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Benchmarking the pseudopotential and fixed-node approximations in diffusion Monte Carlo
calculations of molecules and solids
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We performed diffusion Monte Carlo (DMC) calculations of the spectroscopic properties of a large set of
molecules, assessing the effect of different approximations. In systems containing elements with large atomic
numbers, we show that the errors associated with the use of nonlocal mean-field-based pseudopotentials in DMC
calculations can be significant and may surpass the fixed-node error. We suggest practical guidelines for reducing
these pseudopotential errors, which allow us to obtain DMC-computed spectroscopic parameters of molecules
and equation of state properties of solids in excellent agreement with experiment.
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I. INTRODUCTION

Progress in materials science is difficult without reliable
computational methods that can predict materials properties
with high accuracy. Ab initio methods that solve an electronic
Hamiltonian are standard techniques for investigating crys-
talline materials. The main ab initio workhorse in solid-state
physics, density functional theory (DFT), is a mean field the-
ory. Despite relying upon approximate exchange-correlation
functionals, DFT results are usually in a good agreement
with experiment often because of a cancellation of errors
when comparing the energetics of similar systems. When
the energies of systems with topologically different electronic
structures are compared, the DFT results are typically worse.
Thus, band gaps [1], cohesive energies [2], formation energies
of defects [2,3], and predicted thermodynamic stability of dif-
ferent phases [4] typically require postprocessing corrections
[3–5] to improve their agreement with experiment.

The errors in DFT calculations arise predominantly from
the use of approximate exchange-correlation functionals,
which are often based on many-body solutions of model
systems, e.g., diffusion Monte Carlo (DMC) calculations
of the homogeneous electron gas [6]. Therefore, the direct
application of many-body methods to the system of interest
should produce results with smaller errors. Quantum chem-
istry methods, which solve the full many-body Schrödinger
equation of molecules, have been in use for several decades
[7]. Of these methods, coupled cluster theory [CCSD(T)] [8]
can often achieve chemical accuracy, i.e., errors in the total
energy of less than 1 kcal mol−1. In a small subset of systems,
one can solve the Schrödinger equation with full configuration
interaction (FCI) [9]. While quantum chemistry methods have
been successful for small systems, their unfavorable scaling
in the number of electrons, N (within a fixed basis), is N7

for CCSD(T) and eN for FCI, which has severely limited
their use in solids. They have only recently been applied to
solids in nonconverged fashion [10]. The convergence of such
approaches is still intractable for many systems of interest.

Another class of techniques—quantum Monte Carlo
methods—employs stochastic approaches to numerically
solve the many-body Schrödinger equation [11,12]. Several
flavors exist, such as auxiliary-field Monte Carlo [13–15],
path-integral Monte Carlo [16], reptation quantum Monte

Carlo [17], variational Monte Carlo (VMC), and DMC.
Of these methods, applications to solids have mostly been
restricted to VMC and DMC and, to a lesser extent, auxiliary-
field Monte Carlo. The VMC uses an explicitly constructed
many-body wave function to evaluate expectation values. This
approach is often exploited to optimize a trial wave function for
use in more accurate DMC. The DMC is a stochastic projector
method, which directly solves the many-body Schrödinger
equation numerically by evolving in imaginary time from
an initial trial wave function toward the ground-state wave
function in the infinite-time limit. It has a favorable scaling
in the electrons (N3-N4), with improved scaling possible
[18], and scales nearly linearly with the number of computer
processors [19,20]. Despite including the full many-body
terms of the Schrödinger equation and therefore potentially
being more accurate than other methods, DMC relies on
several approximations, the most important of which are the
following: the fixed-node (or fixed-phase) approximation; the
dependence on supercell size for extended systems, i.e., finite-
size effects; and when all-electron calculations are infeasible,
the use of mean-field-based nonlocal pseudopotentials.

In order to maintain the antisymmetry of the wave function
and to maintain the stability of the algorithm, the zeroes
(nodes) of the wave functions are typically fixed in a DMC
calculation. This fixed-node approximation is enforced by
preventing walker moves in configuration space, which change
the sign of the trial wave function. Although the final
fixed-node wave function will be different from the exact
ground-state wave function, the total energy is only quadratic
in this difference. Thus, it is believed that fixed-node error
is small and should not have a sizable effect on materials
properties [12]. Moreover, the effect of incorrect nodes can be
reduced by improving the quality of the trial wave function,
for example, by using a backflow transformation [21]. The
fixed-node formalism deals with real wave functions, but it
can be generalized to handle complex wave functions. The
fixed-phase approximation [22] has been used to calculate
the properties of systems, such as quantum dots in a magnetic
field [23], and to handle twisted boundary conditions in metals
[24,25]. We will discuss the effect of the fixed-node approxi-
mation for the variety of materials presented in this paper.

Typically DMC calculations are performed using supercells
large enough to contain the exchange-correlation hole. These
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results usually still require corrections for removing residual
size effects. Remaining one-body size effects originating from
the kinetic energy term can be corrected either approximately
using DFT results, by adding the DFT energy difference
between a converged k-point grid calculation and a calculation
using the equivalent number of k-points as the supercell used
in the DMC calculation, or directly in DMC by employing
twist averaging [24]. The former, DFT corrections, has been
shown to be insufficient for some metallic systems [25]. To
correct for exchange-correlation many-body finite-size effects,
one can use the model periodic Coulomb interaction [26–28],
can apply postprocessing corrections of Chiesa et al. [29]
or Kwee-Zhang-Krakauer. (KZK) [30], or can extrapolate to
an infinite-sized supercell by performing calculations with
different sized supercells.

All-electron DMC calculations are prohibitively expensive
due to unfavorable scaling with the atomic number Z (from
Z5.5 [31] to Z6.5 [32]). In addition, the effective speed of the
innermost electrons in high-Z elements approaches the speed
of light, such that relativistic effects must be included. This
cannot be done using the Schrödinger equation and instead
requires solving the fully relativistic Dirac equation, which
is not currently possible with state-of-the-art DMC methods.
Since the direct relativistic effects on valence electrons are
small, a standard way to avoid solving the Dirac equation
is to remove the fast-moving core electrons and to include
their effect on the valence electrons using a relativistic
pseudopotential [33] with the Schrödinger equation.

There are two main types of ab initio pseudopotentials:
(1) energy-consistent pseudopotentials [34] where a model
Hamiltonian containing only valence electrons is constructed
such that it reproduces the all-electron energies of several
reference states and (2) shape-consistent pseudopotentials [35]
in which the pseudo-orbitals reproduce the shapes of the
all-electron orbital outside of a core region for a chosen
reference state. The latter approach is only possible within
the one-electron picture and implies that the energies of the
all-electron and pseudo-orbitals agree. In solid-state physics,
shape-consistent pseudopotentials are often referred to as
norm-conserving pseudopotentials since norm-conservation is
imposed, i.e., the charge density integrated over the core region
of the all-electron and pseudo-orbitals are required to agree
[36].

Since DMC-based pseudopotentials are currently unavail-
able, DMC calculations are performed using other types of
pseudopotentials. Traditionally, Hartree-Fock (HF) [or when
including relativity, Dirac-Hartree-Fock (DHF)] pseudopo-
tentials have been used in DMC calculations. These pseu-
dopotentials omit correlation between electrons and therefore
are believed to be appropriate in cases where core-core and
core-valence correlations play a small role. Shape-consistent
DHF-based relativistic pseudopotentials containing spin-orbit
terms have been developed by Trail and Needs [37,38] based on
the Dirac-Coulomb Hamiltonian. The long-range nonlocal HF
or DHF exchange interaction was removed during pseudopo-
tential construction so that the pseudopotentials are nonlocal
only near the core. Trail-Needs (TN) pseudopotentials, which
have been developed for use in solids, are tabulated on a
grid and have a rather large core, which is beneficial for
computing plane-wave based trial wave functions. Energy-

consistent pseudopotentials introduced by Burkatzki et al.
[39,40] (BFD pseudopotentials) have been developed for
use in quantum chemistry codes, so they are supplemented
with a correlation-consistent valence basis set with up to
pV5Z quality for the first and the second row main group
elements, up to pVTZ for the third to fifth row main group
elements, and up to pVQZ quality for the 3d transition
metals. They are based on the scalar relativistic Wood-Boring
Hamiltonian [41], which is, however, less involved than the
DHF/Dirac-Coulomb (DC)approach. For 3d transition metals,
these pseudopotentials have smaller sized cores compared with
TN pseudopotentials [37,38]. Very recently, Trail and Needs
introduced correlated electron pseudopotentials, which may
be considered as a generalization of independent electron
norm-conserving pseudopotential theory to the many body
one [42,43]. The suggested approach is currently limited to
systems that contain only one valence electron and, therefore,
for almost all elements; this restricts the generation of pseu-
dopotentials to ions. Despite this limitation, Trail and Needs
[37,38] showed that the transferability of such pseudopoten-
tials is still high for some systems by demonstrating better
agreement with all electron results compared to TN or BFD
pseudopotentials.

The DMC calculations have also been performed using
DFT pseudopotentials, which include the effects of electron
correlations in an approximate manner. These shape-consistent
pseudopotentials, commonly based on either the local density
approximation (LDA) [6,44] or semilocal generalized gradient
approximation (GGA) [45,46] approximations, have been used
in DMC to study [47–52] properties of solids. The DMC results
with these pseudopotentials often yield better agreement
with experiment than DFT calculations for most materials,
but DMC yields worse results when compared with DFT
calculations that use hybrid exchange-correlation functionals
or functionals with van der Waals corrections [50]. No tools
exist to construct pseudopotentials with high-level exchange-
correlation functionals as hybrid functionals (PBE0 [45,53],
HSE [54], B3LYP [55,56]) or nonlocal functionals (vdW-DF
[57]). There is also evidence that HF- or DHF-adjusted
pseudopotentials give better results in DMC calculations than
DFT/LDA-based pseudopotentials [58,59]. Furthermore, the
investigation of Russo et al. [60] on several 3d transition
metal compounds shows that HF-adjusted pseudopotentials
can be also applied in DFT calculations with only small loss of
accuracy. In his study of uranyl UO2+

2 , de Jong et al. [61] have
shown that good transferability from HF to DFT is achieved
only for small core pseudopotentials.

The use of nonlocal pseudopotentials in DMC can change
the sign of a walker, creating an unstable algorithm similar to
the fermion sign problem. A common approach to avoid this
instability is to project the nonlocal part of the propagator
onto the trial wave function producing a local potential.
If the trial wave function closely resembles the fixed-node
ground-state wave function, the localization error introduced
by this procedure is small and proportional to the square of
the difference of these wave functions [62]. The size of this
localization error is difficult to estimate. While in the past
it has typically been assumed that the localization error is
smaller than the fixed-node error [11], we show that for systems
containing heavier elements the former not only can be the
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dominant source of error in the calculation, but it can also lead
to unexpected results in calculations and high sensitivity to the
details of the calculation and the level of optimization of the
trial wave function. Note that no localization approximation is
required in VMC. We will discuss the impact of the localization
approximation in DMC on the properties of molecules.

The fixed-node approximation and the use of nonlocal
pseudopotentials in DMC introduce errors, which can be
difficult to disentangle. To aid in understanding the impact
of these approximations, we performed a large set of DMC
calculations of different dimers and heteroatomic molecules.
We used statistical analysis to elucidate the correlations
between these errors and to determine their effect on energetic
and spectroscopic properties. We will show how these errors
can propagate from molecules to solids and will provide
a practical guideline on how to improve the DMC results
in solids by employing rather inexpensive calculations on
molecules.

Progress in applying DMC methods to a wider range of
real materials will benefit from automating wave function
optimization since it is this step in a calculation that typically
requires the greatest amount of human time. As we will discuss
in the following, the careful optimization of the trial wave
function is crucial to reduce the dependence of localization
error on the shape of the trial wave function when nonlocal
pseudopotentials are employed. Therefore, in this paper, we
provide practical guidelines for generating optimal trial wave
functions within a given class of Jastrow-Slater form.

The paper is organized as follows. We begin by describing
the methodological aspects of our calculations, followed by
a careful analysis of the approximations employed in DMC
calculations. Their effect is assessed in several systems. We
suggest methods to reduce the approximations associated with
the use of nonlocal pseudopotentials.

II. METHODOLOGY

We studied a large number of systems containing elements
belonging to different blocks of the periodic system (see
Table I). All calculations presented in this paper were
performed with the use of pseudopotentials. We applied the
Troullier-Martin scheme [63] to construct norm-conserving
pseudopotentials with the Opium code [64]. The PBE
exchange-correlation functional [45,46] was used for tran-
sition and posttransition metals, and LDA functional [6,44]
was used for all others. Scalar-relativistic effects [65] are
included. For transition and posttransition metals, several
pseudopotentials were produced with different numbers of va-
lence electrons (see Table I). Pseudopotentials were employed
in semilocal form with the Qbox DFT code [66] or within
a Kleinman-Bylander formulation [67] with the Quantum
Espresso [68] DFT code. Additionally, TN pseudopotentials
[37,38] and BFD pseudopotentials [39,40] were used for Sn.
Several criteria were used to choose a particular local channel
for the pseudopotential. First, we carefully checked whether
ghost states were present for a particular choice of the local
channel. If ghost states were present, we could not employ the
Kleinman-Bylander separable form in Quantum Espresso to
determine the DFT trial wave function. Next, among the local
channels that did not have a ghost state, we chose the local

TABLE I. Some details of the pseudopotentials used in this paper.
Names of the element (with an additional designation for elements
investigated with more than one pseudopotential), the number of
valence electrons per atom, the core radius (the minimum radius
outside of which all of the atomic single-particle pseudo-orbitals and
all-electron orbitals agree), the local channel, the code used to produce
trial wave functions, and the quality of the basis as given by either
the kinetic energy cutoff used in plane-wave calculations in Rydberg
or by the quality of the Gaussian basis set are shown. The elements
are arranged according to the angular momentum of their open shells
and their mass in ascending order.

Number of
valence Core Local

Element electrons radius, au channel Code Quality

s block
Li 3 0.60 s pwscf 450
Be 2 1.30 s pwscf 240

p block
B 3 1.30 s pwscf 200
C 4 1.00 s pwscf 210
N 5 1.30 s pwscf 200
F 7 1.00 s pwscf 180
Al 3 1.78 p pwscf 150
Si 4 1.70 p pwscf 150
P 5 1.27 s pwscf 225
Cl 7 1.14 p pwscf 360
SnTN 4 2.98 d pwscf 240
Sn14 14 2.47 d qbox 600
Sn22 22 1.80 p pwscf 900
SnBFD 4 p molpro VDZ

d block
Mo 14 2.00 p pwscf 500
Rh 17 2.00 p pwscf 500
Pd 18 2.00 p pwscf 500
Ag11 11 2.00 p pwscf 240
Ag19 19 2.00 p pwscf 500
Ta 13 2.32 s pwscf 500

noble gases
Ar 8 1.12 p pwscf 220
Kr 8 1.37 p pwscf 220
Xe 8 1.90 s pwscf 250

channel to be the one that resulted in a trial wave function
having the lowest variance of the energy. This allowed us
to reduce the DMC calculation time significantly. We have
additionally investigated the impact on our DMC results of
choosing different channels to be local. In low-Z elements and
noble gases, we employed Casula’s t-moves [69] in both the
molecule and solid calculations for consistency.

The single-particle DFT/HF orbitals were used to form
a DMC trial function composed of a product of a spin-up
and spin-down Slater determinants multiplied by a Jastrow
factor. The Jastrow factor contained one-, two-, and three-body
correlation terms [70] with parameters that were optimized
by variance minimization [71]. For each of the systems
presented we used at least 25 000 VMC configurations in the
optimization unless stated otherwise. We did not modify the
number of walkers according to the total variance of each
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TABLE II. Spectroscopic constants of molecules obtained from DFT, DMC, and experiment. Statistical errors bars are given in parenthesis
and include the effect of statistical uncertainties of DMC energies. If available, the experimental error bars are given in parenthesis. The
molecules are arranged according to the type of bonding and total mass (in ascending order).

Element Term symbol Method Re, Å De, eV we, cm−1

s-s bonding
Be2

1�g(GS) LDA 2.389 0.563 348
DMC 2.432(4) 0.184(2) 263(5)
Exp. 2.460d 0.0867d

Li2
1�+

g (GS) LDA 2.715 1.026 317.6
DMC 2.719(4) 0.957(2) 327(5)
Exp. 2.6733d 1.003 62d 351.4066d

s- p bonding
LiF 1�+(GS) LDA 1.546 6.783 907

DMC 1.5551(7) 6.126(4) 950(2)
Exp. 1.563 86d 5.9654d 910.57d

LiCl 1�+(GS) LDA 2.009 5.221 617
DMC 2.0212(9) 5.023(3) 646(2)
Exp. 2.020 67d 4.9016d 642.95d

p- p bonding
C2

1�+
g (GS) LDA 1.263 6.998 1607

DMC 1.2563(7) 5.678(4) 1834(6)
Exp. 1.243d 6.2186d 1855.066d

BN 3�(GS) LDA 1.333 5.73 1436
DMC 1.3156(4) 4.463(3) 1540(3)
Exp. 1.325d 4.8712d 1514.6d

BP LDA 1.736 4.600 916
DMC 1.7196(2) 3.517(3) 990(1)
Exp. 3.596h

SiC X3�(GS) LDA 1.712 5.44 919.1
DMC 1.6989(9) 4.456(3) 1000(3)
Exp. 1.732f 4.63d 954.2f

Al2
1�−

g (3�u − GS) LDA 2.456 2.035 315
DMC 2.426(3) 1.440(3) 369(5)
Exp. 2.466b 1.3255b 350.01b

Si2
3�−

g (GS) LDA 2.262 4.025 459
DMC 2.20(2) 3.36(1) 545(51)
Exp. 2.246d 3.2267d 510.98d

SnTN
2

3�−
g (GS) PBE 2.762 2.837 181

DMC 2.818(5) 2.358(7) 182(3)
Exp. 2.748g 1.939h 189p

Sn14
2

3�−
g (GS) PBE 2.79 2.52 161

DMC 2.668(8) 2.03(3) 188(2)
Exp. 2.748g 1.939h 189p

Sn22
2

3�−
g (GS) PBE 2.807 2.619 158

DMC 2.750(6) 2.31(2) 180(3)
Exp. 2.748g 1.939h 189p

SnBFD
2

3�−
g (GS) HF 2.752 0.829 203.3

DMC 2.782(3) 2.287(4) 191(3)
Exp. 2.748g 1.939h 189p

d-d bonding
Mo2

1�+
g (GS) PBE 1.916 3.941 534

DMC 1.909(2) 2.94(1) 549(2)
Exp. 1.929e 4.476i 477.1e

Rh2
5�g,u(GS) PBE 2.200 3.29 317

DMC 2.195(5) 1.97(1) 322(6)
Exp. 2.9l 283.9o

Pd2
3�+

u (GS) PBE 2.469 1.347 196
DMC 2.463(6) 0.54(1) 217(5)
Exp. 1.03k 210n
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TABLE II. (Continued.)

Element Term symbol Method Re, Å De, eV we, cm−1

Ag11
2

1�+
g (GS) PBE 2.612 1.699 172

DMC 2.456(5) 1.61(3) 228(3)
Exp. 2.5335a 1.688h 192.4m

Ag19
2

1�+
g (GS) PBE 2.560 1.787 174

DMC 2.552(7) 1.54(2) 190(3)
Exp. 2.5335(5)a 1.688h 192.4m

Ta2
1�+

g (GS) PBE 2.13 4.22 293
DMC 2.111(2) 3.297(9) 330(5)
Exp. 4(1)h 300.2q

van der Waals bonding
Ar2

1�+
g (GS) LDA 3.420 0.030 51.6

DMC 3.75(1) 0.011(3) 32(1)
Exp. 3.7565c 0.01234c 30.9c

Kr2
1�+

g (GS) LDA 3.715 0.037 35.2
DMC 4.05(1) 0.0156(8) 22.6(7)
Exp. 4.008c 0.0173 36c 23.6c

Xe2
1�g(GS) LDA 4.143 0.042 26.8

DMC 4.64(5) 0.022(3) 16(2)
Exp. 4.3627c 0.0243 23c 20.9c

aFrom [80]; bFrom [81]; cFrom [82]; dFrom [83]; eFrom [84]; fFrom [85]; gFrom [86]; hFrom [87]; iFrom [88]; kFrom [89]; lFrom [90]; mFrom
[91]; nFrom [92]; oFrom [93]; pFrom [94]; qFrom [95].

atom to get an approximately uniform energy resolution for
all studied systems since we found that using 25 000 VMC
configurations was sufficient to obtain VMC total energy error
bars of better than 0.1 eV per atom for all systems (better that
0.005 eV per atom for SnBFD). Individual DMC calculations
were performed using either CASINO [72] or QMCPACK
[20,73]. The single-electron Kohn-Sham DFT orbitals were
computed self-consistently using the PBE approximation
for the exchange-correlation functional with a plane-wave
basis set. For the DMC calculations, these orbitals were
transformed into cubic splines [74] on a uniform grid with
the grid spacing chosen such that the kinetic energy computed
using the plane wave and the cubic-spline basis set were in
close agreement. The plane-wave cutoff used in each DFT
calculation (if not mentioned explicitly) was chosen such that
both the variance of the trial wave function and the total DFT
energy were converged, the latter to within 1 meV per atom.
The DMC time step was chosen such that the time-step error
was less than the DMC statistical error. For all systems, the
former are below 0.03 eV per atom.

To achieve a generality in our conclusions we studied
various molecules with different bonding mechanisms (see
Table II). In the discussion that follows, we discuss the
implications of our investigations for each of these groups.
In addition, we also compare the DMC results for molecules
and solids containing low- and high-Z elements.

For our plane-wave DFT calculations of molecules and
atoms, we used cubic boxes with box lengths of 20 au for
low-Z elements and noble gases and 30 au for transition
and posttransition metals. Where possible, orbital occupations
were chosen to agree with experimentally observed ground-
state multiplicities (see Table II). For the aluminum dimer, it
was not possible to stabilize the 3�u ground state within DFT,

so we used the 3�−
g state and compared against experimental

values for the same configuration.
Calculations of solid phases have been performed with 32

atoms in a supercell for BN, BP, C, LiCl, LiF, SiC, Si; 28
atoms for Li; 66 atoms for Be; 108 atoms for Al, Ar, Kr,
and Xe; 27 atoms for Ag, Mo, Pd, Rh, and Ta; and 54 atoms
for Sn. The residual finite-size effects have been corrected
using several methods. One-body finite-size effects were
corrected by employing twist-averaged boundary conditions
[24]. For low-Z elements and the noble gases, the remaining
two-body finite-size errors have been accounted for by using
the model periodic Coulomb (MPC) [26,75] and the Chiesa
correction [29]. For the transition and post-transition metals,
the remaining many-body finite-size effects were included
using the KZK correction [30].

To obtain the bonding curve of molecules and the equation
of state (EOS) of solids, DMC calculations were performed for
a range of molecule spacings, R, and solid lattice parameters,
alat, within about 5% of the energy minimum. The resulting
energies of the diatomic molecules were fit to a Morse
potential [76]:

E(R) = ED

(
1 − e−α(R−Re)

)2
, (1)

where ED is the dissociation energy of the rigid molecule,
Re is the optimal bond length, and the constant α were all
found by minimizing the sum of squares of the deviations.
The spectroscopic constants were determined by

we = α
√

2ED/μ

2πc
(2)

De = ED − 1

2
we, (3)
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TABLE III. Equation of state parameters of solids, the equilibrium lattice constant (alat), the cohesive energy (Ecoh), and bulk modulus (B)
computed using DMC and compared with experiment. The remaining data is available in Refs. [51] (for Ag19, Mo, Pd, Rh, Ta), [50] (for Al,
Ar, Be, BN, BP, C, Kr, Li, LiCl, LiF, Si, SiC, Xe), and [52] (for Sn22). The DMC errors are given in parenthesis in the first row. Experimental
values were corrected for finite-temperature and zero-point energy contribution [96] and are shown on the second row.

Element Structure Method alat, Å Ecoh, eV B, GPa

Ag11 fcc DMC 4.01(2) 3.88(2) 136(72)
Exp. 4.070b 2.96a 105.7a

SnTM diamond DMC 6.673(3) 3.179(4) 40(2)
Sn14 diamond DMC 6.37(5) 2.61(2) 38(14)

Exp. 6.477b 3.16a 53c

aFrom [97]; bFrom [98]; cFrom [99].

where De is the dissociation energy that includes the
zero-point energy contribution to first order, μ is the reduced
mass of molecule, and the speed of light c is used to express
spectroscopic constants in the units of cm−1. An example of
DMC computed energies as a function of the bond length for
a Sn2 dimer using the SnTN pseudopotential together with a
fitted Morse potential is shown in Fig. 3(a).

The energies of fcc Ag19, fcc Pd, fcc Rh, bcc Mo, and bcc
Ta were fitted to a Murnaghan EOS [77],

E(V )=E0+B0V0

(
1

B ′
0(B ′

0−1)

(
V

V0

)1−B ′
0

+ 1

B ′
0

V

V0
− 1

B ′
0−1

)
,

(4)

where V0 is the equilibrium volume, B0 is the bulk modulus,
and B ′

0 is the first derivative of the bulk modulus at the
equilibrium volume. The energies of all other solids were fitted
to a Vinet EOS [78],

E(V ) = E0 + 4B0V0

(B ′
0 − 1)2

− 2V0B0(B ′
0 − 1)−2

× (5 + 3B ′
0(V − 1) − 3V )e(− 3

2 (B ′
0−1)(V −1)). (5)

The fits to nonlinear Eqs. (1), (5), and (6) were performed
using a bootstrapping method [79] with the errors in the fitting
parameters corresponding to a one sigma (0.682) confidence
interval. The results for the diatomic molecules are presented
in Table II and for the solid calculations in Table III.

III. RESULTS AND DISCUSSION

A. Localization error

A common method for dealing with nonlocal pseudopoten-
tials within DMC is to use the localization approximation [62].
This introduces a nonsystematic localization error (err loc) that
depends on both the nodes and the detailed shape of the
trial wave function, which is related to the total DMC energy
[EDMC

nl (nodes,shape)] by the equation,

EDMC
nl (nodes,shape) = EDMC

0 (nodes) + err loc(nodes,shape),

(6)

where EDMC
0 is the hypothetical total energy from a DMC

calculation without the locality approximation. Note that
EDMC

0 and EDMC
nl are equal when the trial wave function is

equal to the DMC wave function since the localization error is
zero. If the trial wave function is sufficiently close to the ground

state wave function, the localization error is proportional to the
square of difference of the wave functions [62].

Figure 1 illustrates the impact that the quality of the
Jastrow and the localization error can have on a DMC total
energy curve when using a standard DFT norm-conversing
Troullier-Martins pseudopotential. This figure contains total
energies for the Ag dimer as a function of bond length
computed using three levels of approximation. The HF and
VMC curves correspond to the expectation values of the
Hamiltonian with and without the optimized Jastrow term
included, 〈DeJ |H|DeJ 〉 and 〈D|H|D〉, respectively, where DeJ

denotes the many-body Slater-Jastrow trial wave function used
in the DMC calculation. The smoothness of the HF curve
implies that the orbitals, which are taken from separate DFT
calculations at each bond length, vary consistently with bond
length and implies that the nodes that arise only from the

FIG. 1. Effect of Jastrow and localization error on VMC and
DMC energy vs bond length curves for the Ag2 dimer using the Ag11

pseudopotential. The HF and VMC correspond to the expectation
values of the Hamiltonian with and without the Jastrow term included,
〈DeJ |H|DeJ 〉 and 〈D|H|D〉, respectively, where DeJ denotes the
many-body Slater-Jastrow trial wave function.
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FIG. 2. (a) Total energies from VMC (upper values) and DMC (lower values) calculations for the SnTN atom in its ground state using
different values of the parameters in the Jastrow term. (b) Histogram of VMC total energies. (c) Histogram of DMC total energies. (d)
Correlation between VMC and DMC total energies.

Slater determinant vary smoothly as well. To compute the
VMC curve, the Jastrow term was optimized separately at
each bond length. The character of the VMC curve shows
that the quality of the Jastrows varies and depends on bond
length since HF results show that the Slater determinant term
varies smoothly. Note that in a VMC calculation, there is
no locality approximation. The unphysical changes seen in
the DMC energy as a function of bond length indicate that
variations in the quality of the Jastrow can have a large impact
on the total energy through the locality approximation. This
is particularly pronounced in this system when using the
Ag11 valence pseudopotential because of the large size of the
nonlocal energy term relative to the total energy.

The variation from smoothness in the DMC curve of Fig. 1
gives an estimate of the size of the localization error in the Ag2

dimer for the particular set of Jastrows that were obtained from
VMC optimization performed at different bond lengths. An al-
ternative method to estimate the localization error at a specific
atomic configuration (e.g., one bond length in the dimer) would
be to generate a distribution of Jastrows, fixing the Slater deter-
minant and thus the nodes, and to compute the corresponding
distribution of DMC total energies. For a given Jastrow accu-
racy, which is related to (1) its functional form, (2) the number
of parameters optimized, (3) the number of electronic config-
urations used in sampling, and (4) the robustness of the algo-
rithm for finding global minima, one would expect the spread

of DMC energies to increase with the size of the localization er-
ror. In order to generate a large number of Jastrow functions in
a realistic time frame, we instead performed this analysis for a
Sn atom using a TN pseudopotential, SnTN, which has only four
valence electrons. Starting with a fixed functional form and an
initial set of parameter values, the parameters in the Jastrow
were iterated using variance minimization until an equilibra-
tion in the total VMC energy and variance became apparent.
Note that in the optimization, a hard limit was placed on the to-
tal change that the parameters are allowed to evolve in each iter-
ation. Following equilibration, the Jastrow generated after each
successive iteration was used to compute DMC total energies.

Shown in Fig. 2(a) are the VMC and DMC energies for
the Sn atom after each iteration during the optimization. The
initial equilibration iterations are not shown. Separate results
are plotted corresponding to the choice of using either s

or d as the local angular momentum channel. For the case
of the d local channel, optimizations were performed using
10 000 and 100 000 electronic configurations for comparison.
The distribution of VMC energies has a well-pronounced
nonsymmetric profile [Fig. 2(b)], which is a result of the
optimization procedure. Note that the statistical uncertainty
of each VMC energy [on the order of the size of symbols
in Fig. 2(a)] is much smaller than the distribution of VMC
energies, so that the distribution is mainly the result of
variations in the parameters in the Jastrow. Note also that there
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are several outliers with large VMC energies but that there are
no outliers with energies significantly lower than median of the
calculations. This is consistent with the variational principle
in VMC and demonstrates that the VMC energy is bounded
from below. This bound is the lowest VMC energy that can be
achieved with a given Slater determinant and a given functional
form of the Jastrow (in this case consisting of a linear com-
bination of homogeneous electron-electron, electron-nucleus,
and electron-electron-nucleus terms in the exponential). When
the number of VMC configurations is small, larger fluctuations
of VMC energies are observed. The distribution of VMC total
energies is reduced when we increase the number of VMC
configurations from 10 000 to 100 000, as shown in Fig. 2(d).

The DMC total energies using the trial wave functions
obtained from each VMC calculation are plotted in Fig. 2(a).
Their distribution [Fig. 2(c)], like the VMC energies, is
nonsymmetric, but its outliers are below the median, with no
significant outliers above, suggesting that it is bounded from
above. However, the spread of the DMC distribution is one
order of magnitude smaller than that of VMC distribution. In
Fig. 2(d), we plot the pairs of VMC and DMC total energies
for each trial wave function. There is a clear correlation
between them. In the limit that either the nonlocal term in
the Hamiltonian is taken to zero or the VMC optimized
Jastrow converges to the “DMC Jastrow”, the DMC total
energies will depend only on the nodes of the wave function,
and the distribution of DMC energies will have the width
on the order of statistical uncertainty of DMC energy. Note
that the statistical uncertainty of the DMC total energies is
much smaller than the size of the distribution. The wider
distribution of DMC energies therefore can be only attributed
to the localization error, and its spread provides a lower bound
estimate for this error. In this system, the localization error
results in the anticorrelation between the VMC and DMC
total energies: the wave function that is close to the ground
state yields a lower VMC total energy and higher a DMC
total energy. The calculations using the s local channel have a
slightly smaller spread than the d local channel calculations.
This can be attributed to a slightly lower variance of the local
energy (see Table IV). The localization error here leads to
DMC energies, which do not satisfy the variational principle.
The nonlocal energy in the VMC and DMC calculations for
the case of the s local channel constitutes −2% of the total
energy, which is much smaller than in the case of d local
channel (15%). Despite this large difference in the size of the
nonlocal energy, the impact of the localization error on the
anticorrelation of the VMC and DMC energies is not affected.

In the SnTN atom, we find that the dependence of localiza-
tion error on the shape of the trial wave function is not affected

TABLE IV. Effect of different local channels on the results of
VMC calculations of the SnTN atom. The local channel, VMC total
energy, variance, and nonlocal energy in atomic calculations are
shown.

Local channel Evmc, Ha Var,Ha Enl, Ha

S −2461(1) 14.4(8) 46(1)
P −2461(1) 16(1) −103(3)
D −2460(1) 17.7(35) −378(5)

by the choice of the local channel. To reduce the localization
error using a fixed Slater determinant term, one should use the
largest practical number of electronic configurations during
VMC optimization and the most general form of Jastrow. This
procedure will produce the narrowest distribution of VMC
energies. The trial wave function with the lowest VMC total
energy should be chosen (provided its variance is comparable
with others). This trial wave function yields an energy that
is closest to the lower boundary VMC total energy and
correspondingly a DMC energy that is closest to the boundary
DMC total energy. When the energies of different systems are
compared, this procedure will lessen the impact of the shape
of the wave function on the total energy, assuring that their
energy difference will depend mainly on the nodes of the trial
wave functions.

B. Effect of the correlation between core and valence electrons

All pseudopotentials used in this paper were created
using mean-field theories: PBE-DFT or HF. Pseudopotentials
constructed using PBE-DFT include only an approximate
treatment of the core-valence exchange-correlation contri-
bution, while HF-based pseudopotentials include an exact
treatment of exchange but neglect correlation completely. In an
attempt to understand how this impacts our DMC results, we
compared DFT, HF, and DMC calculations obtained by using
the same form of pseudopotential for a range of molecules.

We first discuss the accuracy of using pseudopotential-
based DFT-PBE or HF calculations for computing the prop-
erties of molecules. The deviation from experiment of several
spectroscopic parameters of molecules computed using DFT
and HF is shown in Fig. 3. The mean absolute percentage error
(MAPE) from the experiment of the DFT/HF calculations
for the optimal bond length (Re) is 2.16% and is 14.06%
for the spectroscopic constant (we). The mean absolute error
(MAE) from the experiment of the DFT/HF calculations for
the dissociation energy (De) is 0.50 eV. To investigate the effect
of different pseudopotential cores, we computed the properties
of the Sn2 dimer using several different pseudopotentials.
These included the TN [37,38] and BFD [39,40] HF-based
pseudopotentials with four valence electrons and the PBE-
based pseudopotentials with 14 (Sn14) and 22 (Sn22) valence
electrons. In our DFT calculations for Sn2, we found that
promoting more electrons to the valence (and correspondingly
the reduction of the core radius) did not improve agreement
with experiment. The employment of the same level of theory
for pseudopotential construction and for dimer calculations
(e.g., DFT for Sn22 and HF for SnBFD pseudopotentials) also
does not improve the agreement with experiment compared to
the DFT results using the pseudopotentials constructed with
a different level of theory (e.g., HF for SnTN and SnBFD).
Furthermore, pseudopotentials constructed with the same level
of theory with the same number of valence electrons (SnTN

and SnBFD) yielded substantially different DFT results. DFT
calculations fall short in predicting the properties of noble
gases. The optimal bond distance is largely underestimated,
and the spectroscopic constant we is largely overestimated. The
DFT-computed dissociation energy is overestimated compared
to the experiment for all studied molecules except for Mo2.
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FIG. 3. (a) Energy of SnTN
2 dimer as a function of its length (DMC energies with statistical error bars are given by black symbols, fit

to Morse potential by red curve). (b) Deviations of DFT and DMC computed parameters from experiment for optimal bond length Re, (c)
spectroscopic constant we, and (d) dissociation energy De. The molecules in (b), (c), and (d) are grouped by bonding mechanism—s-s (green
background), s-p (red), p-p (magenta), d-d (blue), van der Waals (brown) — and by total mass in ascending order.

We performed DMC calculations for each molecule using
trial wave functions composed of the same orbitals and the
same pseudopotential that were used in the DFT/HF calcula-
tions. The deviations of these DMC-computed spectroscopic
parameters from experiment are shown in Fig. 3. There appears
to be no similarity between DFT/HF and DMC deviations from
experiment; the errors can even have different signs. Compared
to the experiment, the DMC calculations gave MAPE of 1.57%
for Re and 6.41% for we and MAE of 0.31 eV for De. In the
case of Sn and Ag, the inclusion of more electrons in valence
improved the agreement with experiment. We suspect that
the inclusion of more electrons in valence, which results in
a decrease of the core-valence electron density overlap (see
Fig. 4), will reduce the impact of the neglected correlation be-
tween the core and valence electrons in the DMC calculations,
which makes these pseudopotentials more appropriate for
DMC. There will also likely be a reduction in the localization
error when the number of valence electrons are increased
provided the cutoff radii are chosen to be smaller because
there will be a smaller region around each atom that will be
impacted by the localization approximation. Foyevtsova et al.
[100] found that increasing the number of valence electrons

when constructing a Cu pseudopotential (using a hard Ne-core
pseudopotential) beyond what was required for converged
DFT results was necessary to obtain good results in DMC. Our
DMC calculations perform uniformly well across all groups
of molecules. There is, however, a tendency to underestimate
dissociation energy of molecules with d-d bonding.

C. Fixed-node error

Having demonstrated the importance of the choice of the
pseudopotential that is used in DMC calculations of molecular
properties, we performed a series of calculations to estimate
the effect of the fixed-node approximation. The nodes of the
trial wave function were changed by incorporating backflow
[101] for the Sn2, Ag2, and Mo2 dimers and by increasing
the kinetic energy cutoff used in the DFT calculation of the
single-particle orbitals, which appear in the determinants of the
Mo2 dimer trial wave function. For each system, the backflow
transformation consisted of a homogeneous electron-electron
(employing expansion order of eight and electron-nucleus
terms (expansion order of six) and an inhomogeneous electron-
electron-nucleus term (electron-nucleus and electron-electron
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FIG. 4. Core and valence electronic density as a function of distance from the nucleus in (a) Sn14 and (b) Sn22 pseudopotentials.

expansion order of three). Together with cutoff radii, this
resulted in a total number of 220 optimizable parameters. The
backflow parameters were determined using VMC optimiza-
tion with variance minimization. The employment of backflow
changed the nodal surface, as can be seen in Fig. 5(a). Table V
gives the parameters and results of these calculations. Adding
backflow and increasing the plane-wave cutoff reduces the
variance of the atoms and dimers. The increase of the kinetic
energy cutoff did not significantly affect the total energy of
the system in DFT but reduced the variance of the trial wave
function for Mo by 23% in VMC. Applying the backflow
transformation reduced the variance of Mo by �43% and of
Sn by a factor of �2 when using the SnBFD pseudopotential. We
were unable to optimize both the Jastrow and the coefficients
of the backflow transformation in case of Ag11, so no results
are reported for this system. In the case of the Sn14 pseu-
dopotential, we encountered instabilities while optimizing the
trial wave function that resulted in fluctuating VMC and DMC
energy curves like that obtained for Ag2 using an 11-valence
pseudopotential with DMC, shown in Fig. 1. Fitting the curves
produced unreasonable spectroscopic properties for the Sn14

2
dimer. We assume that such strong fluctuations of DMC energy
are due to very high localization error in this pseudopotential
that probably results from a large overlap of the valence and
core electronic densities [as shown in Fig. 4(a)].

The deviations from experiment for different pseudopoten-
tials, different kinetic cutoff energies, and for the calculations
with and without backflow transformation in DMC are shown
in Fig. 5. In these systems, the effect of changing the nodes
of the trial wave function by including backflow had a
smaller effect on the calculated properties than changing the
pseudopotential.

D. Correlation between solids and molecules

To determine whether it is the fixed-node approximation or
the use of (and particular choice of) nonlocal pseudopotentials
that has a larger impact on the errors, one obtains from DMC
simulations we performed calculations of the EOS parameters
of the ground-state phase of each solid corresponding to
each diatomic molecule listed in Table II using the same

pseudopotentials. We would expect that the character and thus
the corresponding error associated with the nodal structure of
the trial wave functions would usually be different in solids
compared to diatomic molecules. The fact that we observe such
a strong correlation between the errors in calculated quantities
for solids and molecules across a wide variety of elements and
pseudopotentials despite the potential for completely different
fixed-node errors suggests that the error due to the nonlocal
pseudopotential is currently the factor imposing the dominant
limitation on the accuracy of our calculations.

There is an additional source of error that arises when
DMC is applied to solids: the finite-size effects. Using twist
averaging combined with a KZK correction or extrapolation to
infinite-sized simulation cells can largely diminish its effects.
Therefore, in the following our calculations of solids include
these corrections. Some of these results have been taken from
the work of Shulenburger and Mattsson [50], Hood et al. [51],
and Nazarov et al. [52]. The others are given in Table III.

To compare our results between each solid and its corre-
sponding diatomic molecule, we plotted parameters of the EOS
for the solids against similar parameters, describing the energy
as a function of molecular length (see Fig. 6). The lattice
parameter in each solid, which is proportional to the nearest
neighbor equilibrium spacing, is plotted against the optimal
bond length of each corresponding diatomic molecule. The
energetics of the systems are compared by plotting the cohesive
energy of the solid versus the dissociation energy of the
molecule. The parameters that describe the curvature of the
energy as a function of atomic spacing are the bulk modulus
(B) for the solid and the spectroscopic parameter we for the
molecules.

Before analyzing the correlations between our DMC results
of solids and molecules, we need to remark about the uncer-
tainties in our DMC results and the effects that are not directly
included. We start with the statistical uncertainties of the DMC
calculations. Vibrational properties have the biggest errors, as
the curvature depends strongly on statistical uncertainties of
our data. The geometrical properties have smaller statistical
error bars. The smallest statistical uncertainties correspond
to binding energies. When one compares DMC results with
experiment, it should be noted that there are effects present in
experiment—finite-temperature and zero-point energy—that
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FIG. 5. (a) A projection of the trial wave function and its nodes for the Mo2 dimer moving one electron in the basal plane for the Slater only
(S), Slater-Jastrow (SJ), and Slater-Jastrow + backflow (SJB) trial wave functions. The nodes of wave function are modified by the backflow
transformation. Deviations from experiment of DMC computed spectroscopic parameters of dimers employing different nodal structures of
the trial wave function: (b) the optimal bond length Re, (c) the spectroscopic constant we, and (d) the dissociation energy De. The molecules
in (b), (c), and (d) are grouped by bonding mechanism p-p (magenta) and d-d (blue) and by total mass in ascending order.

TABLE V. Effect of different procedures to improve the nodes of the trial wave function for DMC calculations. The variance listed for each
case is for the dimer at the closest to optimal bond length.

Dimer Comment Var, au Re, Å De, eV we, cm−1

SnTN
2 no backflow 0.13(1) 2.818(8) 2.358(9) 172(81)

with backflow 0.064(9) 2.77(1) 2.34(1) 176(41)
Sn14

2 no backflow 1.61(3) 2.7(1) 2.0(2) 178(94)
with backflow 1.23(3) 2.93(9) 5.3(2) 156(389)

Sn22
2 no backflow 3.2(1) 2.75(1) 2.31(2) 170(86)

with backflow 1.88(9) 2.74(5) 2.25(5) 160(321)
SnBFD

2 no backflow 0.041(5) 2.782(2) 2.287(3) 181(19)
with backflow 0.022(1) 2.786(6) 2.283(7) 178(50)

Ag11
2 no backflow, Ecut = 240 Ry 2.23(9) 2.46(7) 1.6(1) 216(80)

Ag19
2 no backflow, Ecut = 500 Ry 2.15(6) 2.552(9) 1.54(2) 180(25)

with backflow, Ecut = 500 Ry 1.03(2) 2.53(3) 1.51(3) 191(65)
Mo2 no backflow, Ecut = 500 Ry 0.83(3) 1.909(2) 2.94(2) 520(11)

with backflow, Ecut = 500 Ry 0.47(2) 1.915(3) 3.22(2) 508(18)
Mo2 no backflow, Ecut = 240 Ry 1.08(5) 1.915(4) 2.96(2) 513(23)

with backflow, Ecut = 240 Ry 0.65(4) 1.910(3) 3.29(2) 520(48)
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FIG. 6. Correlation between (a) geometric, (b) vibrational, and (c) energetic properties of solids and molecules from DMC calculations
using the same pseudopotentials. Pearson correlation coefficient is shown above regression dashed lines.

are not included in our DMC calculations. To avoid comparing
results obtained at different conditions, we used experimental
values extrapolated to zero temperature whenever possible.
Additionally, the zero-point energy was taken into account
by subtracting a theoretical estimate of this term from the
experimental cohesive energy [96].

There are additional effects, which are more difficult to
include. Relativistic effects can impact the results especially
for heavy elements. Despite the use of scalar relativistic
pseudopotentials the DMC calculations has been performed
without spin-orbit coupling. This can significantly affect
the energetic properties—the cohesive energy of a solid
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or the dissociation energy of a molecule—because of the
substantially different occupations of orbitals that occur for
j -splitting compared to those without. We expect that the
effect of spin-orbit coupling on the geometric and vibrational
properties would be smaller by comparison [51]. Therefore,
when comparing DMC results in solids and molecules one
should rely more on the geometric and vibrational properties,
noting that vibrational properties have larger statistical error
bars compared to those associated with geometric properties.

There is a strong correlation between the deviation of
DMC-computed geometric parameters from experiment in
solids and molecules. Overestimation (underestimation) of
optimal bond length is typically accompanied by an over-
estimation (underestimation) of the lattice parameter of solid
[see Fig. 6(a)]. Molecules, especially with d-d bonding and
with p-p bonding, show this correlation. The same type of
correlation is seen for vibrational properties, although the
statistical error bars are larger [Fig. 6(b)]. Despite strong
spin-orbit coupling effects, we can still see a correlation
between energetics of solids and molecules [Fig. 6(c)]. There
is, however, a tendency to underestimate the dissociation
energy for d-d molecules. This may be related to generally
heavier elements selected in this group, which have larger
relativistic effects and neutral atoms with high multiplicity.
When relativistic effects are included, the j -splitting of the
partially filled orbitals of an atom can result in a lower energy
compared to the nonrelativistic nonsplitted case, which can
reduce the dissociation energy of a molecule. This is consistent
with the large underestimation of dissociation energy we found
for Mo2, which has six unpaired electrons in atom compared
to all paired electrons in Mo2 dimer.

We believe that the strong correlation we observe between
the errors in calculated quantities for solids and molecules
across a wide range of elements and pseudopotentials arises
predominately from the errors due to the nonlocal pseudopo-
tential, surpassing even the effects of the fixed-node approx-
imation, at least at the level of backflow. From a practical
standpoint one can estimate the accuracy of DMC-computed
properties of solids (and the accuracy of pseudopotentials) by
first performing rather inexpensive calculations in molecules.

IV. CONCLUSION

We performed DMC calculations of the spectroscopic
properties of molecules and of the EOS parameters of

solids. In addition, a careful analysis of the sources of our
errors was made. One of the main reasons for disagreement
between experiment and DMC results is the use of nonlocal
pseudopotentials. While the use of pseudopotentials in any
electronic structure approach invariably leads to approxima-
tions, including the neglect of core-core and core-valence
correlation, the practical use of nonlocal pseudopotentials in
DMC requires the introduction of an additional approximation,
the locality approximation. In this case, DMC total energies
depend on both the quality of the trial wave function in addition
to its nodal structure. We showed how this approximation is not
only large for systems containing heavier elements, but it also
leads to additional complications during DMC calculations. In
particular, DMC energies become very sensitive to the form
of the trial wave function and its degree of optimization.
In practice, this means that accurate results are obtained
only when both the variational freedom of the trial wave
functions (e.g., Jastrows) as well as the level of optimization
are carefully controlled. The mean-field nature of the nonlocal
pseudopotential generation, using an approximate treatment
of exchange and correlation that neglects important effects
between the core and valence, combined with the locality
approximation can potentially overwhelm the gains that arise
from using such an accurate many-body method and yield
incorrect descriptions of spectroscopic properties of molecules
and EOS properties of solids. We show that the errors in
molecules and solids are highly correlated. Thus, a practical
way to reduce the impact of including only an approximate
treatment of the core-valence correlation is to first perform
test calculations with the pseudopotential in similar molecular
systems.
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