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Stability of the ω structure of transition elements
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Properties of the ω structure are investigated for 27 transition elements from the viewpoints of thermodynamical
and dynamical stability based on first-principles calculations. The thermodynamical stability of the ω structure
is compared with those of the body-centered-cubic, face-centered-cubic, and hexagonal-close-packed structures.
Similar to the case of those popular crystal structures, the occupation number for d orbitals is found to roughly
determine relative energy and volume of the nonmagnetic ω structure. For the group 4 elements (Ti, Zr, and Hf),
the ω structure is almost the lowest in energy among the investigated crystal structures and is also dynamically
stable. The ω structure of the group 7 elements (Mn, Tc, and Re) is also dynamically stable. The ω Fe is found to
exhibit a magnetic state with antiparallel magnetic moments. This magnetic state is the most favorable among the
investigated magnetic states. The ω Fe in this magnetic state is also dynamically stable. Energies of binary alloys
composed of the elements in the group 4 and those in the groups 5 and 6 are estimated by linear interpolation, and
most of the alloys show concentration ranges where the ω structure is the lowest in energy among the investigated
crystal structures.
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I. INTRODUCTION

The ω structure is included in the hexagonal crystal system
with the space group of P 6/mmm (No. 191). It was first
reported for Ti-Cr alloys, and its relation to the brittleness of
the alloys was discussed [1]. The ω structure is observed in
elemental Ti [2], Zr [2], and Hf [3,4] under high pressure.
Ti and Zr can hold the ω structure also after removing the
pressure [2]. As well as the pure elements, the ω structure is
observed in alloys based on the group 4 elements, namely
Ti- [1,5–10], Zr- [6,11,12], and Hf- [13] based alloys. In
addition, it has been reported that the ω structure is formed in
elemental Ta and Ta-W alloys by applying shock pressure [14]
and in elemental Mo after high-pressure torsion [15]. Several
experimental reports have recently claimed that the ω structure
can be found also in steels, i.e., Fe-C-based alloys [16,17].
Structures based on the ω lattice, where constituent elements
occupy the same atomic sites as the ω structure with atomic
orderings, have also been observed in experiments for alloys
such as Cu-Zn [18], Cu-Mn-Al [19], Ni-Al [20], Fe-Ni-Co-
Mo [21], Fe-Mn-Co-Mo [22], and Fe-Ni-Mo [23] alloys.

The ω structure can be obtained via collective mo-
tion of atoms from the body-centered-cubic (bcc) [24],
hexagonal-close-packed (hcp) [5,25,26], and face-centered-
cubic (fcc) [27] structures. It is, therefore, suggested that the ω

structure can be the transition state of a transformation pathway
between these popular crystal structures. Togo and Tanaka
have actually revealed that the ω structure of Cu can be the
transition state of a bcc-fcc transformation pathway based on a
systematic search algorithm for transformation pathways [27].
Ikeda et al. have also pointed out that the ω structure of
Fe acts as the transition state of the pressure-induced phase
transition between the high-temperature paramagnetic (PM)
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bcc and PM fcc structures [28]. These results imply that the
ω structure is important not only for the metals and the alloys
that form the ω structure but also for general metallic systems
to understand mechanisms of phase transitions. However,
systematic knowledge of the ω structure for metallic systems
is still missing.

It is interesting that the elements in the groups 5 and 6 such
as V, Cr, Nb, and Mo are included in most of the alloys based on
the group 4 elements that form the ω structure. For these alloys,
the ω structure is observed in a concentration range where the
group 4 elements are rich. These experimental facts imply that
interactions between the group 4 elements and those in the
groups 5 and 6 have essential roles to form the ω structure.
To our best knowledge, however, no detailed and systematic
investigations have been accomplished into this issue.

In this study, properties of the ω structure are systematically
investigated for 27 transition elements from the viewpoints
of thermodynamical and dynamical stability based on first-
principles calculations. The thermodynamical stability of the
ω structure is compared with those of the bcc, fcc, and
hcp structures. The dynamical stability of the ω structure
is investigated in terms of phonon frequencies. We also
investigate thermodynamical stability of the ω structure for
binary alloys composed of the transition elements.

II. COMPUTATIONAL DETAILS

A. ω structure

Figure 1(a) shows the primitive unit cell of the ω structure
without considering magnetic configurations. The basis of
lattice vectors for the ω structure a1, a2, and a3 can be
written as

(a1 a2 a3) =
⎛
⎝

aω/2 aω/2 0
−√

3aω/2
√

3aω/2 0
0 0 cω

⎞
⎠, (1)

2469-9950/2016/93(9)/094108(11) 094108-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.094108


YUJI IKEDA AND ISAO TANAKA PHYSICAL REVIEW B 93, 094108 (2016)

+ + + (FM) + + −

NM+ −−

(c)

S1
S2 S3

(a) (b) conventional 
bcc unit cell

-based bcc unit cell

FIG. 1. (a) Primitive unit cell of the ω structure. Gray spheres
represent atoms. The labels S1, S2, and S3 specify the atoms whose
positions are described in the main text. (b) Geometrical relation
of the ω-based bcc unit cell to the conventional bcc unit cell.
(c) Magnetic states of the ω structure investigated in this study.
Up (red) and down (blue) arrows indicate spin-up and spin-down
magnetic moments, respectively. Visualization is performed using
the VESTA code [29].

where aω and cω are lattice constants of the ω structure. The
ω structure has three atoms, referred to as S1, S2, and S3
hereafter, inside the primitive unit cell. The atomic positions of
S1, S2, and S3 are (0,0,0), (2/3,1/3,1/2), and (1/3,2/3,1/2)
in fractional coordinates, respectively. The sites S2 and S3 are
crystallographically equivalent without considering magnetic
configurations. The Wyckoff positions are 1a for the atom S1
and 2d for the atoms S2 and S3.

The bcc structure can be obtained from the primitive ω unit
cell by moving the atoms S2 and S3 to (2/3,1/3,1/3) and
(1/3,2/3,2/3) in fractional coordinates, respectively, and by
modifying the lattice constants of the ω structure as

aω =
√

2abcc, (2)

cω =
√

3abcc/2, (3)

TABLE I. Meshes per unit cell to sample Brillouin zones.

Number of atoms per unit cell Mesh

bcc 2 16 × 16 × 16
fcc 4 12 × 12 × 12
hcp 2 18 × 18 × 12
ω 3 12 × 12 × 18

TABLE II. Obtained magnetic states with nonzero magnetic
moments.

Magnetic state Element

bcc FM Mn, Fe, Co, Ni, Rh, Ir
fcc FM Fe, Co, Ni
hcp FM Co, Ni
ω FM Fe, Co, Ni

+ + − Fe
+ − − Fe

where abcc is the lattice constant of the bcc structure. The bcc
structure is related to the ω structure by the orientation relation
of [0001]ω||〈111〉bcc and {112̄0}ω||{11̄0}bcc. Figure 1(b) shows
the geometrical relation between the conventional and the “ω-
based” unit cell of the bcc structure. From the viewpoint of the
ω structure, it is “coherent” with the bcc when the ω structure
has the lattice constants that satisfy Eqs. (2) and (3). In other
words, if the lattice constants of the ω and the bcc structures
exactly satisfy Eqs. (2) and (3), the ω structure can be obtained
from the bcc by moving atoms without lattice deformation.

TABLE III. Calculated energies, lattice constants, and volumes
of the NM ω structures for the transition elements. The energies are
relative to that of the NM fcc structure.

Relative energy aω cω Volume
(meV/atom) (Å) (Å) (Å3/atom)

Sc 8 5.098 3.202 24.02
Ti − 70 4.542 2.824 16.82
V − 142 4.448 2.341 13.37
Cr − 66 4.229 2.262 11.68
Mn 6 3.887 2.448 10.68
Fe 91 3.850 2.418 10.35
Co 166 3.899 2.390 10.49
Ni 111 3.987 2.397 11.00
Cu 77 4.126 2.472 12.15

Y 37 5.638 3.527 32.36
Zr − 40 5.036 3.149 23.06
Nb − 125 4.876 2.678 18.38
Mo − 35 4.668 2.538 15.97
Tc − 7 4.291 2.716 14.44
Ru 137 4.252 2.680 13.99
Rh 223 4.329 2.655 14.37
Pd 107 4.493 2.676 15.59
Ag 65 4.721 2.820 18.15

Lu 49 5.433 3.413 29.08
Hf − 34 4.963 3.096 22.01
Ta − 28 4.853 2.709 18.42
W 51 4.678 2.590 16.36
Re 106 4.375 2.744 15.16
Os 209 4.320 2.723 14.67
Ir 331 4.381 2.703 14.98
Pt 144 4.526 2.704 15.99
Au 62 4.748 2.815 18.32
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TABLE IV. Calculated energies, lattice constants, and volumes
of the ω structure for the transition elements in the magnetic states
with nonzero magnetic moments. The energies are relative to that of
the NM fcc structure.

Relative energy aω cω Volume
(meV/atom) (Å) (Å) (Å3/atom)

Fe FM 33 4.177 2.375 11.96
+ + − 35 3.992 2.386 10.97
+ − − 1 3.970 2.397 10.91
NM 91 3.850 2.418 10.35

Co FM − 120 3.953 2.434 10.98
NM 166 3.899 2.390 10.49

Ni FM 72 3.989 2.414 11.09
NM 111 3.987 2.397 11.00

As well as the ω structure, the bcc, fcc, and hcp structures
were also investigated for comparison. Four possible magnetic
states, including the ferromagnetic (FM) and the nonmagnetic
(NM) states, were considered for the ω structure. Figure 1(c)
shows the considered magnetic states for the ω structure. For
the bcc, fcc, and hcp structures, only the FM and the NM states
were considered.

TABLE V. Calculated magnetic moments on atoms for the ω

structure. Note that the sites S2 and S3 are crystallographically
equivalent for the FM and the + − − states but not for the + + −
state. The equivalent values are shown in parentheses.

Magnetic moment (μB )

S1 S2 S3

Fe FM 2.59 2.45 (2.45)
+ + − 1.56 1.72 −1.90
+ − − 1.69 −1.63 (−1.63)

Co FM 1.60 1.67 (1.67)

Ni FM 0.62 0.66 (0.66)

B. Electronic structures and phonons

The plane-wave basis projector augmented wave
method [30] was employed in the framework of density-
functional theory [31,32] within the generalized gradient
approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE)
form [33] as implemented in the VASP code [34–36]. A
plane-wave energy cutoff of 400 eV was used. The Brillouin
zones were sampled by �-centered meshes according to crystal
structures as shown in Table I, and the Methfessel-Paxton

TABLE VI. Calculated energies of the transition elements relative to that of the NM fcc structure in meV/atom.

bcc fcc hcp ω

NM FM NM FM NM FM NM + − − + + − FM

Sc 56 0 − 49 8
Ti 47 0 − 56 − 70
V − 258 0 0 − 142
Cr − 397 0 9 − 66
Mn 79 64 0 − 29 6
Fe 314 − 170 0 − 20 − 80 91 1 35 33
Co 235 − 111 0 − 184 21 − 201 166 − 120
Ni 63 48 0 − 52 26 − 26 111 72
Cu 36 0 10 77

Y 98 0 − 27 37
Zr 46 0 − 40 − 40
Nb − 324 0 − 29 − 125
Mo − 431 0 14 − 35
Tc 176 0 − 72 − 7
Ru 513 0 − 116 137
Rh 350 346 0 39 223
Pd 45 0 31 107
Ag 32 0 5 65

Lu 98 0 − 42 49
Hf 107 0 − 74 − 34
Ta − 248 0 38 − 28
W − 492 0 17 51
Re 251 0 − 62 106
Os 748 0 − 139 209
Ir 633 626 0 74 331
Pt 95 0 60 144
Au 20 0 8 62
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FIG. 2. Calculated energies of the transition elements relative to
that of the NM fcc structure. Red circle, blue square, green triangle,
and purple inverse triangle symbols denote the bcc, fcc, hcp, and
ω structures, respectively. Filled symbols connected by solid lines
indicate the NM state, while open symbols connected by dashed
lines are for the magnetic state that has the lowest energy among the
investigated ones. Note that the + − − state is the lowest in energy
only for the ω Fe, and the FM state is the lowest in energy for the
other systems. The lines are guides for the eyes.

scheme [37] with a smearing width of 0.4 eV was employed.
Total energies were minimized until the energy convergences
were less than 10−8 eV. Lattice parameters were optimized
under zero external stress. Magnetic moments on atoms were
determined from the electron density in corresponding Voronoi
cells.

Phonon frequencies of the ω structures were calculated
based on the harmonic approximation for a lattice Hamiltonian
using the finite-displacement method. Atomic displacements

of 0.01 Å for the 2 × 2 × 4 supercell of the ω unit cell
(including 48 atoms) were used to calculate the second-order
force constants. Each segment on band paths was sampled by
101 points to obtain phonon dispersion relations. The PHONOPY

code [38,39] was used for these phonon calculations.

III. RESULTS AND DISCUSSION

A. Energetics for the ω structure of transition elements

Table II summarizes the magnetic states with nonzero
magnetic moments found in the present calculations. Most of
the nonzero magnetic moments are found for the 3d transition
elements. The FM ω structure is obtained for Fe, Co, and Ni.
The ω Fe has also the + + − and the + − − magnetic states,
which are described in Fig. 1(c). Magnetic moments converge

FIG. 3. Calculated volumes of the transition elements relative to
that for the NM fcc structure. Notations are the same as Fig. 2.
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FIG. 4. Ratios of calculated lattice constants of the NM ω

structure to that of the NM bcc structure. The left and the right
panels are for aω/abcc and cω/abcc, respectively. Dashed horizontal
lines indicate the values coherent with the bcc structure described in
Eqs. (2) and (3). Lines are guides for the eyes.

to zero for the rest of the elements even for spin-unrestricted
calculations.

Table III shows calculated energies, lattice constants, and
volumes of the NM ω structure for 27 transition elements,
and Table IV shows the values for the other magnetic states.
Table V gives calculated magnetic moments on atoms. Vol-
umes of the magnetic states with nonzero magnetic moments
are larger than that in the NM state. The FM ω structure for
Co and Ni are 285 and 39 meV/atom lower in energy than the
NM state, respectively. For Fe, the + − − magnetic state is
the lowest in energy among the obtained magnetic states. The
FM ω Fe is 32 meV/atom higher in energy than the + − −
magnetic state and hence is thermodynamically less favorable.
The NM ω Fe, which is 90 meV/atom higher in energy than
the + − − state, has the highest energy among the obtained
magnetic states.

Table VI summarizes the energies relative to that of the
NM fcc structure, and Fig. 2 visualizes the result. For the NM
state, most of the elements in the same groups show the same
energy sequences for the investigated crystal structures. For
example, the sequence for the group 8 elements (Fe, Ru, and
Os) in the NM state is hcp → fcc →ω → bcc in order of
increasing energy. This result indicates that relative energies
are roughly determined from the occupation number for d

orbitals for these crystal structures. This tendency has already
been pointed out for the bcc, fcc, and hcp structures [40].
The present calculations reveal that the ω structure also
follows this rule. The NM ω structure tends to be lower in

FIG. 5. Calculated phonon dispersion relations of the NM ω structure for the 3d transition elements. Imaginary phonon frequencies are
shown by negative values.
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Y Zr Nb

Mo Tc Ru

Rh Pd Ag

FIG. 6. Same as Fig. 5 but for the 4d transition elements. For Tc, which has no stable isotopes, we use the relative atomic mass of 99Tc,
98.906, to calculate phonon dispersion relations. Note that differences of the atomic mass only scale phonon frequencies.

energy than the NM fcc structure for early transition elements
except for those in the group 3 (Sc, Y, and Lu) and to be higher
for late transition elements. This tendency is similar to that for
the NM bcc structure. The NM ω structure is also lower in
energy than the NM bcc for the elements in the groups 3, 4, 7,
8, and 9 and higher for the elements in the other groups. For
the elements in the groups 5 and 6 except for W, the NM ω

structure is the second lowest in energy among the investigated
crystal structures.

For the group 4 elements, the ω structure is the lowest or
the second lowest in energy among the investigated crystal
structures. The energies of the ω structure relative to those
of the hcp, which is observed in experiments at ambient
temperature and pressure, are −13, 0, and 39 meV/atom
for Ti, Zr, and Hf, respectively. The values for Ti and Zr
are substantially smaller than the energies of the ω structure
relative to those of the lowest-energy structure for the elements
in the other groups. The ω structure of the group 4 elements
is actually observed in experiments [2–4]. Our computational
result for Ti shows that the ω structure is lower in energy than
the hcp structure. This result has also been shown in a previous
report [27] and hence is correct at least within DFT calculations
using the GGA PBE functional. The ω and the hcp structures
of Zr have almost the same energies within our present

calculations. This implies that effects of temperature and
pressure are important to determine the thermodynamically
favorable structure of Zr around zero temperature and zero
pressure. The effects of temperature and pressure on Zr were
investigated in Ref. [41].

The + − − ω Fe is 170 meV/atom higher in energy than
the FM bcc Fe, which is observed in experiments at ambient
temperature and pressure. This energy difference between
the ω structure and the state in experiments is much larger
than those for the group 4 elements, which implies that the
ω structure of Fe is thermodynamically more difficult to be
formed than that of the group 4 elements. In contrast, several
experimental reports have claimed that the ω structure can
be formed in Fe-based alloys [16,17]. In these experiments,
the ω structure has been observed at twin boundaries of
the bcc or as precipitates in the bcc matrix. Such kinds of
structural imperfections and/or coherent stress at the interfaces
are maybe required to form the ω Fe. Effect of solute elements
is another possible reason for the formation of the ω structure in
the Fe-based alloys. If the solute elements thermodynamically
stabilize the ω structure more than the bcc, the Fe-based alloys
may prefer to form the ω structure. As mentioned above, the
NM ω structure is lower in energy than the NM bcc for the
elements in the groups 3, 4, 7, 8, and 9, and hence these
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FIG. 7. Same as Fig. 5 but for the 5d transition elements.

elements are expected to stabilize the ω structure more than
the bcc. In addition, the FM ω Co is −9 meV/atom lower in
energy than the FM bcc Co, and hence Co is also expected to
stabilize the ω structure more than the bcc.

Figure 3 summarizes the calculated volumes relative to
those of the NM fcc structure. For the NM state, most of the
elements in the same groups show the same volume sequences
for the investigated crystal structure, similarly to the case of
the relative energies. The NM ω structure tends to be smaller in
volume than the NM fcc structure for early transition elements
and to be larger for late transition elements.

Figure 4 shows the ratios of calculated lattice constants of
the NM ω structure to that of the NM bcc structure. Dashed
horizontal lines indicate the values coherent with the bcc
structure described in Eqs. (2) and (3). The values for the
elements in the groups 5 and 6 are largely deviated from the
coherent ones compared with the other transition elements.
Therefore, the ω structure may be largely deformed for the
elements in the groups 5 and 6 when it is coherent with the
bcc structure.

B. Dynamical stability of the ω structure

Figures 5, 6, and 7 show calculated phonon dispersion
relations of the NM ω structure for the transition elements. The

elements in the same groups show similar shapes of the phonon
dispersion relations. Heavier elements in the same groups tend
to have smaller absolute values of phonon frequencies.

The NM ω structure of Ti, Mn, Fe, Co, Zr, Tc, Hf, and
Re has no imaginary modes and hence is dynamically stable.
The ω structure of Ti and Zr is actually observed at ambient
temperature and pressure [2]. Although Hf is included in the
group 4 as well as Ti and Zr, the ω Hf has not been observed
in experiments at ambient temperature and pressure [3,4]. The
present calculations elucidate that this is not because the ω Hf
is dynamically unstable.

To our best knowledge, the ω structure has not been reported
for the group 7 elements (Mn, Tc, and Re), while the ω

structure for these elements is dynamically stable. For the
group 7 elements, the energies of the ω structure relative to
the hcp, which is the lowest in energy among the investigated
crystal structures, are 35, 65, and 167 meV/atom for Mn, Tc,
and Re, respectively. These energy differences are higher than
those for the group 4 elements. In experiments, furthermore,
Mn forms the antiferromagnetic (AFM) A12 structure as
the equilibrium state at 4.2 K and at ambient pressure [42].
First-principles calculations suggest that the energy of the
AFM A12 structure is 60 meV/atom lower in energy than
the NM hcp [43]. As a result, we can estimate that the ω

Mn is 95 meV/atom higher in energy than the experimental
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FM Fe ++  Fe

+  Fe NM Fe

FM Co NM Co

FM Ni NM Ni

Fe

Co

Ni

FIG. 8. Calculated phonon dispersion relations of the ω structure in the obtained magnetic states for Fe, Co, and Ni. The inset for the FM
ω Co is the magnified view around the � point, which is shown to confirm a phonon mode with an imaginary frequency.

equilibrium state. These results indicate that although the
ω structure of the group 7 elements is dynamically stable,
they are thermodynamically less favorable than other crystal
structures compared with the group 4 elements. Therefore,
the ω structure of the group 7 elements is probably more

difficult to be formed in experiments than that of the group 4
elements.

The ω structure of the elements in the groups 5 and 6
has phonon modes with imaginary frequencies and hence are
dynamically unstable. Several experimental reports, however,
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FIG. 9. Estimated energies of the binary alloys composed of the elements in the group 4 and those in the groups 5 and 6. The energies are
relative to that of the NM fcc structure for each alloy. The left side of each figure is for the elements in the group 4, and the right side is for the
elements in the groups 5 and 6.

have claimed that the ω structure can be formed in Ta and
Mo [14,15]. In these experiments, the ω structure has been
observed in the matrix of the bcc structure, and hence structural
imperfections and/or coherent stress at the interfaces between
the ω and the bcc structures may affect the formation of the ω

structure.
Figure 8 shows calculated phonon dispersion relations of

the ω structure in the obtained magnetic states for Fe, Co, and
Ni. Fe shows large differences among the magnetic states. The
FM and the + + − ω Fe have phonon modes with imaginary
frequencies and hence are dynamically unstable. In contrast,
the + − − and the NM ω Fe have no phonon modes with
imaginary frequencies and hence are dynamically stable. It
has been well investigated that dynamical stability of the bcc
and fcc Fe largely depend on their magnetic states such as NM,
FM, and PM ones [28,44,45]. The present result shows that
magnetic states also affect the dynamical stability of the ω Fe.
As shown above, the + − − state is also the lowest in energy
among the magnetic states for the ω structure, and hence the
ω Fe is expected to show the + − − state if it is formed.

The FM ω Co has a phonon mode with an imaginary
frequency at the � point (see the inset in Fig. 8), while the
NM ω Co has no phonon modes with imaginary frequencies.
Since the absolute value of the imaginary phonon frequency
is very small for the FM ω Co, it is difficult to conclude
whether the FM ω Co is actually dynamically unstable or not

at the present moment. The ω Ni does not show qualitative
differences between the FM and the NM states.

C. Energetics for the ω structure of binary alloys

The ω structure is frequently observed in alloys based on the
group 4 elements [1,5–13]. It should be, therefore, interesting
to investigate energetics of such alloys.

Since the occupation number for d orbitals roughly de-
termines the relative energies of the crystal structures of our
interest, we can approximately estimate the energies of a binary
alloy A1−xBx by linear interpolation as

Es(A1−xBx) ≈ (1 − x)Es(A) + xEs(B), (4)

where E represents the energy per atom, the symbols A
and B represent the elements in the alloy, x represents the
concentration of the element B, and the subscript s specifies
the crystal structure. Note that any kinds of atomic orderings
are not considered in this equation. The interpolated energy is
actually the same as that of the phase-separation state of the
same crystal structure. Nevertheless, this estimation is prob-
ably useful to qualitatively discuss thermodynamical stability
of crystal structures for alloys with specific compositions.

Figure 9 shows estimated energies of binary alloys com-
posed of the elements in the group 4 and those in the groups
5 and 6. Most of the binary alloys shown in the figure
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have the concentration range where the ω structure is the
lowest in energy among the investigated crystal structures.
The group 4 elements are richer in these concentration ranges.
In experiments, the ω structure is observed for the alloys
based on the group 4 elements with those in the groups 5
and 6 in the concentration ranges where the group 4 elements
are richer [1,5,7,8,10–13]. This experimental fact implies that
the ω structure is relatively favorable for these alloys in the
concentration ranges with rich group 4 elements. The present
computational result corresponds to this experimental fact.

The ω structure is favorable for these alloys because of the
following reason. The hcp and the ω structures have almost
the same energies for the group 4 elements, while the hcp
structure is substantially higher in energy than the ω structure
for the elements in the groups 5 and 6 except for W. Therefore,
when the concentration of the elements in the groups 5 and
6 increases, the ω structure of these alloys becomes lower in
energy than the hcp. Since the ω structure is substantially lower
in energy than the hcp only for the elements in the groups
5 and 6, this tendency is specific for the alloys composed
of the group 4 elements and those in the groups 5 and 6.
Most of the binary alloys have the concentration range where
the ω structure is the lowest in energy. However, when the
concentration of the elements in the groups 5 and 6 further
increases, the bcc structure becomes lower in energy than the
ω structure.

Note that even if the ω structure is the lowest in energy at a
certain concentration, this does not mean that the ω structure is
the equilibrium state at this concentration. When we consider
a phase-separation state composed of two different crystal
structures with different compositions, this phase-separation
state can be lower in energy than the ω structure. For example,
the estimated relative energy of the NM ω Ti0.75V0.25 to
the NM fcc is −88 meV/atom, while the mixture of 75%
NM hcp Ti and 25% NM bcc V has the relative energy
of −106 meV/atom. In experiments, the ω structure in
Ti-V alloys is actually thermodynamically metastable and
finally decomposes into the hcp and the bcc structures with
different concentrations of V atoms after sufficiently long-time
aging [46].

IV. CONCLUSION

Properties of the ω structure are systematically inves-
tigated for 27 transition elements from the viewpoints of
thermodynamical and dynamical stability using first-principles
calculations. The dynamical stability is investigated in terms
of phonon frequencies.

The occupation number for d orbitals roughly determines
relative energy and volume of the NM ω structure as well as
the other investigated crystal structures (bcc, fcc, and hcp).
For the group 4 elements (Ti, Zr, and Hf), the ω structure is
thermodynamically favorable and is dynamically stable. For
the group 7 elements (Mn, Tc, and Re), the ω structure is also
dynamically stable, but it is thermodynamically less favorable
compared with that of the group 4 elements. For the elements
in the groups 5 and 6, the lattice constants of the ω structure
are largely deviated from the values coherent with the bcc
structure.

Several 3d transition elements, namely Fe, Co, and Ni, have
the ω structure with nonzero magnetic moments. For the ω Fe,
the + − − state is the lowest in energy among the magnetic
states and is also dynamically stable. Co and Ni show the FM
ω structure, and it is lower in energy than the NM state.

Energies of binary alloys composed of the elements in the
group 4 and those in the groups 5 and 6 are estimated by linear
interpolation. Most of these alloys have a concentration range
where the ω structure is the lowest in energy among the inves-
tigated crystal structures. The group 4 elements are richer in
these concentration ranges. This result corresponds to the fol-
lowing experimental fact: for the alloys composed of the group
4 and those in the groups 5 and 6, the ω structure is observed
in concentration ranges where the group 4 elements are richer.
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[30] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[31] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[32] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[33] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[34] G. Kresse, J. Non-Cryst. Solids 192-193, 222 (1995).
[35] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[36] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[37] M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).
[38] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).
[39] A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106

(2008).
[40] H. L. Skriver, Phys. Rev. B 31, 1909 (1985).
[41] Y.-J. Hao, L. Zhang, X.-R. Chen, L.-C. Cai, Q. Wu, and D. Alfè,
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