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Anisotropic thermal expansion of bismuth from first principles
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Some anisotropy in both mechanical and thermodynamical properties of bismuth is expected. A combination
of density functional theory total energy calculations and density functional perturbation theory in the local
density approximation is used to compute the elastic constants at 0 K using a finite strain approach and the
thermal expansion tensor in the quasiharmonic approximation. The overall agreement with experiment is good.
Furthermore, the anisotropy in the thermal expansion is found to arise from the anisotropy in both the directional
compressibilities and the directional Grüneisen functions.
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I. INTRODUCTION

The semimetal bismuth is of interest both scientifically
and technologically. Indeed, it exhibits many fascinating
properties, such as giant magnetoresistance [1,2], thermoelec-
tricity [3,4], and large diamagnetism [5], that can be ascribed
to the peculiar electronic structure of bismuth, namely the
small overlap between the valence and the conduction bands
giving rise to a Fermi surface made of tiny electron and hole
pockets [6]. Real-world applications of bismuth related to the
aforementioned properties range from Hall magnetometry [7]
to diamagnetic levitation on the microscale [8].

The possibility to drive bismuth strongly out of equilibrium
by an ultrashort laser pulse is also behind a great amount
of experimental [9–14] and theoretical work [15–19]. From
a theoretical point of view, the ultrafast dynamics of co-
herent optical phonons has been tackled by means of first-
principles calculations where the lattice parameters are kept
constant. However, the development of strain from coherent
acoustic phonons on a picosecond time scale is still poorly
understood [20] and has never been addressed by ab initio
calculations. A prerequisite for achieving such a goal is to
demonstrate that the thermal expansion of bismuth at equilib-
rium can be understood and predicted by performing ab initio
calculations. A good strategy is to resort to the quasiharmonic
approximation, where the atoms of the crystal are considered
to undergo harmonic oscillations, but with frequencies that
depend on strain. This approximation, when combined with
density functional perturbation theory [21], has been found
to produce thermal expansion coefficients in good agreement
with experimental results well below the melting temperature
of isotropic [22–24] and anisotropic solids [25–28].

The paper is organized as follows. In Sec. II, we give
an account of the technicalities used to perform our first-
principles calculations. In Sec. III, we describe the crystal-
lographic structure of bismuth and compare our calculated
lattice constants with and without spin-orbit interaction (SOI)
to the experimental lattice constants at 4 K obtained from x-ray
measurements. In Sec. IV, we explain how the elastic constants
at 0 K can be computed using a finite strain method and make
a comparison with available experimental results indirectly
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obtained by measuring the sound wave velocities for different
directions and polarizations. We also discuss the impact of SOI
on the calculated elastic constants. In Sec. V, we introduce
the theory allowing the calculation of the thermal expansion
tensor of bismuth within the quasiharmonic approximation
and compare the thermal expansion coefficients parallel and
perpendicular to the trigonal axis to some measurements made
using an optical lever dilatometer. We also unravel the role
respectively played by the elasticity and the anharmonicity
in the anisotropy of the thermal expansion coefficients of
bismuth. Finally, the specific heat at constant pressure is
reported and compared with calorimetry measurements.

II. COMPUTATIONAL DETAILS

All the calculations are performed using the ABINIT
code [29]. We use a plane-wave basis set, the Hartwigsen-
Goedecker-Hutter (HGH) pseudopotentials [30], and the local
density approximation (LDA) for the exchange-correlation
functional. We carefully check the convergence of our results
with respect to the wave function cutoff and the k-point
sampling of the Brillouin zone. A 40 Ry cutoff and a
16 × 16 × 16 mesh for Brillouin zone sampling ensure that
our results (lattice parameters, elastic constants, phonon
frequencies) are well converged. The dynamical matrix is
explicitly calculated on a 8 × 8 × 8 q-point mesh using density
functional perturbation theory [31] and the phonon frequencies
are Fourier interpolated on a 32 × 32 × 32 q-point mesh in
order to compute the thermal expansion tensor. We include
SOI in all calculations but also present the lattice parameters
and elastic constants obtained without SOI in order to highlight
the crucial role played by SOI.

III. LATTICE PARAMETERS AT ZERO TEMPERATURE

Bismuth crystallizes in a rhombohedral structure, also
called the A7 structure, with two atoms per unit cell. The
vectors spanning the unit cell are given by

a1 =
(

aξ, − aξ√
3
,h

)
, a2 =

(
0,

2aξ√
3

,h

)
,

a3 =
(

−aξ, − aξ√
3
,h

)
, (1)
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TABLE I. Calculated LDA lattice parameters with and without
SOI compared to the experimental results of Ref. [32].

Rhombohedral structure Hexagonal structure

a0 (Å) α0 (deg) V0 (Å
3
) a‖,0 (Å) a⊥,0 (Å)

Experiment 4.724 57.35 69.97 11.796 4.533
Theory (without SOI) 4.653 57.48 67.12 11.610 4.475
Theory (with SOI) 4.697 57.53 69.10 11.714 4.521

where ξ = sin[ α
2 ] and h = a

√
1 − 4

3ξ 2. The length of the three
lattice vectors is equal to a and the angle between any pair
of vector is α. The two atoms belonging to the unit cell
are located at ±u(a1 + a2 + a3), where u is a dimensionless
parameter and a1 + a2 + a3 is parallel to the ternary axis (C3

axis). Alternatively, the structure can be viewed as a hexagonal
structure spanned by the following three lattice vectors:

ã1 = a1 − a2, ã2 = a2 − a3, ã3 = a1 + a2 + a3, (2)

where ã1 = ã2 ≡ a⊥ and ã3 ≡ a‖. The lattice cell parameters
of the two structures are related to each other by the following
relations:

a⊥ = 2a sin

(
α

2

)
, a = 1

3

√
3a2

⊥ + a2
‖,

a‖ = a
√

3 + 6 cos(α), sin

[
α

2

]
= 3

2
a⊥/

√
3a2

⊥ + a2
‖ . (3)

All the calculations have been performed using the rhom-
bohedral structure because it contains three times fewer
atoms than the hexagonal structure. However, the hexagonal
structure, as will be seen later, is more convenient to define
thermal expansion coefficients. Our calculated LDA lattice
parameters with and without SOI are given in Table I along
with the experimental results at 4.2 K [32]. The agreement
between theory and experiment is significantly improved when
SOI is included [33]. Indeed, a‖,0 and a⊥,0 are respectively
underestimated from 0.69% (1.58%) and 0.26% (1.27%) with
respect to experiments, leading to an underestimation of the
equilibrium volume V0 of 1.2% (4.1%) when SOI is included
(neglected). Thus, the inclusion of SOI is mandatory to achieve
a better description of the equilibrium lattice parameters of
bismuth.

IV. ELASTIC CONSTANTS AT ZERO TEMPERATURE

The elastic properties of a bismuth crystal can be inferred
from the theory of elasticity. The Lagrangian strain tensor η is
defined as

ηab = εab + 1

2

∑
k

εakεkb, (4)

where ε is the linear strain tensor which transforms a vector a
into (1 + ε)a. The energy of the crystal per unit cell E can be
expanded in power series with respect to the strain η as

E[η] = E0 + V0

2

∑
ijkl

Cijklηij ηkl + · · · , (5)

where E0 and V0 are the energy and the volume of the
unstrained unit cell and Cijkl are the elastic stiffness constants
of the crystal. Using Voigt’s notation, Eq. (5) can be written as

E[η] = E0 + V0

2

∑
αβ

Cαβηαηβ + · · · , (6)

where the fourth-rank stiffness tensor has been replaced by a
6 × 6 matrix C. By virtue of the rhombohedral structure A7
of bismuth (space group R3m), the matrix C can be cast in the
form

C =

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 0 0
C12 C11 C13 −C14 0 0
C13 C13 C33 0 0 0
C14 −C14 0 C44 0 0
0 0 0 0 C44 C14

0 0 0 0 C14 C66

⎞
⎟⎟⎟⎟⎟⎠

(7)

provided that the z axis is taken along the trigonal axis. Here,
only 6 elements are independent and C66 = 1

2 [C11 − C12].
In order to compute these elements, we consider six sets of
deformations parametrized by η:

η1 = (η,η,η,0,0,0), η2 = (η,0,0,0,0,0),

η3 = (0,0,η,0,0,0), η4 = (0,0,0,2η,0,0),

η5 = (η,η,0,0,0,0), η6 = (η,0,0,2η,0,0), (8)

where η is varied between −0.01 and 0.01 with a step of 0.001.
For each deformation labeled by i and each value of η, we build
the Lagrangian strain matrix η and solve Eq. (4) in an iterative
way to obtain the matrix ε. Thus, we generate a distorted cell
from the undistorted one by using the matrix ε and we compute
the total energy Ei(η) ≡ E[ηi] of the distorted structure where
the atomic positions are fully relaxed. Then, the energy per unit
volume is fitted by a polynomial of order 4:

Ei(η)

V0
=

4∑
j=0

Ai
jη

j , (9)

where Ai
0 = E0/V0, Ai

1 = 0, and Ai
2 can be expressed as a

function of the unknown second order elastic constants as

A1
2 = C11 + C12 + 2C13 + 1

2C33, A2
2 = 1

2C11,

A3
2 = 1

2C33, A4
2 = 2C44, (10)

A5
2 = C11 + C12, A6

2 = 1
2C11 + 2C14 + 2C44,

by using Eqs. (6) and (7). The computed total energy per unit
cell at 0 K including SOI (circles) together with the polynomial
fit (full lines) is displayed in Fig. 1 for the two deformations
respectively labeled η3 (a‖ varies while keeping a⊥ constant)
and η5 (a⊥ varies while keeping a‖ constant). The elastic
constant C33/2 [see Fig. 1(a)] is roughly four times smaller
than C11 + C12 [see Fig. 1(b)], reflecting the fact that bismuth
is much softer against a strain along the trigonal axis than
against a strain perpendicular to it. We do not show the energy
per unit cell for the four remaining deformations but compare
in Table II our calculated elastic constants with and without
SOI to the experimental elastic constants indirectly obtained
from the measurements of ultrasonic wave velocities by the
pulse echo technique [34]. The calculated elastic constants
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TABLE II. Calculated LDA elastic constants with and without SOI of Bi compared to the experimental results at 4.2 K of Ref. [34].

C11 (GPa) C12 (GPa) C13 (GPa) C14 (GPa) C33 (GPa) C44 (GPa)

Experiment [34] 69.3 24.5 25.4 8.40 40.4 13.5
Present work (without SOI) 84.6 30.2 27.9 9.8 46.1 16.0
Present work (with SOI) 67.7 25.0 24.3 5.9 40.6 8.7

without SOI are all overestimated with respect to experiments.
Taking into account SOI leads to a decrease of all elastic
constants that can be explained in a very qualitative way as
follows: SOI mixes bonding and antibonding states and not
only increases the equilibrium volume by 2.9% (see Table I)
but also softens the elastic constants by as much as 45% (the
larger effect being for C44). As shown in Table II, the overall
agreement between theory and experiment is significantly
improved when SOI is included. The only exceptions are the
C14 and C44 elastic constants which are underestimated by
about 30% with respect to experiment. Such a discrepancy
might be ascribed to experimental uncertainties associated
with the sample and its bonded transducer and/or to long range
effects, such as van der Waals interactions, not captured by the
LDA exchange-correlation functional [35]. It is also worth
mentioning that all the calculated elastic constants with or
without SOI satisfy Born’s mechanical stability for a rhombo-
hedral structure [36,37] ensuring that bismuth is stable at 0 K.

Inverting the matrix C defined in Eq. (7) leads to the
following expression for the compliance matrix:

S =

⎛
⎜⎜⎜⎜⎜⎝

S11 S12 S13 S14 0 0
S12 S11 S13 −S14 0 0
S13 S13 S33 0 0 0
S14 −S14 0 S44 0 0
0 0 0 0 S44 2S14

0 0 0 0 2S14 S66

⎞
⎟⎟⎟⎟⎟⎠

, (11)
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FIG. 1. Energy per unit cell (in meV) as a function of η

(dimensionless quantity) for the deformations respectively labeled
η3 (left panel) and η5 (right panel). The circles denote the results of
the LDA calculations including SOI whereas the full lines are the
result of the polynomial fit according to Eq. (9). The zero of energy
corresponds to the energy of the fully relaxed structure (unstrained
reference structure of volume V0).

where S66 = 2(S11 − S12). The anisotropy in the elastic prop-
erties of Bi can be ascertained by introducing a parallel and a
perpendicular compressibility respectively defined as

χ‖ = −∂ε33

∂P

= 2S13 + S33 = (−2C13 + C11 + C12)/M (12)

and

χ⊥ = −∂ε11

∂P
= −∂ε22

∂P

= S11 + S12 + S13 = (C33 − C13)/M, (13)

where M = C33(C11 + C12) − 2C2
13. The computed values of

χ‖ and χ⊥ with and without SOI are reported in Table III.
The compressibilities are underestimated with respect to
experiments when SOI is neglected. Taking into account SOI
leads to a very good agreement between the theoretical and
experimental compressibilities in accordance with the fact that
the elastic constants that play a role in the compressibilities are
much better described when SOI is included (see Table II). The
ratio of linear compressibilities χ‖/χ⊥ calculated when SOI is
included indicates that the contraction along the trigonal axis
is about 2.7 times larger than the contraction perpendicular to
it upon applying a hydrostatic pressure. As stated before and
illustrated in Fig. 1, Bi is stiffer perpendicularly to the trigonal
axis than parallel to it. The bulk modulus B that measures
a material’s resistance to uniform compression is defined as
B = −V0

∂P
∂V

= 1/χ , where the hydrostatic compressibility χ

is defined as χ = χ‖ + 2χ⊥. Using the values of χ‖ and χ⊥
reported in Table III, we obtain a theoretical value of 33.65
(39.15) GPa for the bulk modulus B when the SOI is included
(neglected). Thus, the theoretical value including the SOI
agrees well with the experimental value of 34.23 GPa at 4
K [34]. All the forthcoming calculations include SOI.

V. THERMAL EXPANSION

We now present an analysis of the thermal expansion of
bismuth using Grüneisen’s theory. We follow the approach of

TABLE III. Hydrostatic compressibilities χ , χ‖, and χ⊥ of Bi (in
Mbar−1) obtained by using the elastic constants computed with and
without SOI (see Table II) compared to the values inferred from the
experimental results at 4.2 K of Ref. [34]. The ratio χ‖/χ⊥ is also
given to quantify the anisotropy of the elastic properties of Bi.

χ χ‖ χ⊥ χ‖/χ⊥

Experiment [34] 2.92 1.72 0.60 2.86
Present work (without SOI) 2.55 1.58 0.49 3.24
Present work (with SOI) 2.97 1.71 0.63 2.71
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Schelling and Keblinski [26] and emphasize the differences
in the formalism used to treat the thermal expansion in
anisotropic and cubic solids. Since bismuth is an anisotropic
solid, the thermal expansion can be described in terms of
the 3 × 3 thermal expansion tensor α whose components are
written in terms of the strain tensor ε as

αab =
(

∂εab

∂T

)
σ

, (14)

where T is the temperature and where the subscript σ means
that the temperature derivative is taken at constant stress.
According to the generalized form of Hookes’s law, we have

εab =
∑
de

Sabdeσde, (15)

where σde and Sabde are the stress and the compliance elastic
tensor, respectively. Equation (15) can be inverted and leads to

σde =
∑
ij

Cdeij εij , (16)

where Cdeij is the stiffness elastic tensor. Thus, we have∑
de

SabdeCdeij = δaiδbj . (17)

By differentiating Eq. (17) with respect to T and by using
Eq. (15) and (16), it is straightforward to show that the
components of α can be written as

αab = −
∑
de

(
∂εab

∂σde

)
T

×
(

∂σde

∂T

)
ε

, (18)

where the temperature derivative of the stress tensor is taken
at constant strain. This equation generalizes the expression

α = 1

3B

(
∂P

∂T

)
V

(19)

defining the thermal expansion coefficient α of a cubic solid as
a function of the bulk modulus B and the partial derivative of
the pressure with respect to temperature at constant volume.
The stress tensor σde appearing in Eq. (18) is defined as

σde = 1

V0

∂F

∂εde

, (20)

where F is the Helmholtz free energy per unit cell of the crystal
defined as

F [ε] = E[ε] + Fvib[ε,T ] = E[ε] + 1

N

∑
q,λ

�ωλ(q)

2

+ kBT
1

N

∑
q,λ

ln

[
1 − exp

(
−�ωλ(q)

kBT

)]
, (21)

where the electron entropy is discarded and the vibrational
contribution Fvib[ε,T ] is computed within the harmonic
approximation. Here, ωλ(q) is the frequency of the phonon
mode (q,λ) corresponding to wave vector q and polarization
λ and N is the number of q points included in the summation.
Hence, combining Eq. (20) and Eq. (21) leads to

σde = 1

V0

⎡
⎣ ∂E

∂εde

− 1

N

∑
q,λ

γ de
q,λ�ωλ(q)

(
nq,λ + 1

2

)⎤
⎦, (22)

where nq,λ is the Bose occupation factor at temperature T for
a phonon with frequency ωλ(q) and γ de

q,λ is a generalized mode
Grüneisen parameter given by

γ de
q,λ = −∂ ln ωλ(q)

∂εde

. (23)

Note that σde is temperature dependent because of the second
term in Eq. (22) and that σde(T → 0) is renormalized by zero
point atomic motions. By deriving Eq. (22) with respect to
temperature T at constant strain ε, we get(

∂σde

∂T

)
ε

= −
∑
q,λ

γ de
q,λCq,λ, (24)

where

Cq,λ = 1

N

�ωλ(q)

V0

(
∂nq,λ

∂T

)
ε

(25)

is the contribution of mode (q,λ) to the lattice specific
heat per unit volume at constant volume CV . Thus CV

is given by

CV (T ) =
∑
q,λ

Cq,λ

= kB

V0

1

N

∑
q,λ

(
�ωλ(q)

2kBT

)2 1

sinh2

(
�ωλ(q)
2kBT

) . (26)

Finally, by using Eq. (15) and inserting Eq. (24) into Eq. (18),
we obtain

αab =
∑
q,λ

Cq,λ

∑
de

Sabdeγ
de
q,λ. (27)

In a completely harmonic lattice, the frequencies would be
independent of the strain and the γ de

q,λ would be zero, leading
to a zero thermal expansion. Equation (27) generalizes the
expression

α = 1

3B

∑
q,λ

Cq,λγq,λ, (28)

giving the thermal expansion coefficient α for a cubic solid.
Here Cq,λ is defined in Eq. (25) and γq,λ is the mode Grüneisen
parameter defined as

γq,λ = −∂ ln[ωλ(q)]/∂ ln V. (29)

Usually, the phonon frequencies ωλ(q) decrease as the vol-
ume V increases giving rise to positive Grüneisen param-
eters and thus to a positive thermal expansion coefficient
α at any temperature as can be inferred from Eq. (28).
Inserting the nonzero matrix elements of S allowed by
symmetry [see Eq. (11)] into Eq. (27) and taking into
account the fact that γ de

q,λ = 0 when d �= e leads to the
following expressions:

α⊥ ≡ α11 ≡ α22

=
∑
q,λ

Cq,λ

[
(S11 + S12)γ ⊥

q,λ + S13γ
‖
q,λ

]
(30)
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and

α‖ ≡ α33 =
∑
q,λ

Cq,λ

[
2S13γ

⊥
q,λ + S33γ

‖
q,λ

]
, (31)

where α⊥ and α‖ are the thermal expansion coefficient
respectively within the basal plane and along the ternary axis.
Here,

γ ⊥
q,λ ≡ 1

2

(
γ 11

q,λ + γ 22
q,λ

)
= − a⊥,0

2ω0
λ(q)

∂ωλ(q)

∂a⊥
(32)

and

γ
‖
q,λ ≡ γ 33

q,λ = − a‖,0
ω0

λ(q)

∂ωλ(q)

∂a‖
, (33)

where a⊥,0 and a‖,0 are the LDA lattice parameters reported
in Table I and ω0

λ(q) are the phonon frequencies calculated
for these lattice parameters. We do not compare our computed
ω0

λ(q) with available experimental data because the agreement
between theory and experiments has already been highlighted
in a thorough study based on calculations performed using
the ABINIT code [33]. A finite difference scheme based on
a relative variation of ±0.2% of a⊥ and a‖ around a⊥,0 and
a‖,0 is used to compute the partial derivatives of the phonon
frequencies ωλ(q) with respect to a⊥ and a‖. Hence, the mode
Grüneisen parameters respectively defined in Eq. (32) and
Eq. (33) are computed for a 32 × 32 × 32 q-points grid and
for all polarizations λ.

Figure 2 shows that the mode Grüneisen parameters γ
‖
q,λ

and γ ⊥
q,λ are rather scattered for the acoustic modes with quite

large positive values but also negative values. About 40% and
18% of the mode Grüneisen parameters are negative for the
first and second transverse acoustic branch (TA) while less
than 5% of the mode Grüneisen parameters are negative for
the longitudinal acoustic branch (LA).
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FIG. 2. Calculated Grüneisen parameters γ
‖
q,λ and γ ⊥

q,λ as a
function of phonon energy ω in meV (left vertical scale) together
with the phonon density of states (right vertical scale).

By comparing Figs. 2(a) and 2(b), we note that the mode
Grüneisen parameters γ

‖
q,λ are slightly larger than the mode

Grüneisen parameters γ ⊥
q,λ for acoustic modes with energy

ranging from 0 to 7.5 meV (TA+LA). On the contrary, the
mode Grüneisen parameters γ

‖
q,λ are almost 3 times smaller on

average than the mode Grüneisen parameters γ ⊥
q,λ for optical

modes with energy ranging from 8 to 13.5 meV (TO+LO). In
other words, the optical phonon frequencies are more sensitive
to a variation of a⊥ than to a variation of a‖ while the opposite
is true for the acoustic phonon frequencies.

We can also introduce macroscopic Grüneisen
functions

γ ⊥,‖ =
⎛
⎝∑

q,λ

γ
⊥,‖
q,λ Cq,λ

⎞
⎠/CV , (34)

where Cq,λ and CV are respectively defined in Eqs. (25)
and (26). The calculated lattice specific heat at constant
volume CV displayed in Fig. 3(a) is in good agreement with
the experimental lattice specific heat at constant pressure up
to the Debye temperature θD = 119 K [38]. As shown in
Fig. 3(b), the behavior of the temperature dependent Grüneisen
functions γ ⊥ and γ ‖ is quite complex with a crossover around
40 K. However, γ ⊥ and γ ‖ saturate towards γ ⊥

∞ = 1.32
and γ

‖
∞ = 1.11 when T 	 θD in accordance with the fact

that

lim
T →∞

γ ⊥,‖(T ) = 1

6N

∑
q,λ

γ
⊥,‖
q,λ , (35)

since Cq,λ(T ) → kB/V0N and CV (T ) → 6kB/V0 when T →
∞. Interestingly, the high temperature limiting values of γ ⊥

∞
and γ

‖
∞ extracted from experimental results [39] are estimated

to be 1.32 and 1.10 and are in excellent agreement with our
calculated values.
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FIG. 3. (a) Calculated lattice specific heat per unit volume
at constant volume CV (solid curve) or at constant pressure Cp

(dashed curve) compared to experimental data (open circles) from
Ref. [38] for temperatures T up to the melting temperature of 545 K.
(b) Grüneisen functions γ ⊥,‖ as a function of temperature T up to the
Debye temperature θD of 119 K [38].
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Following the approach of Munn [40], the principal
coefficients of thermal expansion defined in Eqs. (30) and (31)
can also be expressed as

α⊥ = CV [χ⊥γ ⊥ + S13(γ ‖ − γ ⊥)], (36)

α‖ = CV [χ‖γ ‖ − 2S13(γ ‖ − γ ⊥)], (37)

where the directional Grüneisen functions γ ⊥,‖ are defined in
Eq. (34) and the compressibilities χ‖ and χ⊥ are respectively
defined in Eqs. (12) and (13). It is a good first approxima-
tion to treat both the compressibilities and the compliance
matrix element S13 as constant, and regard the temperature
dependence of the coefficients of thermal expansion as due
solely to that of the heat capacity CV and the Grüneisen
functions γ ⊥,‖. Such expressions for the coefficients of thermal
expansion allow us to disentangle the role of the anisotropy
in either the Grüneisen functions or the elastic constants.
Figure 3(b) shows that γ ‖ = γ ⊥ for T = 40 K. Thus, the
anisotropy in the thermal expansion coefficients measured
by α‖/α⊥ is given by χ‖/χ⊥ = 2.71 (see Table III) and is
only due to the anisotropy in the elastic properties. When
moving away from the crossover temperature (T = 40 K),
the term proportional to γ ‖ − γ ⊥ starts to play a role as the
cross-compliance S13 = −C13/M (∼ −0.94 Mbar−1) has the
same order of magnitude as χ‖ and χ⊥ (see Table III). For
α‖, the correction arising from the anisotropy in the Grüneisen
functions is given by −2CV S13(γ ‖ − γ ⊥) and remains very
small at low temperature since CV → 0 when T → 0. Thus,
the correction is small and positive for T < 40 K since
S13 < 0 and γ ‖ − γ ⊥ > 0 in this low temperature regime.
However, the correction becomes non-negligible at higher
temperatures and negative as the sign of γ ‖ − γ ⊥ changes
when T > 40 K. The high temperature limit of this correction
is given by −12kBS13(γ ‖

∞ − γ ⊥
∞)/V0 and is sketched as a
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T (K)
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FIG. 4. Coefficient of linear thermal expansion of bismuth within
the basal plane (α⊥) and along the ternary axis (α‖) as a function
of temperature T up to the melting temperature. Experimental data
are denoted by circles [39] and lozenges [41]. The full curves are
calculated using Eqs. (36) and (37) while the dashed curves are
calculated by neglecting the anisotropy in the Grüneisen functions,
which is tantamount to putting S13 = 0 in Eqs. (36) and (37).

vertical downward arrow in Fig. 4. For α⊥, the same type
of conclusion holds but the sign and the magnitude of the
correction is changed since it is given by CV S13(γ ‖ − γ ⊥).
The high temperature limit of this correction is given by
6kBS13(γ ‖

∞ − γ ⊥
∞)/V0 and is depicted as a vertical upward

arrow in Fig. 4 since this quantity is positive. The thermal
expansion coefficients parallel (α‖) and perpendicular (α⊥)
to the ternary axis calculated neglecting (dashed curves)
and including (full curves) the anisotropy in the Grüneisen
functions are displayed in Fig. 4. At low temperature (T <

40 K), the anisotropy in the Grüneisen functions plays a minor
role since the full curves almost coincide with the dashed
curves. However, it starts to contribute at higher temperature
since it reduces α‖ and increases α⊥ significantly, thereby
reducing the anisotropy in the thermal expansion coefficients
given by α‖/α⊥ and bringing our calculated thermal expan-
sion coefficients in closer agreement with the measurements
made using an optical lever dilatometer [39,41]. Thus, the
quasiharmonic approximation based on quantities calculated
at 0 K provides quite accurate results compared to exper-
imental data [39,41], even near the melting temperature of
bismuth where renormalization effects due to the temperature
dependence of elastic constants might be important [24] and
where the applicability of the quasiharmonic approximation
is also questionable because large anharmonic effects are
expected. It is worth coming back to the calculated lattice
specific heat at constant volume CV shown in Fig. 3(a). Above
θD , the experimental lattice specific heat at constant pressure
deviates from CV and should in principle be compared to Cp.
A very simple reasoning based on thermodynamics [42] shows
that

Cp − CV = α2BT, (38)

where α ≡ 1
V0

( ∂V
∂T

)P = α‖ + 2α⊥ is the volumetric expansion
coefficient and B is the temperature dependent bulk modulus,
which can be approximated by its 0 K value. The calculated
Cp displayed in Fig. 3(a) coincides with the calculated CV

below the Debye temperature θD because α(T ) → 0 when
T � θD , making the correction α2BT very small in this
temperature range. When T > θD , α(T ) becomes constant
and the correction increases linearly with T . The agreement
between theory and experiment is improved since all the
experimental data (open circles) collapse on the calculated
Cp (dashed curve) up to room temperature.

VI. CONCLUSION

We performed first-principles calculations in order to under-
stand the anisotropic thermal expansion of bismuth. First, we
computed the elastic constants of bismuth at 0 K using a finite
strain approach. All the elastic constants, with the exception
of the C14 and C44 elastic constants, are found to be in good
agreement with experimental results [34] when the SOI is
included. We also calculated the hydrostatic compressibilities
along the ternary axis (χ‖) and perpendicular to it (χ⊥) and
found that the anisotropy in the directional compressibilities
is large since χ‖/χ⊥ ∼ 2.7. Then, we computed the thermal
expansion coefficients parallel (α‖) and perpendicular (α⊥)
to the ternary axis using the quasiharmonic approximation.
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These quantities are found to be in close agreement with
experiments [39,41]. Another outcome of our calculations
is that the anisotropy in the thermal expansion coefficients
is essentially governed by the anisotropy in the mechanical
properties below the Debye temperature θD while both the
anisotropy in the directional compressibilities and that in
the directional Grüneisen functions play a role at higher
temperatures. Finally, this work is a first step towards a

first-principles description of the thermal/nonthermal expan-
sion in laser-excited bismuth [20], where the electron system
is not equilibrated with the phonon system [17,18].
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