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Stacking fault energetics of α- and γ -cerium investigated with ab initio calculations
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At ambient pressure the element cerium shows a metastable (t1/2 ∼ 40 years) double-hexagonal close-packed
β phase that is positioned between two cubic phases, γ and α. With modest pressure the β phase can be
suppressed, and a volume contraction (17%) occurs between the γ and the α phases as the temperature is varied.
This phenomenon has been linked to subtle alterations in the 4f band. In order to rationalize the presence of
the metastable β phase, and its position in the phase diagram, we have computed the stacking fault formation
energies of the cubic phases of cerium using an axial interaction model. This model links the total energy
differences between hexagonal closed-packed stacking sequences and stacking fault energetics. Total energies
are calculated by density functional theory and by dynamical mean-field theory merged with density functional
theory. It is found that there is a large difference in the stacking fault energies between the α and the γ phase.
The β-phase energy is nearly degenerate with the γ phase, consistent with previous third-law calorimetry results,
and dislocation dynamics explain the pressure and temperature hysteretic effects.
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I. INTRODUCTION

Cerium shows unconventional phase equilibria that have
been linked to subtle alterations in the 4f band [1–3]. Since the
discovery of the unconventional phases by Bridgman nearly
100 years ago [4], there have been numerous papers written
on the subject. Although the majority of these papers have
focused on the relationship between the electronic structure
and the volume (for a review see Ref. [5]), our focus is on
the structural differences and the presence of the β phase. At
zero pressure, cerium crystallizes in the high-temperature δ

phase at T � 1000 K and transforms into the face-centered
cubic (fcc) γ phase at T � 900 K. Near room temperature, the
γ phase transforms into the double-hexagonal close-packed
(dhcp) β phase. A further decrease in temperature results
in the β → α transition, where α-Ce is a low-volume fcc
phase. It has been known for many years that x-ray diffraction
shows that the γ and α phases are isostructural [6,7]. Recently
a symmetry breaking was reported, where the α phase
forms a quadrupolar-ordered variation on an fcc lattice with
Pa3̄ symmetry, as measured by nuclear perturbed angular
correlation spectroscopy [8].

The phase equilibria near room temperature involve com-
petition between thermodynamic and kinetic equilibrium
between the γ and the β phases. This competition has direct
bearing on the standard state of cerium. Based on a series of
third-law calorimetry experiments carried out 20 years apart,
the β phase was shown to slowly transform (∼80 years) into
the γ phase at room temperature and ambient pressure [9]. The
present study is motivated by the realization that the presence
of the β phase at room temperature in the phase diagram is
metastable, and its relationship to the γ -to-α transition has
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not been described. It was anticipated that the stacking fault
energies (SFEs) could explain the origin of defect motion and
the presence of the metastable β phase.

Stacking faults are common crystalline defects. In face-
centered cubic metals they can be seen as a disruption in
the perfect stacking sequence ABCABCABC . . . in the
(111) direction, the most common fault being the intrinsic
stacking fault (isf) ABCA|CABC . . . , where | indicates the
position of the isf. The stacking fault energy is linked with
the probability of errors in the stacking sequence of atomic
layers in materials and sets the width of the ribbon formed
by the Schockley partials. This energy has been correlated
with several important mechanical properties like hardening,
twin formation, and plasticity [10,11]. Insight into factors
driving the above-mentioned phase equilibria can be gained
by examining the cerium crystallography (see Fig. 1). With
the exception of a stacking fault, the β phase has a crystal
structure nearly identical to that of to the γ and α phases
and may be represented as a close-packed structure with the
stacking sequence going as ABACAB (Fig. 1). Altogether
it is difficult to distinguish the influence of the β phase on
the γ -to-α transition, compounded by the fact that, outside
of a few papers, there are few data to draw upon. It has
been shown [12] by electron energy-loss spectroscopy that
even though γ - and β-Ce are similar in volume and atomic
coordination number, their spectral features differ, indicating
that changes in the (111) stacking sequence might influence
the electronic structure.

The repeated transformation of γ -Ce to α-Ce induces
plastic deformation in the crystal, thereby retarding the
transition [13]. It has been argued [14] that the repeated cycling
between the γ and the α phases would introduce dislocations.
Because the stacking fault energy has a close correlation with
the mechanical properties and deformations, our efforts have
been directed at a thorough calculation of the SFEs for cerium
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FIG. 1. Cerium phase diagram near ambient temperature and
pressure. The crystal structures and stacking arrangements of the γ ,
β, and α phases are shown. The structure of the γ phase is projected
along the close-packed (111) planes (horizontal rows of atoms) in the
[110] direction to emphasize the stacking sequences. The structure
of the β phase is shown along the close-packed (001) planes in
the [100] direction. The possible orbital ordering is shown for the
α structure, as determined by nuclear perturbed-angular-correlation
spectroscopy [8].

using density functional theory (DFT) [15,16]. To validate our
results we have also performed selected simulations based on
the dynamical mean-field theory (DMFT) and the disordered
local moment (DLM) approach. We show that there are large
differences in the SFEs between the γ and the α phases. These
differences are coupled to the order parameter of the transition.
It was determined that the dhcp β phase is nearly degenerate
with the fcc γ phase at zero pressure. These results agree with
third-law calorimetry, which shows a slow reversion of the β

phase into the thermodynamically stable γ phase. We comment
on the similarity of this problem to the sluggish transformation
of fcc-stabilized δ-plutonium alloys into a euctectic mixture
of Pu3Ga and monoclinic plutonium [17].

II. COMPUTATION TECHNIQUES

The intrinsic stacking fault energy is defined as the energy
needed to create the intrinsic stacking fault in an otherwise
perfect fcc stacking sequence. The formation energy needed
to create an intrinsic stacking fault at ambient pressure can be
expressed as

γisf = Eisf − E0

A
, (1)

where Eisf and E0 are the total energies for the system with
and without stacking faults, and A is the area of a stacking
fault. Several methods have been used to calculate γisf using
an ab initio approach. The supercell method provides a direct
route to calculate the energies of the stacking faults [18]. Here
we have also used the axial interaction model (AIM), which
maps the interaction between stacking layers to an Ising-type
model [19,20]. The AIM makes it possible to elucidate the
dependence of the SFE on energy differences between close-
packed structures. It has previously been used to study stacking
fault energies in transition metals [21], binary alloys [22], and
ternary steel alloys [23]. The mapping gives rise to an infinite
sum of interaction parameters between layers, one sum for each
kind of stacking sequence. Truncation of these sums to second
order in the interaction parameters, and subsequent elimination
of the interaction parameters, gives a first approximation to the
SFE as

γ 2nd
isf = 2(Ehcp − Efcc)

A
, (2)

while going to third order gives

γ 3rd
isf = Ehcp + 2Edhcp − 3Efcc

A
. (3)

Efcc, Ehcp, and Edhcp are the total energies for the fcc,
hexagonal close-packed (hcp; having ABABAB . . . stack-
ing), and dhcp structures. The calculations were done by
first determining the fcc (111)-plane lattice constant a

(111)
fcc ≡

afcc/
√

2 by a volume minimization. The fcc (111) plane
imposes a constraint on the faulted area [24]. Hence, energy
differences for the hcp and dhcp structures were obtained by
optimizing the c lattice constant, while keeping the in-plane
lattice constant fixed, so that ahcp = adhcp = a

(111)
fcc .

The next issue is to find a method that can be used to
calculate the needed energies for the AIM model and the
supercell. For cerium, several procedures have been developed
over the years in order to correctly capture the α-γ phase
transition. Using only conventional exchange-correlation func-
tionals within DFT, like the local density approximation (LDA)
or the generalized gradient approximation (GGA), the volume
collapse cannot be easily reproduced, however, it is possible to
model the two cubic phases separately. Traditionally, this was
done by assuming that the f electron in α-Ce is itinerant and
is part of the valence band, while in γ -Ce the f electron
is in the atomic core. This approach has been employed
many times, giving reliable results with respect to equilibrium
properties [25–27]. However, this approach exhibits several
differences from data obtained from spectroscopy [28,29].
One is the absence of a quasiparticle peak at the Fermi level,
a feature observed for both the α and the γ phase. In recent
decades, extensions of DFT with DMFT [30] have proven
to be able to accurately describe systems where electronic
correlations are of importance. There exist several studies of
cerium where this approach is employed, using different ways
to solve the DMFT impurity problem [33–37]. These studies
all provide an improved description of many equilibrium
properties as well as the spectral functions and, also, shed
light on the origin of the volume collapse transition. However,
these methods deviate from the ab initio approach in that they
depend on external parameters such as the Hubbard Coulomb
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term U , choice of double counting correction, and method
used to choose the correlated orbital subset. The solution of
the effective impurity problem introduces additional errors,
which make it difficult to reach the required precision for
stacking fault energies [38]. In light of these disadvantages, and
given that we are mainly interested in stacking fault energies
for α-Ce and γ -Ce separately, we find it more convenient to
use conventional density functional theory for the main core
of our study. To analyze the role of strong correlations we
have also performed selected DMFT calculations, as described
below.

The main part of the calculations were done using the
Vienna Atomistic Simulation Package (VASP) [31]. This
package uses a projected augmented wave (PAW) basis set.
The exchange-correlation functional was computed within the
GGA [32], using the Perdew-Burke-Ernzerhof parametriza-
tion [39]. In a previous study [40] the LDA [41] of the
exchange-correlation functional has been shown to give
equilibrium properties for the lanthanides farther away from
the experimental values than the Perdew-Burke-Ernzerhof
parametrization does. We have performed a few calculations
with the LDA as a frame of reference. The k-point sampling
for the fcc structure was done utilizing a 29 × 29 × 29 uniform
mesh centered at the � point, and a 29 × 29 × 23 mesh
was used for hexagonal structures. A tetrahedron method
containing Blöchl corrections [42] was used to handle the
k-point integration. A cutoff energy of 500 eV was used for
the wave functions. Spin-orbit coupling was neglected for
the valence electrons. Equilibrium volumes and bulk moduli
were computed for a number of volumes around the minimum
energy and were fit to a Morse equation of state [43]. Supercells
consisted of 12 layers and were constructed following Ref. [18]
and using ideal fcc packing between (111)-plane layers. We
treated the 4f electron in α-Ce as an itinerant valence electron
using a PAW potential with valence configuration 6s25d1f 1.
No attempt was made to model the quadrupolar-ordered
structure, and the site symmetry was spherical in α-Ce. The
4f electron in the γ phase was regarded as localized. Hence
we treated the 4f electron as a core electron by using a PAW
potential with valence configuration 6s25d1f 0. The 5s2 and
5p6 states were treated as semicore states for both potentials.
In the following, we denote the potential used to model α-Ce
as the α potential and the potential used to model γ -Ce as the
γ potential.

To explore the effect of strong electronic correlations
on our results, we also performed additional calculations
based on density functional theory calculations merged with
dynamical mean-field theory (DFT + DMFT). We have used
the electronic structure code RSPt [44,45], which is based on the
full-potential linear muffin-tin orbital (FPLMTO) method and
is particularly suitable for heavy elements such as lanthanides
and actinides. Given that we intend to model the α and
γ phases separately, we used two distinct solvers for the
effective impurity model arising in DMFT. This procedure
is aimed at describing the localized versus itinerant regimes
and has been successfully applied to the Ce pnictides and γ Ce
itself, giving good results for both spectral and ground-state
properties [46]. γ -Ce was considered within the Hubbard I
approximation (HIA) [47] and the Hubbard U was set to U =
7 eV, in agreement with previous studies [48,49]. The Hund’s

exchange J was calculated by using partially screened Slater
integrals [48], which gave a value of J = 0.786 eV. α-Ce was
addressed through the spin-polarized T -matrix fluctuation-
exchange (SPTF) solver [50], and the Coulomb interaction
parameters were chosen to be U = 4.5 eV and, again, J =
0.786 eV. The drastic reduction in the value of U for the α phase
is motivated by that the SPTF solver is known to overestimate
the strength of correlation effects, due to underscreening of
the Coulomb interaction [52]. Within this approach, GGA +
DMFT simulations were carried out with full convergence
over both self-energy and electron density. More details on
the computational scheme, including the constructions of the
local orbitals, can be found elsewhere [46,51]. The FPLMTO
basis set was set up to include 6s, 6p, 5d, and 4f electrons,
as well as the semicore states 5s and 5p. The 5f states have
also been added to increase the flexibility of the basis. Three
kinetic energy tails were considered for 6s and 6p states, while
only two were used for the rest. We used 726, 2048, and 3703
k-points (in the full Brillouin zone), respectively, for the hcp,
fcc, and dhcp structures. DMFT simulations were carried out
at a temperature of 400 K, using a total of 2048 fermionic
Matsubara frequencies.

γ -Ce has been shown to exhibit paramagnetism follow-
ing the Curie-Weiss law, while α-Ce behaves as a Pauli
paramagnet [1]. DMFT can capture the paramagnetic metal
phase. We also examined the paramagnetic phase of γ -Ce
in a second way, with the exact muffin-tin orbital (EMTO)
method [53–55]. Here the f electron was treated as a core
electron and placed in one of the spin channels, making the
core electron density spin-polarized. The core was kept frozen
during the self-consistent iterations, while the valence states
where treated making use of the disordered local moment
approach within the coherent potential approximation [56].
Random fluctuations of the local moment were modeled by
a substitutional alloy with two spin channels, Ce0.5,↑Ce0.5,↓,
where the arrows indicate the different spin channels. Note that
this method assumes an ideal paramagnet, i.e., no interaction
between neighboring spins takes place and completely ignores
any magnetic short-range order effect. On the other hand, the
EMTO-DLM allows for surviving atomic (local) moments
embedded in a nonpolarized effective medium. The valence
density and Fermi level were found by complex contour
integration using a semicircle of diameter 1.8 Ry with 32
integration points. The 5s2 and 5p6 states were treated as
semicore states. The angular momentum states included in
the valence were s, p, and d. Between 500 and 600 k-points,
depending on the structure, were used for the integration in
the irreducible Brillouin zone, and the LDA was used for the
exchange-correlation potential.

The Appendix provides a comparison among the three basis
sets used in this study.

III. RESULTS

A. Equilibrium properties

Equilibrium volumes and bulk moduli were computed to
validate our approach. Values for α-Ce, together with data
taken from Ref. [27] and experimental results, are listed in
Table I. The GGA is seen to underestimate the experimental
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TABLE I. Calculated and experimental volume (Å
3
), bulk modulus B0 (GPa), and stacking fault energies (mJ/m2) of α-Ce and γ -Ce.

Calculations were done using the GGA for the exchange-correlation potential.

α-Ce γ -Ce

Expt. This work Ref. [27] Expt. This work Ref. [27]

Volume 28.17 26.47 27.74 34.36a 37.72 37.31
B0 20–24,b 29a 39 39.1 19c 30 28.8
γ 2nd

isf 301 58
γ 3rd

isf 311 16
γ

supercell
isf 369 −0.2

aFrom Ref. [57].
bFrom Ref. [58].
cFrom Ref. [61].

volume, while overestimating the bulk modulus. Similar
results have been observed earlier for α-Ce [59,60], where
different basis sets were used. In parallel with the GGA
the LDA for the exchange-correlation potential was also
investigated for the α potential. In this case the equilibrium

volume becomes 22.98 Å
3

and the bulk modulus becomes
58 GPa, showing that these quantities are farther away from
experiment. As shown in Sec. III B, the LDA still gives
structural energy differences that are similar to those of the
GGA.

A second-order AIM approximation gives an intrinsic
SFE γ 2nd

isf = 301 mJ/m2, while a third-order approximation
gives γ 3rd

isf = 311 mJ/m2. A direct supercell approach yields
γ

supercell
isf = 369 mJ/m2. The difference between the AIM

and the supercell results could possibly be attributed to
the use of ideal stacking in the supercell; i.e., the struc-
ture was not fully relaxed. This would introduce internal
strain in the supercell, increasing its energy. We found that
the c/a ratios of the hexagonal structures are relatively
high at low volumes. This would indicate larger devia-
tions from the ideal stacking around the stacking fault in
α-Ce.

Calculated equilibrium results for γ -Ce are listed together
with data from other sources in Table I. The γ -Ce potential
along with the cited results tend to overestimate the volume and
bulk modulus. A second-order approximation gives an intrinsic
SFE γ 2nd

isf = 58 mJ/m2, while going to the third order leads to
γ 3rd

isf = 16 mJ/m2. Inspection of the result from the supercell
γ

supercell
isf = −0.2 mJ/m2 demonstrates that the SFE is lowered

even further and becomes 0 within the numerical accuracy of
our calculations. The large decrease in SFE between second
and third order in the AIM can be understood by examining
Eqs. (2) and (3), where the latter equation contains the energy
of the dhcp structure, while the former does not. In the
case of γ -Ce, the dhcp-fcc energy difference is −0.4 mRy,
indicating that the dhcp structure is nearly degenerate with the
fcc structure, similar to lanthanum [62]. Note that the Debye
temperature has been determined experimentally as 131 K for
β-Ce and 127 K for γ -Ce [63]. The difference in the Debye
temperatures comes close to stabilizing γ -Ce over the β phase
at experimental volume and room temperature [64]. This result
can be inferred from third-law calorimetry [9], which shows
that β-Ce transforms into γ -Ce, albeit slowly.

B. Energy differences

There is a marked increase in the SFE as the system
goes from the γ to the α phase. Two main mechanisms
are responsible. The stacking fault area A decreases, and
the structural energy difference between fcc and hexagonal
lattices increases, as γ → α. This highlights the importance
of structural energy differences that have been used in the
determination of the SFE, as can be seen by inspection of the
AIM approximations, Eqs. (2) and (3). The dependence can
be better illustrated by rewriting Eqs. (2) and (3) as

γ 2nd
isf = 2�Ehcp

A
, (4)

γ 3rd
isf = �Ehcp + 2�Edhcp

A
, (5)

where �Ehcp and �Edhcp stand for the hcp-fcc and the dhcp-fcc
energy differences. We investigated these differences as a
function of the volume. Recall that the in-plane hexagonal
lattice constant was kept fixed, while the c lattice constant was
relaxed in the SFE calculations. If the in-plane lattice constant
were to be decreased (increased) from its equilibrium value,
the c lattice constant would drastically increase (decrease) to
unphysical values, owing to the Poisson effect [65]. Therefore,
in the following calculations, the in-plane and c lattice
constants were relaxed as a function of the volume when �Ehcp

and �Edhcp were computed.
Figure 2 shows �Ehcp as a function of volume for the α and

γ potentials within the GGA. The α potential (black squares)
shows a maximum (∼6.5 mRy) around the calculated α-Ce
volume. As the volume increases, �Ehcp decreases to around
∼2 mRy around the γ -Ce volume. A similar trend is seen
for the γ potential (black triangles), with �Ehcp reaching a
maximum (∼3 mRy) close to the α-Ce volume. If the volume
is decreased below the equilibrium volume of α-Ce, �Ehcp

decreases again. This effect has been reported in α-Ce, using
the local density approximation for the exchange-correlation
potential [66]. Therefore a larger volume (above Vα) will lead
to a smaller �Ehcp and, hence, to a lower stacking fault energy.
In Fig. 2, results from other procedures to model the α and γ

potentials are also shown. Green circles correspond to the same
electronic configuration as the GGA α potential, but within the
LDA. As shown in the previous section, the LDA gave worse
results for the equilibrium volume and bulk modulus compared
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with the GGA. For the energy differences, however, no large
discrepancy between the LDA and the GGA pseudopotentials
can be seen.

The blue stars in Fig. 2 correspond to results from the
FPLMTO + SPTF aimed at modeling the α phase. It is clear
that the trend is the same as that obtained with the PAW method
using the α potential. Hence, the trend of decreasing �Ehcp

is seen also for the DMFT results. We can now discuss the
FPLMTO + HIA results for the γ phase. It was shown in
a previous study [46] that the equilibrium volume and bulk
modulus within the FPLMTO + HIA are in better agreement
with experimental data than the present PAW data. However, as
is clear from Fig. 2, the energy differences �Ehcp are still rather
similar to those obtained with the PAW for the γ potential.
The two sets of data, the γ potential (black triangles) and
the FPLMTO + HIA (red diamonds), differ in the steepness
of the curve. However, it is not simple here to understand
what is due to the DMFT corrections and what is due to
differences in different electronic structure codes. In fact, even
parent FPLMTO simulations, i.e., before the DMFT correction
is applied, exhibit a steeper curve than the α potential (see
the Appendix). This may be due to the inherent differences
between a full electron code and a PAW code, as well as to the
different treatments of spin-orbit coupling.

We should note here that if we were using an exact method
Fig. 2 should report only a single curve going from the γ -Ce
volume to the α-Ce volume. We use a twofold approach aiming
at describing the two phases around their own volumes. We can
expect the physical curve to be located in the region included
between our curves.
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FIG. 2. �Ehcp = Ehcp − Efcc as a function of volume for both
the α (black squares, solid line) and the γ (black triangles, dashed
line) potentials, within the GGA. Calculated equilibrium volumes
for α-Ce, Vα , and γ -Ce, Vγ , are represented by dotted lines. Energy
differences calculated within the LDA for the α potential are shown
by green circles. Results from the FPLMTO + DMFT, utilizing the
SPTF and HIA impurity solvers, are represented by blue stars and
red diamonds, respectively. Values from the EMTO-DLM treatment
of the paramagnetic phase of γ -Ce are shown as maroon triangles.
Inset: c/a ratio as a function of volume for both potentials. The ideal
c/a ratio (∼1.633) is shown by the dotted line.
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FIG. 3. �Edhcp = Edhcp − Efcc as a function of the volume for
both the α (squares, solid line) and the γ (triangles, dashed line)
potentials, the FPLMTO + DMFT with the SPTF solver (blue stars),
and the FPLMTO + DMFT with the HIA impurity solver (red
diamonds). Calculated equilibrium volumes for α-Ce, Vα , and γ -Ce,
Vγ , are represented by dotted lines. Inset: c/2a ratio as a function of
the volume for both potentials.

In order to determine whether magnetism has any effect
on the energy differences, we treated γ -Ce as a paramagnet
within the EMTO-DLM approximation (see maroon triangles
in Fig. 2). The energy differences �Ehcp between the non-
magnetic EMTO method calculations and the paramagnetic
calculations were of the order of �0.1 mRy, and hence the
paramagnetic behavior hardly changes the above picture. It
was noted in the calculations that the polarization of the core
density gave only a small exchange splitting of the valence
states, of the order of ∼0.05 μB , which gives a change
in the total energy of the order of ∼1 mRy and lower for
structural energy differences. The �Ehcp calculated within the
EMTO-DLM method is roughly ∼0.5 mRy larger compared
to the PAW results (dashed line), however, the slope of the
curve is basically the same, indicating a similar trend. To
briefly summarize, the trend of a decreasing hcp-fcc energy
difference (and hence decreasing stacking fault energy) seems
to be quite robust with regard to the choice of how to model
the α and γ phases.

In Fig. 3, �Edhcp = Edhcp − Efcc can be seen for both the
α (black squares) and the γ (black triangles) potentials as a
function of the volume. The same trends (decreasing energy
difference with increasing volume) as for the hcp case are seen.
Around the equilibrium volume of α-Ce, the α potential gives
an energy difference �Edhcp ∼ 3.5 mRy, which is roughly half
that of �Ehcp at the same volume. Referring to Eq. (5) for the
third-order SFE in the AIM, it can be seen that this indicates
that there should not be a large change in the SFE upon going
from second to third order in the AIM. This is indeed the case
since γ 2nd

isf = 301 mJ/m2 and γ 3rd
isf = 311 mJ/m2 for α-Ce in

the AIM (see Table I). For the γ potential, the magnitude of
�Edhcp is � 1 mRy for the whole volume range. This makes
the dhcp and fcc structures nearly degenerate and gives a low
SFE for γ -Ce according to the AIM.
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In Fig. 3 we also show �Edhcp calculated using energies
from the FPLMTO + DMFT approach, using the SPTF (blue
stars) and the HIA (red diamonds) as the impurity solver. Using
the FPLMTO + DMFT approach, a trend similar to that for
�Ehcp can be seen upon comparison with the PAW results;
i.e., a steeper energy difference curve is observed as a function
of volume for γ -Ce.

IV. DISCUSSION

The role of the SFE on the γ -α transition is of interest. It
has been known that the phase diagram of Ce shows signs of
pressure and temperature hysteretic effects [1,13]. If γ -Ce
is held at room temperature and subjected to hydrostatic
pressure, it transforms to α-Ce at ∼0.8 GPa. Once the
pressure is released, the α-Ce will transform back to the
γ phase at ∼0.6 GPa. The hysteretic region in the cerium
temperature-pressure phase diagram is wedge shaped, with an
apex located at the critical point (C.P.) [1] (see Fig. 4). This
wedge is broadened as the temperature is lowered and, finally,
reaches its base when it enters the metastable β phase. It was
shown by Moore et al. [14] that the γ -α transition preserves
the crystal orientation of the fcc structure. The resulting
cerium crystal would have to form an interface between the
host and the precipitates. Owing to the volume mismatch
between the two phases, dislocation lines would have to be
introduced at the interface. When going from γ → α, creating
dislocations in both phases is relatively easy due to the low
SFE (Fig. 2). Instead, when going from α → γ , the formation
of dislocations is energetically more costly than before due
to the large SFE that delays the phase transformation. Hence,
to a large extent the pressure hysteresis should be attributed to
the very strong volume and phase dependence of the SFE.

A decreasing volume (increasing pressure) will lead to
an increase in the SFE, making dislocation emission more
problematic. Since it is about 30% easier to compress the
γ phase compared to the α phase (Table I), an intermediate

β

FIG. 4. Cerium pressure-temperature phase diagram showing the
hysteresis during the γ � α transition. The line corresponding
to the γ → α transition and the domain of the β phase was taken
from the data in Ref. [9]. The line corresponding to the α → γ

transition was estimated from data in Ref. [13].

pressure (�1.5–2 GPa) will have a larger SFE-enhancing
effect on the gamma phase, bringing the two SFEs close
to each other and thus reducing the width of the hysteretic
region. However, at very low pressures this mechanism is
less effective, and the large difference between the two SFE
values creates large stresses upon the phase transition. This
raises an interesting hypothesis in that the β phase acts as
a dislocation reservoir to accommodate the strain caused
by the α-γ transition. The dhcp phase is a mixture of fcc
and hcp lattices, and its energy difference, relative to fcc,
is smaller than the difference between hcp and fcc. The β

phase is barely stable on energetic grounds, and we surmise
that stacking faults can accommodate dislocations generated
as a result of the large volume mismatch between α and
γ -Ce. The sluggish transformation of β-Ce into γ -Ce is
reminiscent of the slow (t1/2 = 5500 years) decomposition
of fcc-stabilized plutonium phases into a eutectoid [17]. In
this case the thermodynamic driving forces are favorable for
pushing δ-Pu into a eutectic mixture containing Pu3Ga and
α-Pu. However, the deformation and dislocation formations
in δ-Pu suggest that kinetics compete with thermodynamic
equilibrium conditions.

V. CONCLUSION

In summary, total formation energies for cerium were
computed using an axial interaction model that maps the
interaction between stacking layers to an Ising-type model. We
find a large difference in the stacking fault energies between
the α and the γ phases and a β-phase energy that is nearly
degenerate with the γ phase. Our work represents a step
toward the understanding of dislocations in cerium, which
is still a largely unexplored area. In each of the computational
approaches used here one can argue about specific assumptions
and limitations, but the fact that all calculations produce
the same trend gives us confidence in the overall approach.
Although we do not expect significant differences for the α and
γ phases separately, the transition from one energy difference
curve to another, which is expected to happen in between
the two equilibrium volumes, needs to be better clarified to
analyze the detailed relation between the electronic correlation
and the stacking fault energies.

ACKNOWLEDGMENTS

We thank Börje Johansson, Bob Albers, Angus Lawson,
and Jon Lawrence for helpful discussions. A.Ö. and L.V.
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FIG. 5. Comparison between �Ehcp = Ehcp − Efcc from the dif-
ferent basis sets used in this study, each employing the α-potential
(the f -electron is treated as a valence electron). The black curve
corresponds to the PAW method, the magenta circles correspond to
the full-potential LMTO method and the orange triangles correspond
to the EMTO method.

APPENDIX: BASIS SET COMPARISON

In this study, we based our calculations on three basis
sets. The reason for this is twofold. First, the DMFT and the

coherent potential approximation extensions are not available
at the same time in a single electronic structure program
package, making it necessary to use more than one program
package. Second, this gives us a measure of how sensitive our
results are with regard to the choice of basis set. To be able to
compare the different methods used in this work, Fig. 5 shows
the quantity �Ehcp = Ehcp − Efcc as a function of the volume
for α-Ce (with the f electron treated as a valence electron)
for the three methods. �Ehcp was chosen because it is an
important quantity within the axial interaction model, as seen
from Eq. (4). Compared to the PAW pseudopotential method
(black squares, solid line), the all-electron muffin-tin methods
FPLMTO (magenta circles) and EMTO (orange triangles)
overestimate �Ehcp for low volumes and underestimate it for
high volumes. Overall, the agreement between the methods is
good. The largest deviation from the full-potential PAW result
is given by the EMTO method at a low volume, where the
deviation is ∼2 mRy. One possible reason for this deviation
is the spherical approximation of the effective potential made
in the EMTO method. At low volumes, the relaxed c/a ratio
for the hcp structure is fairly high (∼1.75; see inset in Fig. 2)
compared to the ideal ratio (∼1.63). This high c/a ratio gives a
crystal structure that might not be suitable for modeling within
the spherical approximation. However, in this work the EMTO
method was used to model cerium at large volumes where the
c/a ratio is closer to the ideal (see inset in Fig. 2), making the
spherical approximation suitable.
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