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Spectral correlations in finite-size Anderson insulators
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We investigate spectral correlations in quasi-one-dimensional Anderson insulators with broken time-reversal
symmetry. While energy levels are uncorrelated in the thermodynamic limit of infinite wire length, some
correlations remain in finite-size Anderson insulators. Asymptotic behaviors of level-level correlations in these
systems are known in the large- and small-frequency limits, corresponding to the regime of classical diffusive
dynamics and the deep quantum regime of strong Anderson localization. Employing nonperturbative methods and
a mapping to the Coulomb-scattering problem, recently introduced by M. A. Skvortsov and P. M. Ostrovsky [JETP
Lett. 85, 72 (2007)], we derive a closed analytical expression for the spectral statistics in the classical-to-quantum
region bridging the known asymptotic behaviors. We further discuss how Poisson statistics at large energies
develop into Wigner-Dyson statistics as the wire-length decreases.
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I. INTRODUCTION

The spectral statistics of a quantum-mechanical system
gives interesting insight into its dynamics. It is, for exam-
ple, common to uncover integrable or chaotic dynamics by
establishing Poisson or Wigner-Dyson statistics in the spacing
of energy levels [1]. Universal spectral properties typically
emerge if certain scaling limits are applied. It seems less
appreciated that it is sometimes the nonuniversal corrections
which store more interesting information.

Low-dimensional, disordered systems of noninteracting
particles are a prominent example of such a situation. At
large length scales the quantum dynamics in such systems
is dominated by strong Anderson localization. Eigenstates
then occupy a negligible fraction of the total system’s volume,
and universal Poisson statistics applies in the thermodynamic
limit. It predicts the absence of correlations in disorder
averages 〈· · · 〉 of the global density of states ν at different

energies, 〈ν(ε)ν(ε + ω)〉 L→∞→ 〈ν(ε)〉〈ν(ε + ω)〉. In any finite-
size Anderson insulator the situation is more interesting.
Nonuniversal correlations survive and give information about
the system’s quantum-mechanical dynamics.

Correlations of close-by levels store information on the
deep quantum regime establishing in the long-time limit. The
accumulation of quantum interference processes fully local-
izes particles at large time scales. The remaining dynamical
processes are tunneling events between almost degenerate,
far-distant eigenstates [2–5]. Mott’s picture of resonant levels
gives an intuitive explanation for the spectral correlations
in this deep quantum regime: The hybridization � between
distant localized states decays exponentially on the localization
length ξ . For a given level separation ω there is thus a
distance, the Mott scale lω, above which � falls below ω.
Levels separated by energies larger than ω are uncorre-
lated. Consequently, in a d-dimensional Anderson insulator

〈ν(ε)ν(ε + ω)〉 L�ξ→ [1 − αd (lω/L)d ]〈ν(ε)〉〈ν(ε + ω)〉, and the
connected correlation function of nearby levels is proportional
to a power of the Mott scale, 〈ν(ε)ν(ε + ω)〉con. = αd (lω/L)d ,
where αd is some numerical factor.

Correlations at large level separation ω, on the other
hand, give information on the dynamics on short time scales.
Quantum interference processes in the short-time limit remain

largely undeveloped, and spectral correlations of far-distant
levels reflect classical diffusion.

The classical-to-quantum crossover of spectral correlations
in finite-size Anderson insulators is unexplored. Evidently,
this is because the strongly localized regime presents the
strong-coupling limit of the underlying effective field theory
for disordered systems [6,7] whose analysis is challenging.
The situation is similar to that previously encountered in
fully ergodic chaotic systems. Early on, it was conjectured
that the classical-to-quantum crossover of spectral correlations
in chaotic systems follows Wigner-Dyson statistics [8]. A
proof of this “Bohigas-Giannoni-Schmit conjecture,” however,
turned out challenging. The reason is similar to that in
Anderson insulators: arbitrary orders of quantum interference
processes have to be taken into account to describe how
classical correlations at large energies [9] evolve into avoided
crossings at small energies. In chaotic systems this requires
the summation of infinite numbers of periodic orbits and their
encounters. Progress in this direction has been achieved only
recently [10–12].

In the present paper we address the classical-to-quantum
crossover in the spectral correlations of finite-size Anderson
insulators. Concentrating on quasi-one-dimensional wires
belonging to the unitary symmetry class, we derive a closed
analytical expression for the connected level-level correlation
function,

K(L,ω) = 〈ν(ε)ν(ε + ω)〉
〈ν(ε)〉〈ν(ε + ω)〉 − 1. (1)

Our result is valid at arbitrary level-separations ω and
thus bridges the known asymptotic behaviors of correlations
between close-by and far-distant levels.

The outline of the paper is as follows. Section II reviews
the known asymptotic behaviors of the level-level correlation
function in the classical and deep quantum regimes. In
Sec. III we state our main result, i.e., spectral statistics in the
classical-to-quantum crossover region, and explain in detail
its derivation. In Sec. IV we present some results for the
Poisson-to-Wigner-Dyson crossover of level statistics with
decreasing wire length. Section V summarizes our results.
Several technical details are delegated to the appendixes.
Throughout the paper we set � = 1.
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FIG. 1. Spectral correlations in a finite-size Anderson insulator,
Eqs. (8) and (9). For reference we also show previously known
limits (dashed lines), i.e., K(L,ω) = −(4ξ/L)(�ξ/2ω)3/2 at large
frequencies and K(L,ω) = −(8ξ/L)[log (�ξ/ω) − 2γ ] at small fre-
quencies [see Eq. (10)]. Inset: Feynman diagram accounting for
Altshuler-Shklovskii correlations [Eq. (2)]; dashed lines represent
classical diffusion modes.

II. CLASSICAL AND DEEP QUANTUM REGIMES

In this section we briefly review known asymptotic be-
haviors of the level-level correlation function in Anderson
insulators L � ξ .

At short time scales quantum interference processes are
largely undeveloped. The dynamics is not affected by weak
localization corrections and remains classically diffusive. The
leading level-level correlation function, Eq. (1), in this classical
regime was derived by Altshuler and Shklovskii three decades
ago [13]. Using diagrammatic perturbation theory they found
for a quasi-one-dimensional geometry

K(ω) ∝ − ξ

L

(
�ξ

ω

)3/2

, ω � �ξ . (2)

Here we introduce the localization length ξ = 2πνDS, the
level spacing in a localization volume �ξ = (2πνSξ )−1, and
ν is the average density of states. S is the wire cross section,
and D = v2

F τ denotes the diffusion constant, with vF being
the Fermi velocity and τ being the elastic scattering time. The
relevant diagram is shown in the inset of Fig. 1. Noting that
it contains two classical diffusion modes D(q,ω) ∝ 1/(q2 +
iω), the ω dependence of Eq. (2) is readily understood from
simple power counting

∫
√

ω
dq/q4 ∼ ω−3/2.

Equation (2) gives the leading contribution in the small
parameter �ξ/ω. Corrections of higher orders O(�ξ/ω) store
information on quantum interference processes. These start to
become relevant on time scales exceeding the classical regime
t 
 1/�ξ . In the nonclassical regime diffusion slows down
due to weakly localizing quantum interference processes.
Accumulation of these processes modifies classical diffusion,
and localization eventually becomes strong as one approaches
the Heisenberg time t ∼ 1/�ξ .

In the strongly Anderson localized regime t � 1/�ξ

classical diffusion is stopped completely. The remaining
dynamical processes in this deep quantum regime are probed
by correlations of close-by levels ω 
 �ξ . Correlation func-
tion (1) at small level separations shows logarithmic level

repulsion [5,14],

K(ω) ∝ − ξ

L
log(�ξ/ω), ω 
 �ξ . (3)

Equation (3) neglects corrections smaller than O(ω/�ξ ) and is
understood within Mott’s picture of resonant levels [4] already
mentioned in the Introduction. Indeed, correlations of nearby
levels are due to tunneling events between almost degenerate
states at a distance of the Mott scale. The physics is captured
by the two-level Hamiltonian [5,14]

H (ε,δε,x) =
(

ε + δε �(x)
�(x) ε − δε

)
, (4)

where the hybridization �(x) ≈ �ξe
−x/ξ accounts for a finite

overlap of wave functions centered at distances ξ � x < L

(see also Fig. 1). Here ε and δε are the mean level and level
splitting, respectively, which for simplicity are both assumed
uniformly distributed. Correlation function (1) for the simple
model (4) reads

K(L,ω) + 1 =
∫ L

ξ

dx

L

〈
δ

(
ω −

√
δε2 + �2

ξ e
− 2x

ξ

)〉
δε

, (5)

where the average 〈· · · 〉δε is over the level splitting. For close-
by levels (i.e., ω smaller than the support of the distribution
of δε) integral equation (5) receives its finite contributions
from distances x � 
ω ≡ −2ξ ln(�ξ/ω), larger than the Mott
scale. Subtracting the uncorrelated contribution to the level
correlation function, one finds K(L,ω 
 �ξ ) ∝ 
ω/L. That
is, level correlations are proportional to the configuration
space volume for which hybridization between localized
wave functions is strong enough to result in noticeable level
repulsion.

The asymptotic behaviors of the level-level correlation
function at large and small level separations, Eqs. (2) and (3),
have been well established for decades [13,14]. The correlation
function bridging the classical and deep quantum regimes is
unknown. In the next section we derive a closed analytical
expression for the latter.

III. CLASSICAL-TO-QUANTUM CROSSOVER

We next present our main result, i.e., the level-level
correlation function (1) in a quasi-one-dimensional Anderson
insulator. We then proceed with a detailed derivation of
our result. In Sec. III B we introduce the relevant field
theory. Section III C discusses a mapping from the Anderson
localization problem to a Coulomb-scattering problem.

A. Results

We start out with a compact representation of the level-
correlation function (1) in terms of the Green’s function for
the Coulomb-scattering problem,

K(L,ω) = −2πξ

L
Re lim

r→r0

∂2
κG0(r,r0), (6)

applicable for quasi-one-dimensional Anderson insulators,
L � ξ , within the unitary symmetry class. Its derivation is
given in the next sections, where we also introduce the Green’s
function G0 for the nonrelativistic 3d Coulomb problem [15].
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A general closed-form expression of the latter was derived by
Hostler half a century ago [16,17],

G0(r,r′) = (∂u − ∂v)
√

uK1(2
√

κu)
√

vI1(2
√

κv)

2π |r − r′| . (7)

Here we have introduced u = r + r ′ + |r − r′|, v = r + r ′ −
|r − r′|, and Km and Im are Bessel functions of the first kind.
Inserting the above Green’s function (7) into Eq. (6) gives
the level-level correlation function in a finite-size Anderson
insulator,

K(L,ω) = −16ξ

L
ReK(4ω/i�ξ ), (8)

where

K(z) = 2∂zK0(
√

z)I0(
√

z)

= (1/
√

z)[K0(
√

z)I1(
√

z) − K1(
√

z)I0(
√

z)]. (9)

Equations (8) and (9) are the main result of this paper.
They describe how the Altshuler-Shklovskii correlations in
the classical regime evolve into logarithmic level repulsion
in the deep quantum regime. Poisson statistics only applies
in the thermodynamic limit where the residual correlations in
Anderson insulators vanish, K(L → ∞,ω) = 0. From Eq. (9)
we readily extract the asymptotic correlations of far-distant
and close-by levels [18],

K(L,ω) = −4ξ

L

⎧⎨
⎩

(�ξ

2ω

) 3
2 + 3

32

(�ξ

2ω

) 5
2 + · · · , ω � �ξ,

2 log
(�ξ

ω

) − 4γ + 3πω
2�ξ

+ · · · , ω 
 �ξ .

(10)

Here γ � 0.577 is the Euler-Mascheroni constant. The spec-
tral correlation function, Eqs. (8) and (9), is shown in Fig. 1.
For reference we also display the previously known asymptotic
behaviors.

B. Field theory

Our derivation of representation (6) starts with a field-
theory description of the level-level correlation function [6,14],

K(L,ω) = −Re

32

∫ L

0
dx

∫ L

0
dx ′ 〈P+[Q(x)]P−[Q(x ′)]〉Q,

(11)
P±[Q] = str[(Q − �)(1 ± �)k].

Here the average is with respect to the diffusive nonlinear
σ -model action introduced below,

〈· · · 〉Q =
∫

DQeSσ [Q]. (12)

Integration
∫
DQ is over 4 × 4 supermatrices Q(x) =

{Qαα′
ss ′ (x)} from the supergroup U (1,1|2) obeying the nonlinear

constraint Q2(x) = 1. Diagonal 2 × 2 top left and bottom
right matrix blocks Qbb and Qff , respectively, contain complex
numbers. The off-diagonal blocks Qbf,fb consist of Grassmann
variables. The subscript indices Qss ′ , s,s ′ = ±, discriminate
between “retarded” and “advanced” components of the matrix
field. The c-number content of the Q-field manifold reduces to
the direct product of the hyperboloid U (1,1)/[U (1) × U (1)]
in the bb block and the sphere U (2)/[U (1) × U (1)] in the

ff block. It is parametrized by noncompact and compact
variables, 1 � λbb and −1 � λff � 1, respectively. The matrix
� = {s δss ′ } is the identity matrix in boson-fermion space
but breaks symmetry in advanced-retarded space. k = �σ bf

3
is a diagonal matrix with σ bf

3 also breaking symmetry in
boson-fermion space, and ‘str’ is the generalization of the
matrix trace to graded space.

The diffusive nonlinear σ -model action reads [6,7]

Sσ [Q] = −πνS

4

∫
dx str[2iωQ� + D(∂xQ)2]. (13)

It is the low-energy effective field theory for Anderson
localization, here for a quasi-one-dimensional geometry and
in the presence of a weak time-reversal symmetry-breaking
vector potential. We refer, for a derivation of action (13),
to Refs. [6,7] and here point out its structural similarity
to the Hamilton function of a classical ferromagnet in an
external magnetic field. The latter breaks rotational invariance
of the exchange interaction, and a similar role is played by
the potential V (Q) ∼ str(Q�) in the σ -model action. V (Q)
breaks the invariance of the kinetic term K(Q) ∼ str([∂xQ]2)
under general rotations U (1,1|2). The strength of symmetry
breaking is given by the level separation ω. Energies ω � �ξ

larger than the level spacing imply strong symmetry breaking.
Q fields are then pinned to the mean-field �, and small fluctu-
ations can be accounted for perturbatively. A straightforward
perturbative expansion at large energies gives the leading
correlation function K(ω � �ξ ) ∝ ω−3/2 discussed in the
previous section. Once ω � �ξ falls below the level spacing,
fluctuations become large, acting to restore the full symmetry
of the kinetic term. A direct integration of Eq. (11) is hindered
by the presence of the rotational symmetry-breaking potential
V (Q). Nonperturbative methods, discussed below, have to be
applied to address the low-energy correlations ω � �ξ .

C. Nonperturbative solution

We next derive the alternative representation of the corre-
lation function (11) in terms of the Green’s function for the
Coulomb-scattering problem [15]. To this end we recall that
one can map the integral (11) to a set of equivalent differential
equations [6,19]. Indeed, identifying Q with the coordinate of
a multidimensional quantum particle and the wire coordinate
with time, Eq. (13) reads as the Feynman path integral of
a particle with kinetic energy K(Q) moving in the potential
V (Q). Alternatively to calculating the path integral, one can
solve the corresponding “Schrödinger equation,” known as
transfer-matrix equations.

Similar to a radial potential in quantum mechanics, the
high degree of symmetry of the potential (V is invariant under
similarity transformations of Q, leaving � invariant) reduces
the effective dimensionality of the problem. As detailed in
Appendix A, correlation function (11) reduces to an integral
over the c-number variables λbb and λff . The integrand is
expressed in terms of a ground- and an excited-state wave
function of the underlying Schrödinger equation. As the
Laplace operator on the Q-matrix manifold has a rather
complex structure, closed solutions of the latter are not
available.
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Progress in this direction has been made in a recent work by
Skvortsov and Ostrovsky [15]. There the authors elaborate on
a connection between localization in quasi-one-dimensional
systems within the unitary class to scattering in a Coulomb
potential. Changing from angle to “Coulomb” coordinates,

λff = (r − r1)/2, λbb = (r + r1)/2, (14)

a major simplification occurs when the latter are understood
as elliptic coordinates of a three-dimensional problem with
cylindrical symmetry,

r =
√

z2 + ρ2, r1 =
√

(z − 2)2 + ρ2. (15)

Here (ρ,ϕ,z) are the usual cylindrical coordinates. Following
the outlined procedure (and leaving details to Appendix B) the
correlation function (11) becomes

K(L,ω) = ξ 2Re

2πL2

∫ L
ξ

0
dt ′

∫
dr
r

�0(r,L/ξ − t ′)�1(r,t ′),

(16)

where �0 and �1 are the ground- and excited-state wave
functions, respectively. The latter are solutions of the following
transfer-matrix equations in Coulomb coordinates,

(
1

r1r
∂t − ∂2

r + 2κ

r

)
�0(r,t) = 0, (17)

(
1

r1r
∂t − ∂2

r + 2κ

r

)
�1(r,t) = 1

r
�0(r,t). (18)

Here ∂r is the three-dimensional Laplace operator, κ =
ω/(4i�ξ ), and t = x/ξ . Equations (17) and (18) are sup-
plemented by the boundary conditions �0(r,0) = 1/r1 and
�1(r,0) = 0. In the strongly localized regime of interest,
homogeneous solutions of the transfer-matrix equations give
the leading contribution to Eq. (16). Indeed, inhomogeneous
solutions decay exponentially from the boundaries, and their
contributions to the integral (16) can be neglected for L � ξ .
Dropping t dependencies of the wave functions, Eqs. (17)
and (18) become spherically symmetric. The corresponding
boundary conditions read �0(r0) = 1/r1 and �1(r0) = 0, with
r0 = (0,0,2)t . The reduction to a problem of a higher degree of
symmetry is a key simplification which allows for an analytical
calculation of (16) to leading order in the small parameter ξ/L.

Following Ref. [15], we introduce the zero-energy Green’s
function for the nonrelativistic 3d Coulomb problem,(

∂2
r − 2κ

r

)
G0(r,r′) = δ(r − r′). (19)

Imposing the usual boundary condition G0(r,r′)
r→r′�→ δ(r −

r′), the homogeneous solution to Eq. (17) with the required
boundary condition affords the representation [15]

�0(r) = −4πG0(r,r0). (20)

Similarly, it is verified that the convolution

�1(r) = −
∫

dr′

r ′ G0(r,r′)�0(r′) (21)

is a t-independent solution of Eq. (18) with the required
boundary condition. Inserting solutions (20) and (21) into (16),

one confirms that [20]

K(L,ω) = −8πξ

L
Re

∫
dr

∫
dr′ G0(r0,r)

×1

r
G0(r,r′)

1

r ′ G0(r′,r0)

= −2πξ

L
Re lim

r→r0

∂2
κG0(r,r0). (22)

This completes our derivation of the spectral correlation
function (1) in terms of the Green’s function for the Coulomb-
scattering problem.

IV. FROM POISSON TO WIGNER-DYSON STATISTICS

We next address how spectral correlations in a finite-size
Anderson insulator turn into Wigner-Dyson correlations as
the wire length is reduced. We recall that in the fully ergodic
quantum dot limit level correlations follow Wigner-Dyson
statistics K(L → 0,ω) = −(�/ωπ )2 sin2 (ωπ/�). Here � =
(νSL)−1 is the level spacing of the wire of length L. Noting that
�/�ξ ∼ ξ/L, one can thus study how Altshuler-Shklovskii
correlations at ω � �ξ evolve into Wigner-Dyson correlations
as the wire length decreases.

Correlations at arbitrary ratios L/ξ can be derived from
the inhomogeneous transfer-matrix equations (17) and (18).
For levels separated by ω � �ξ the potential V pins the
wave functions to the region r1 
 1 enforced by the boundary
conditions. We can thus approximate for the ground-state wave
function (

1

2r1
∂t − ∂2

r + κ

)
�0(r,t) = 0. (23)

The radial symmetry of Eq. (23) substantially simplifies the
problem. Starting out from the ansatz �(r,t) = e−F (κ,t)r1/r1

the function F satisfies ∂tF + 2F 2 − 2κ = 0. Employing the
boundary condition F (κ,0) = 0, one then finds

�0(r,t) = 1

r1
e−√

κ tanh(2
√

κt)r1 . (24)

Equation (24) interpolates between the known limits at small
and large ratios L/ξ . Indeed, tanh(2

√
κt) approximates to

1 and 2
√

κt for ω/� much larger and smaller than ξ/L,
respectively. This reflects the typical decaying and oscillating
behaviors of the ground-state wave function in the two limits.
A similar calculation, detailed in Appendix C, gives for the
level-level correlation function

K(L,ω) = �ξ Im

πL

∫ L
ξ

0
dt ′ (1 − e−H−1(ω/i�ξ ,L/ξ,t ′))

×∂ωH (ω/i�ξ ,L/ξ,t ′), (25)

with

H (z,t,t ′) = cosh(
√

zt ′) cosh (
√

z(t ′ − t))√
z sinh(

√
zt)

. (26)

We emphasize that Eqs. (25) and (26) hold for ω � �ξ and
arbitrary ratios L/ξ .

The analytical result (25) and (26) is displayed in Fig. 2. It
shows how the Altshuler-Shklovskii correlations in long wires
evolve into the Wigner-Dyson correlations as one approaches
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,ω
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Altshuler-Shklovskii

FIG. 2. Level-level correlations [Eqs. (25) and (26)] for different
ratios L/ξ in the Poisson-to-Wigner-Dyson crossover region. For
comparison we also show Wigner-Dyson and Althsuler-Shklovskii
correlations (dashed and dash-dotted lines).

the quantum-dot limit. Unfortunately, we do not know the
corresponding result for correlations between levels separated
by ω � �ξ . The transfer-matrix equations in the Poisson-to-
Wigner-Dyson crossover region then lack rotational symmetry,
and we were not able to find analytical solutions.

V. SUMMARY AND DISCUSSION

In this paper we have derived the leading level-level
correlations in quasi-one-dimensional Anderson insulators
with broken time-reversal symmetry. While energy levels are
uncorrelated in the thermodynamic limit correlations remain
in finite-size Anderson insulators.

The correlations of far-distant and nearby levels reflect the
dynamics in the classical diffusive regime and the deep quan-
tum regime of strong Anderson localization. They have been
well established for decades [13,14]. This paper discusses the
previously unknown correlations at arbitrary level separations.
Specifically, our result describes how Altshuler-Shklovskii
correlations at large separations turn into logarithmic level
repulsion at small separations. Only in the limit of infinite wire
length do the correlations vanish, in accordance with universal
Poisson statistics expected in the nonergodic system.

We further discuss how Altshuler-Shklovskii correlations
in Anderson insulators turn into Wigner-Dyson correlations
with decreasing wire length. A corresponding analysis for
correlations between close-by levels remains an open problem.

Finally, we would like to put our results into the context
of previous works. Spectral correlations of quasi-one-
dimensional disordered systems in the Wigner-Dyson-to-
Poisson crossover have been addressed in Ref. [14]. From
numerical solutions of the relevant transfer-matrix equations
a qualitative understanding of the level-level correlation
function in the Wigner-Dyson-to-Poisson crossover was ob-
tained. Local correlations in the density of states within a
localization volume were derived in Ref. [15]. The authors
find the exact ground-state wave function of the homogeneous
transfer-matrix equation by mapping the equation to the
Coulomb-scattering problem. It is shown that correlations of
different eigenfunctions are different in quasi- and strictly
one-dimensional geometries [3]. Correlation functions for the

global density of states (discussed in this work) and the
local density of states (discussed in Ref. [15]) both have
representations in terms of the Coulomb Green’s function.
A similar relation has been observed in Ref. [21] in the
context of parametric correlations, where it was connected to a
symmetry in the σ model. Reference [22] derives a perturbative
expansion for the local density of states correlation function
at small frequencies. Its general expression, e.g., reproduces
statistics of single localized wave functions and predicts
reentrant behavior at the Mott scale (similar to that in strictly
1d chains [3]). It would be interesting to investigate how the
findings reported in the present work are obtained within this
approach. Furthermore, extensions of the discussed results to
other symmetry classes remain an open problem.
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APPENDIX A: TRANSFER-MATRIX EQUATIONS

For self-consistency we state the level-level correlation
function in a quasi-one-dimensional wire. In the unitary
symmetry class the latter depends on the c-number variables
λbb, λff . Following Refs. [6,14,19], one finds

K(L,ω) = ξ 2

L2
Re

∫ L
ξ

0
dt ′

∫ ∞

1
dλ1

∫ 1

−1

dλ

λ1 − λ

×�0(λ1,λ,L/ξ − t ′)�1(λ1,λ,t ′). (A1)

For notational convenience we here introduce λbb ≡ λ1 and
λff ≡ λ, and �0 and �1 are the ground-state and excited-state
wave functions, respectively. The latter follows the transfer-
matrix equations

(∂t + 2Ĥ0)�0(λ1,λ,t) = 0, (A2)

(∂t + 2Ĥ0)�1(λ1,λ,t) = (λ1 − λ)�0(λ1,λ,t), (A3)

where we introduced t = x/ξ . The Hamilton operator reads
Ĥ0 = �Q + V̂ , where

�Q = − (λ1 − λ)2

2

(
∂λ

1 − λ2

(λ1 − λ)2
∂λ + ∂λ1

λ2
1 − 1

(λ1 − λ)2
∂λ1

)

(A4)

is the Laplace operator on the Q-field manifold and

V̂ = − iω

4�ξ

(λ1 − λ) (A5)

is the symmetry-breaking potential. The above equations
should be solved with boundary conditions for an open wire,

�0(λ1,λ,0) = 1, �1(λ1,λ,0) = 0. (A6)
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APPENDIX B: CYLINDRICAL COORDINATES

Employing elliptic coordinates (λbb ≡ λ1, λff ≡ λ)

λ = (r − r1)/2, λ1 = (r + r1)/2, (B1)

r =
√

z2 + ρ2, r1 =
√

(z − 2)2 + ρ2, (B2)

the Hamilton operator takes the form

Ĥ0 = − r2
1 r

2

[
∂2
z + ∂2

ρ + 1

ρ
∂ρ + iω

2�ξr

]
1

r1
. (B3)

Notice that the differential operator is the usual Laplacian
in cylindrical coordinates (ρ,ϕ,z), acting on cylindrical
symmetric functions.

It is then convenient to make the ansatz �i = r1�i and
to express the corresponding Schrödinger equations in three-
dimensional coordinates

(
∂t − r1r∂

2
r + 2r1κ

)
�0(r,t) = 0, (B4)

(
∂t − r1r∂

2
r + 2r1κ

)
�1(r,t) = r1�0(r,t). (B5)

Here κ = ω/(4i�ξ ), and we recall that the boundary condi-
tions read �0(r,0) = 1/r1 and �1(r,0) = 0. The integration
measure transforms into the three-dimensional volume ele-
ment of cylindrical symmetric functions,

dλ ∧ dλ1 = ρ

rr1
dz ∧ dρ �→ dr

2πrr1
, (B6)

where dr = dz ∧ ρdρ ∧ dϕ. The level-level correlation func-
tion thus takes the form

K(L,ω) = ξ 2Re

2πL2

∫ L
ξ

0
dt ′

∫
dr
r

�0(r,L/ξ − t ′)�1(r,t ′).

(B7)

APPENDIX C: POISSON-TO-WIGNER-DYSON
CROSSOVER

Level-level correlations in systems of arbitrary ratios L/ξ

can be derived from the inhomogeneous transfer-matrix equa-
tions. For levels separated by ω � �ξ the potential V pins the
ground-state wave function to the region r1 
 1 enforced by
the boundary condition. We may thus approximate Eq. (17) by(

∂t − 2r1∂
2
r + 2r1κ

)
�0(r,t) = 0. (C1)

Equation (C1) with boundary condition �0(r,0) = 1/r1 is
solved by �0(r,t) = e−√

κ tanh (2
√

κt)r1/r1. Similarly, one may
verify that for ω � �ξ the excited-state wave function

�1(r,t) = − 1
2∂κ�0(r,t) (C2)

satisfies the transfer-matrix equation(
∂t − 2r1∂

2
r + 2r1κ

)
�0

1(r,t) = r1�0(r,t), (C3)

with boundary condition �1(r,0) = 0. Inserting �0 and
�1 into the level-level correlation function (B7), one
arrives at Eqs. (26) and (25) in the main text. Notice
that in the quantum-dot limit �0(r,t) = e−2κr1t /r1 and
�1(r,t) = te−2κr1t . This results in the Wigner-Dyson
correlations K(L,ω) = −(�/ωπ )2 sin2(ωπ/�) applicable at
arbitrary ratios ω/�. That is, the restriction ω � �ξ ∼ �L/ξ

becomes irrelevant in the limit L 
 ξ .

[1] F. Haake, Quantum Signatures of Chaos (Springer, Berlin,
2010).

[2] N. F. Mott, Philos. Mag. 22, 7 (1970).
[3] L. P. Gor’kov, O. N. Dorokhov, and F. V. Prigara, Zh. Eksp.

Teor. Fiz. 84, 1440 (1983) [Sov. Phys. JETP 57, 838 (1983)].
[4] U. Sivan and Y. Imry, Phys. Rev. B 35, 6074 (1987).
[5] For a recent reconsideration of Mott’s argument, see D. A.

Ivanov, M. A. Skvortsov, P. M. Ostrovsky, and Ya. V. Fominov,
Phys. Rev. B 85, 035109 (2012).

[6] K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge
University Press, Cambridge, 1999).

[7] K. B. Efetov, Adv. Phys. 32, 53 (1983).
[8] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52,

1 (1984).
[9] M. V. Berry, Ann. Phys. (N.Y.) 131, 163 (1981).

[10] S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, Phys.
Rev. Lett. 93, 014103 (2004).

[11] S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, Phys.
Rev. E 72, 046207 (2005).

[12] S. Heusler, S. Müller, A. Altland, P. Braun, and F. Haake, Phys.
Rev. Lett. 98, 044103 (2007).

[13] B. L. Altshuler and B. I. Shklovskii, J. Exp. Theor. Phys. 64,
127 (1996).

[14] A. Altland and D. Fuchs, Phys. Rev. Lett. 74, 4269
(1995).

[15] M. A. Skvortsov and P. M. Ostrovsky, JETP Lett. 85, 72
(2007).

[16] L. Hostler and R. H. Pratt, Phys. Rev. Lett. 10, 469 (1963).
[17] L. Hostler, J. Math. Phys. 5, 591 (1964).
[18] I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series, and

Products (Academic, New York, 2000).
[19] K. B. Efetov and A. Larkin, Sov. Phys. JETP 58, 444 (1983).
[20] We anticipate symmetry in the arguments of the Green’s

function, G0(r,r′) = G0(r′,r), evident in Eq. (7).
[21] N. Taniguchi, B. D. Simons, and B. L. Altshuler, Phys. Rev. B

53, R7618(R) (1996).
[22] D. A. Ivanov, P. M. Ostrovsky, and M. A. Skvortsov, Phys. Rev.

B 79, 205108 (2009).

094201-6

http://dx.doi.org/10.1080/14786437008228147
http://dx.doi.org/10.1080/14786437008228147
http://dx.doi.org/10.1080/14786437008228147
http://dx.doi.org/10.1080/14786437008228147
http://dx.doi.org/10.1103/PhysRevB.35.6074
http://dx.doi.org/10.1103/PhysRevB.35.6074
http://dx.doi.org/10.1103/PhysRevB.35.6074
http://dx.doi.org/10.1103/PhysRevB.35.6074
http://dx.doi.org/10.1103/PhysRevB.85.035109
http://dx.doi.org/10.1103/PhysRevB.85.035109
http://dx.doi.org/10.1103/PhysRevB.85.035109
http://dx.doi.org/10.1103/PhysRevB.85.035109
http://dx.doi.org/10.1080/00018738300101531
http://dx.doi.org/10.1080/00018738300101531
http://dx.doi.org/10.1080/00018738300101531
http://dx.doi.org/10.1080/00018738300101531
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1016/0003-4916(81)90189-5
http://dx.doi.org/10.1016/0003-4916(81)90189-5
http://dx.doi.org/10.1016/0003-4916(81)90189-5
http://dx.doi.org/10.1016/0003-4916(81)90189-5
http://dx.doi.org/10.1103/PhysRevLett.93.014103
http://dx.doi.org/10.1103/PhysRevLett.93.014103
http://dx.doi.org/10.1103/PhysRevLett.93.014103
http://dx.doi.org/10.1103/PhysRevLett.93.014103
http://dx.doi.org/10.1103/PhysRevE.72.046207
http://dx.doi.org/10.1103/PhysRevE.72.046207
http://dx.doi.org/10.1103/PhysRevE.72.046207
http://dx.doi.org/10.1103/PhysRevE.72.046207
http://dx.doi.org/10.1103/PhysRevLett.98.044103
http://dx.doi.org/10.1103/PhysRevLett.98.044103
http://dx.doi.org/10.1103/PhysRevLett.98.044103
http://dx.doi.org/10.1103/PhysRevLett.98.044103
http://dx.doi.org/10.1134/1.567144
http://dx.doi.org/10.1134/1.567144
http://dx.doi.org/10.1134/1.567144
http://dx.doi.org/10.1134/1.567144
http://dx.doi.org/10.1103/PhysRevLett.74.4269
http://dx.doi.org/10.1103/PhysRevLett.74.4269
http://dx.doi.org/10.1103/PhysRevLett.74.4269
http://dx.doi.org/10.1103/PhysRevLett.74.4269
http://dx.doi.org/10.1134/S0021364007010158
http://dx.doi.org/10.1134/S0021364007010158
http://dx.doi.org/10.1134/S0021364007010158
http://dx.doi.org/10.1134/S0021364007010158
http://dx.doi.org/10.1103/PhysRevLett.10.469
http://dx.doi.org/10.1103/PhysRevLett.10.469
http://dx.doi.org/10.1103/PhysRevLett.10.469
http://dx.doi.org/10.1103/PhysRevLett.10.469
http://dx.doi.org/10.1063/1.1704153
http://dx.doi.org/10.1063/1.1704153
http://dx.doi.org/10.1063/1.1704153
http://dx.doi.org/10.1063/1.1704153
http://dx.doi.org/10.1103/PhysRevB.53.R7618
http://dx.doi.org/10.1103/PhysRevB.53.R7618
http://dx.doi.org/10.1103/PhysRevB.53.R7618
http://dx.doi.org/10.1103/PhysRevB.53.R7618
http://dx.doi.org/10.1103/PhysRevB.79.205108
http://dx.doi.org/10.1103/PhysRevB.79.205108
http://dx.doi.org/10.1103/PhysRevB.79.205108
http://dx.doi.org/10.1103/PhysRevB.79.205108



