechanism
of force-imbalance due to local inversion symmetry in the
affine positions (Fig. 1) and the ensuing nonaffine softening
must be important in those systems as well and should be
analysed quantitatively in future work. We thus believe that,
also in orientationally disordered crystals, inversion-symmetry
breaking, resulting from bond-orientational disorder coupled
to molecular anisotropy, can be identified as the source of soft
modes and boson peak behaviors.

VIII. A NEW ORDER PARAMETER FOR THE BOSON
PEAK BASED ON LOCAL INVERSION SYMMETRY

To this aim, we propose a new order parameter which,
unlike the standard F6, is sensitive to the degree of local
inversion-symmetry breaking of the lattice and we shall test
how it correlates with both the shear modulus and the boson
peak. A good starting point is the absolute value of the sum
of all nearest-neighbor force vectors (squared) in the affine
configuration (affine force vectors) |�|2, which is identically
zero for perfect centrosymmetric crystal lattices and has its
largest values for lattices where the local inversion symmetry
is completely absent. To measure the degree of symmetry
breaking independent of the direction of deformation, we
additionally sum over all possible Cartesian coordinate pairs
|�|2 ≡ ∑

α,β∈{x,y,z} |�αβ |2. The order parameter for local
inversion symmetry is thus defined as

FIS = 1 −
∑

α,β∈{x,y,z} |�αβ |2∑
α,β∈{x,y,z} |�αβ |2ISB

,

where | �αβ |2ISB indicates the limit in which inversion symme-
try is completely broken and there cannot be any correlations
whatsoever between bond orientations. For the latter case,

we found |�αβ |2ISB = κ2R2
0

∑
ij (nα

ijn
β

ij )
2
, a result derived in

Appendix C. Assuming that each lattice site has the same
coordination number Z, we can simplify the denominator
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FIG. 5. Crossover frequency ω∗ (which marks the start of the
linear regime in ω), and the boson peak frequency ωBP, both plotted
as a function of the average connectivity Z. The data points refer to
both random network and defective FCC systems, since both systems
have exactly the same values of ω∗ and ωBP. The dashed lines are
guides to the eye.

to
∑

α,β∈{x,y,z} |�αβ |2ISB = κ2R2
0NZ. Hence FIS = 1 for any

perfect centrosymmetric lattice, while FIS = 0 for the limiting
configuration at which the local breaking of inversion symme-
try is maximum.

The new FIS order parameter has a strong correlation
with the nonaffine part of the shear modulus, reflected
in the empirical relation GNA ∝ 〈| �i |2〉/Z ∝ (Z0 − Z)/Z0,
with Z0 = 12 for the FCC case, which we obtain from the
simulations. Importantly, the values of the IS order parameter
for both FCC and random network appear to be basically the
same in Fig. 5. This crucial observation lends further support
to the conclusion that the boson peak is controlled by inversion
symmetry and this is the only possible explanation to the fact
that the boson peak is exactly the same for FCC and RN
lattices.

The order parameter for local inversion symmetry, FIS,
is plotted in Fig. 6, in comparison with the standard bond-
orientational order parameter F6. It is seen that FIS displays

FIG. 6. Comparison between the inversion-symmetry order pa-
rameter (FIS) and the standard bond-orientational order parameter
(F6) for the RN glasses and for the randomly-cut FCC crystals as a
function of connectivity Z. There is a perfect collapse of FIS for the
two systems onto a master curve as a function of Z.

the linear trend with Z, which correlates well with both the Z

dependence of boson peak frequency, and with the nonaffine
shear softening, also linear in Z. Further, FIS displays very
similar values, for both the glass and the crystal, at any given
Z, which also appears consistent with the boson peaks being
the same for both systems in Figs. 3 and 4. No such correlation
is displayed by F6, which remains always constant with Z, and
has widely different values for the RN glass and the defective
crystal, in Fig. 6.

IX. ANALYSIS OF PHYSICAL PARAMETERS IN OUR
MODEL AND THEIR RELATION, OR LACK THEREOF, TO

THE BOSON PEAK

In our model system, there are very few physical parameters
at play. It is therefore possible to check for each of them
separately whether they correlate with the boson peak or not.

A. Density N/V

This parameter cannot control the boson peak. The density,
defined as N/V , i.e., the total number of atoms per unit
volume, is constant in all our simulations, and is constant with
Z. The connectivity Z is decreased not because we decrease
the number of atoms per unit volume, which remains always
the same, but because we cut bonds connecting atoms. This
fact proves that the density plays no role and does not affect
the boson peak.

B. Force constant κ

The value of force constant κ for our harmonic springs is
never varied in our simulations. Hence this parameter cannot
control the boson peak.

C. Lowest van Hove singularity

This parameter does not correlate with the boson peak
frequency either. We have added a dashed arrow in Fig. 3 to
mark the position of the lowest van Hove peak in the DOS. At
the highest Z considered, both van Hove peaks in our defective
FCC lattice are clearly visible, and they occur at the same
frequencies expected for the perfect FCC lattice (as one can
easily check). Upon decreasing Z, the boson peak develops,
and its frequency shifts to lower values. The van Hove peak,
instead, remains at the same frequency ωVH, which is a much
higher frequency (about three times higher) than the boson
peak frequency. As is shown in the inset of Fig. 5, ωVH remains
constant upon decreasing Z in our defective FCC crystal, hence
it does not correlate with the boson peak. Another important
observation which confirms that our boson peak is not due
to the van Hove singularity comes from the scaling of the
DOS at frequencies just above the boson peak. The scaling
is D(ω) = Aω + B in this regime, which means that the
eigenvalue distribution scales as ρ(λ) = (A/2) + (B/2)λ−1/2,
upon recalling the definition ω = λ2. Below the boson peak,
and for Z > 6, the behavior is instead D(ω) ∼ ω2, i.e. fully
consistent with Debye law. Upon approaching Z = 6, the
coefficient A vanishes and we reproduce the random-matrix
∼ λ−1/2 scaling found analytically in the Marcenko-Pastur
distribution. For z > 6 the Debye regime arises and alters
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this scaling. We can therefore conclude that the boson peak
shows properties of a crossover from phonon wave propagation
to a regime dominated by scattering and by random-matrix
eigenvalue statistics. A physical explanation for this may be
found in the fact that atoms which are no longer local centers
of inversion symmetry act as scattering centers for incoming
waves. The same type of crossover from Debye regime to
random-matrix behavior across the boson peak has been found
by Zamponi, Parisi, and coworkers for a mean-field model
of glasses [32]. For the crossover from ballistic phonons to
quasilocalized modes see also Ref. [9].

A further indication that the boson peak in our systems is of
a different nature from the van Hove singularity, comes from
the analysis of localization. Upon considering the plot of the
participation ratio of vibrational modes p(ω), reported in in
Appendix A below, it is evident that both the random network
and the defective FCC have localized or quasilocalized modes
at about the same frequency at which the boson peak is
observed. In particular, for Z = 7, both the random network
and the defective FCC have values of participation ratio
approaching zero near the boson peak. It is clear that such
a strong localization of vibrational modes at the boson peak
frequency is not compatible with an explanation based on
standard phonon physics and the van Hove singularity.

D. Connectivity Z and isostaticity

There is an obvious correlation between Z and the boson
peak (both the BP frequency and its amplitude), as there is also
an evident correlation between Z and the inversion-symmetry
order parameter FIS. However, we believe that the boson peak
depends on Z mainly because the boson peak depends on the
local inversion-symmetry, which in turn is controlled by Z

due to the bond-cutting method. The reason why we do not
believe that Z can be the ultimate cause of the boson peak is
that, if this was true, then we should observe a very strong
boson peak also in the simple cubic (SC) lattice which has
Z = 6, exactly. This is plainly impossible. In our systems
(random network and defective FCC) at Z = 6, there is no
trace left of Debye behavior (see our Fig. 3 above), while
there is a very strong boson peak at vanishing frequency,
ω → 0. Instead, in the nearest-neighbor SC lattice with Z = 6
there is obviously perfect Debye behavior and no trace of
boson peak; the dispersion relation for the SC lattice can be
calculated analytically which gives ω =

√
4(κ/m) sin2(q/2),

where q is the wave-vector. One should therefore conclude
that connectivity alone, or isostaticity [33,34], cannot explain
the boson peak because there is no boson peak in isostatic
structures such as the SC lattice with Z = 6.

E. Bond-orientational disorder

As discussed with reference to Fig. 6, bond-orientational
disorder does not correlate with the boson peak, as in fact
it remains constant while the boson peak and its frequency
change significantly.

F. Local inversion-symmetry breaking

This is the only physical parameter, which correlates
strongly with the boson peak and does not imply any paradox
or contradiction.

X. CONCLUSION

We have studied two numerical models of disordered
solids: a disordered glass with bond-orientational disorder
(F6 ≈ 0.3), and an FCC crystal with randomly-cut bonds
and perfect bond-orientational order (F6 ≈ 1). In spite of the
widely different bond-orientational disorder, the two systems
exhibit exactly the same boson peak and almost the same
nonaffine softening of the shear modulus. In particular, we
showed that in both cases the boson peak frequency and the
shear modulus display the same scaling with connectivity,
which correlates strongly with the degree of local inversion
symmetry. Since this observation in our system cannot be
explained based on other mechanisms invoked in previous
models, we arrived at the conclusion that the most likely
microscopic origin of both boson peak and nonaffinity resides
in the local inversion-symmetry breaking in the lattice, which
is very important for both the glass and the randomly cut
crystal. This conclusion is supported by a new order parameter
for centrosymmetry, which displays a strong correlation with
both the boson peak and the nonaffine modulus, for both the
glass and the crystal. Within this new framework, the boson
peak is caused by the scattering of vibrational modes on atoms
which are not local centers of symmetry; such scattering and
quasilocalization [8] events become important at nanometric
length scales (frequencies) comparable to the first coordination
shells, as shown in previous simulation studies [35]. Finally,
our analysis identifies new local structural signatures of soft
modes, which cannot be traced back to purely structural
quantities (e.g. the structure factor or bond-orientational order
parameters), yet they bear an important relation to dynamical
heterogeneities because local configurations lacking inversion
symmetry would be inherently unstable already under ther-
mal stresses, e.g., in supercooled liquids [37]. These local
mechanical instabilities could correlate with local regions of
dynamical activity. In future work it will be important to
ascertain the existence of quantitative correlations between
our proposed inversion-symmetry order parameter and the
dynamical activity order parameter used to quantify and map
dynamical heterogeneity and elastic heterogeneity [19,36]
at the glass transition in relation with soft modes [38,39].
This proposed shift in paradigm, and the proposed new order
parameter, can be used in future studies, with the aid of new
theoretical concepts [32], to arrive at a unified understanding
of amorphous materials, including advanced materials such as
metallic glasses [40,41].
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APPENDIX A: PARTICIPATION RATIO OF VIBRATIONAL
MODES

For the random network (RN) glass and the randomly
cut defective FCC crystals studied in this work, we also
calculated the participation ratio of vibrational modes, in
order to determine to which extent the modes are localized
or delocalized, as a function of frequency. The participation
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FIG. 7. Participation ratios calculated for the RN glass and
for the randomly-cut FCC crystal, for different values of average
connectivity Z.

ratio is defined as follows [10]:

p(ω) =
[
N

N∑
i=1

| ei |4 (ω)

]−1

. (A1)

In this expression, ei is the projection of the normalized eigen-
vector with frequency ω, onto atom i, or in other words, the
displacement on atom i belonging to the collective vibrational
mode ω. By construction, p(ω) = 1 for ballistic phonons,
while it is equal to zero for completely localized modes. The
participation ratio is plotted in Fig. 7 for the different values
of connectivity Z, for both RN glass and FCC crystal.

The qualitative behavior is very similar to the one observed
in simulations of random packings [10] and harmonic lattices
with spring-constant disorder [9]. In the low-frequency regime,
where the linear dispersion relation and the Debye law are
valid, the participation ratio is always large and very close
to 1, as expected for phonons. Then the participation ratio
goes through a minimum corresponding approximately to the
boson peak frequency, which is also close to the Ioffe-Regel
frequency at which the physics changes from phonons to
random-matrix transport. This frequency also corresponds to
the wave vector or length scale at which scattering of collective
vibrational modes due to local inversion-symmetry breaking
becomes important.

These scattering events cause the modes to become
quasilocalized [8], which is reflected in much lower values
of p(ω). The part of the spectrum just above the boson peak is
dominated by randomness, and by an eigenvalue distribution
characterized by the scaling ρ(λ) ∼ λ1/2, typical of random-
matrix models [32]. Finally, at the highest frequencies of the
spectrum, close to the Debye frequency, the participation ratio
approaches zero for Anderson-localized modes.

APPENDIX B: ORDER PARAMETER FOR
INVERSION-SYMMETRY BREAKING

We present here a derivation of the analytical expression
for the inversion-symmetry order parameter FIS for the case

of defective FCC crystals with randomly depleted bonds. We
start from a generic defective FCC system with a distribution
of bond angles θ and φ, which define the orientation of a bond
unit vector nij = (cos φ sin θ, sin φ sin θ, cos θ ) between two
atoms i and j . In the framework of the affine force field, for
every bond vector nij there exists a vector nji = −nij with the
same probability ρ(θ,φ) in the solid angle. We now write the
general expression of the total affine force field |�|2, as

|�|2 = κ2R2
0

∑
i

∑
α

⎛
⎝∑

j nn i

nα
ijn

x
ij n

y

ij

⎞
⎠

2

, (B1)

where α = x,y,z are the Cartesian coordinates. We can carry
out those sums and regroup the terms to get

|�|2 = κ2R2
0

⎛
⎝∑

ij

(
nx

ijn
y

ij

)2

+
∑

i

∑
k,l nn i

(nik · nil)(nik · nil)
x(nik · nil)

y

⎞
⎠. (B2)

Now we implement the difference between the most asym-
metric configuration where inversion symmetry is completely
broken, which we call the ISB, and any other configuration
that we want to calculate the order parameter for, such as, e.g.,
a defective FCC crystal.

If there are no constraints whatsoever on the angular
correlations between bonds connecting to the same atom i

the center of a unit cell, the second term in (B2) is zero.
We can explain this by the fact that, as mentioned above,
the probability to have any bond vector according to a given
angular distribution is equal to the probability to have the
negative of this vector (same orientation, opposite direction).
In the framework of the scalar product, this means that, for the
probability of the quantity in the second right-most sum in Eq.
(B2), the following equality must hold:

ρ((nik · nil)(nik · nil)
x(nik · nil)

y)

= ρ( − (nik · nil)(nik · nil)
x(nik · nil)

y)

−→ 〈
(nik · nil)(nik · nil)

x(nik · nil)
y
〉 = 0, (B3)

where the averaging denotes the isotropic angular averaging
〈. . . 〉 = ∫

. . . 1
4π

sin θdθdφ. In a hard sphere system, one
has the constraint that nik · nil < 0.5, since two bonds both
connected to the same atom i cannot have an angle smaller that
π/3 (ultimately due to excluded volume). This constraint shifts
the average in (B3) from zero to a negative value and lowers
the final value of |�|2. This is so because the excluded volume
correlations raise the average degree of inversion symmetry in
the system with respect to a system where the excluded volume
constraint on the angles the bonds is absent. In a system where
no correlations exist between bond orientations such that the
breaking of inversion symmetry is maximum and the local
bond orientations are completely asymmetric, the only term
which remains in the expression of |�|2 is

|�|2ISB = κ2R2
0

∑
ij

(
nx

ijn
y

ij

)2
. (B4)
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Therefore our order parameter becomes

FIS = 1 − |�|2
κ2R2

0

∑
ij

(
nx

ijn
y

ij

)2 . (B5)

This expression can be easily evaluated numerically for
different lattices and provides the correctly normalized limit
used in the main article to plot FIS for both the FCC crystal
and the RN lattice as a function of Z.

APPENDIX C: ANALYTICAL EXPRESSION FOR THE FIS

ORDER PARAMETER FOR DEFECTIVE FCC CRYSTALS

We will now derive the analytical value for the affine force
field of the depleted FCC lattice in order to get an analytical
expression for FIS. To this aim, we have to calculate |�αβ |2 =
|�x

αβ |2 + |�y

αβ |2 + |�z
αβ |2 for the two cases α = β and α �= β.

We start with the general definition of the affine force field on
a generic atom i:

�
γ

αβ,i = −R0κ
∑

j

nc
ij n

α
ijn

β

ij , (C1)

where α,β,γ are Carthesian directions. Since no Carthesian
direction or plane is in any way special, we can pick one
example for each of the two cases. So we explicitly calculate
|�xx |2 and |�xy |2. In the first case, the x component of the
affine force field is

∣∣�x
xx

∣∣2 = R2
0κ

2N

8∑
i=0

i∑
j=0

(2j − i)2

8

(4
j

)( 4
i−j

)( 4
Z−i

)
(12

Z

)
= R2

0κ
2N

Z(12 − Z)

132
. (C2)

Here, N is the number of particles in the system. In the x

component, we have eight allowed bond orientations that can
contribute to the affine force field �xx . Out of a given value of
Z bonds in the unit cell, only i contribute in the x direction. j

out of those i-contributing bonds give a positive contribution
in the sum of (C1), thus (i − j ) give a negative contribution to
the sum. The absolute value of the sum is then [j − (i − j )]
times the value that each bond contributes, which is R0κ/2

√
2.

Since we want to calculate the absolute square of the affine
force field, we have to consider the square of this value, which
gives R2

0κ
2/8. For the y and z components, we get similar

expressions with the difference that now only four bonds
contribute, in each of these two directions. for example, for

the y component, we get

∣∣�y
xx

∣∣2 = R2
0κ

2N

4∑
i=0

i∑
j=0

(2j − i)2

8

(2
j

)( 2
i−j

)( 8
Z−i

)
(12

Z

)
= r2

0 κ2N
Z(12 − Z)

264
, (C3)

and we get exactly the same for the z component. Now we just
sum up the x, y, and z components to get

|�xx |2 = ∣∣�x
xx

∣∣2 + ∣∣�y
xx

∣∣2 + ∣∣�z
xx

∣∣2 = R2
0κ

2N
Z(12 − Z)

66
.

(C4)

We can use these results to easily calculate |�xy |2. The x and
y components are equal to the y and z components of (C4), as
they correspond to a sum in which two of the indexes α,β,γ

in (C1) are equal while one is different. This means that we
have four contributing bonds and can apply Eq. (C3). The
z component is 0, since any product of the three different
components of the each unit bond vector vanishes in this
system. So we get

|�xy |2 = ∣∣�x
xy

∣∣2 + ∣∣�y
xy

∣∣2 + ∣∣�z
xy

∣∣2 = ∣∣�y
xx

∣∣2 + ∣∣�z
xx

∣∣2 + 0

= R2
0κ

2N
Z(12 − Z)

132
. (C5)

Now we can calculate∑
α,β=x,y,z

|�αβ |2 = |�xx |2 + |�xy |2 + |�yx |2

+|�yy |2 + |�yz|2 + |�zy |2

+|�zz|2 + |�zx |2 + |�xz|2

= R2
0κ

2N
Z(12 − Z)

11
. (C6)

If we insert this into Eq. (6) of this appendix upon evaluating
the denominator in mean-field approximation, the expression
FIS = 1 − ∑

α,β |�αβ |2/R2
0κ

2NZ leads to the following sim-
ple analytical relation:

FIS = 1 −
∑

α,β |�αβ |2
R2

0κ
2NZ

= 1 − 12 − Z

11
= Z − 1

11
. (C7)

This situation, where FIS = 0 and Z = 1 could be achieved for
example in a liquid where most nearest-neighbors are short-
lived and highly fluctuating, and only one mechanical bond,
on average per atom, is active.
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