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A method is described for calculating the energetics of planar defects in alloys based on the special-
quasirandom-structure (SQS) approach. We examine the accuracy of the approach employing atomistic
calculations based on a classical embedded-atom-method (EAM) interatomic potential for hexagonal close
packed (hcp) alloys, for which benchmark results can be obtained by direct configurational averaging. The results
of these calculations demonstrate that the SQS-based approach can be employed to derive the concentration
dependence of the energies of twin boundaries, unstable stacking faults, and surfaces to within an accuracy
of approximately 10%. The SQS considered in this study contain up to 72 atoms and hence are small enough
to be considered in first-principles density-functional-theory (DFT) based calculations. The application of the
SQS-based approach in direct DFT-based calculations is demonstrated in a study of the concentration dependence
of interfacial energies for {112̄1} twins in hcp Ti-Al alloys.
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I. INTRODUCTION

Dislocation slip and deformation twinning are the most
commonly observed mechanisms for plastic deformation in
metals and alloys. Which of these mechanisms dominates for
a given material and loading condition is generally governed
by the ease of nucleation of the relevant defects, and their
growth and propagation. These processes are in turn strongly
influenced by the energetics of planar defects, such as gener-
alized stacking faults and twin boundaries. The competition
between plastic deformation and fracture, underlying the
intrinsic ductility of a material, is thus commonly investigated
through the consideration of the relative values of the energies
for relevant planar faults and the free surfaces formed by crack
propagation [1–4].

For example, in the theory of Thomson and Rice [2,5],
larger values of the ratio of the surface energy γs to the unstable
stacking fault energy γUSF are an indicator of increasingly
ductile behavior, as γUSF corresponds to the barrier for
dislocation slip at the crack tip, while γs measures the increase
in surface energy due to crack growth. This theory has been
used in the literature to study the ductility in metals from first
principles (e.g., Refs. [6,7]). Similarly, for hcp metals larger
values of the ratio γs/γt between surface and twin-boundary
(γt ) energies have been shown to correlate with higher ductility
under conditions where twinning at the crack tip is the relevant
mechanism for plastic deformation [8]. For body centered
cubic (bcc) and face centered cubic (fcc) materials, similar
measures of twinnability have been developed and employed,
which are based on (unstable) stacking fault energies and
unstable twin energies [7,9–12].

In applications of computational modeling to guide alloy
design, methods for calculating the effect of composition on
the planar fault energies defined above are useful to understand
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whether the introduction of specific solute species will tend to
increase or decrease the ductility and strength of a given mate-
rial. However, the calculation of planar defect energies in alloys
is considerably more difficult than for elemental metals or
ordered intermetallic compounds, due to the presence of con-
figurational substitutional disorder, leading to a lack of transla-
tional periodicity. At present, two main approaches have been
introduced for computing the composition dependence of pla-
nar defect energies in alloy solid solutions from first principles.

In the first, stacking fault energies in alloys have been com-
puted within the axial next-nearest-neighbor Ising (ANNNI)
lattice-model formalism [13–26]. In this approach, the energies
of fcc, hcp, and double-hcp structures are computed to derive
pairwise interactions that parametrize the change in energy
associated with different stacking sequences of close-packed
planes. Once derived from bulk energy calculations, these
interactions are used to predict the excess energy of an isolated
stacking fault. This method has been used for alloys, in
which case the special-quasirandom-structure (SQS) approach
[27–29] has been used to model the energetics of com-
positionally disordered fcc, hcp, and double hcp structures
[27–31]. While this approach provides a powerful framework
for computing the composition dependence of stable stacking
fault energies, it is not possible to apply the method to
calculations of unstable stacking fault energies, defined as
the energy maximum in the generalized-stacking-fault (GSF)
surface. Further, it is not apparent how to generalize the
approach in the consideration of the energies of surfaces, or the
large variety of twin boundaries observed in the deformation
of hcp metals.

Another approach that has been employed to compute pla-
nar defect energies in alloys is based on the use of the coherent
potential approximation (CPA) [32–34]. In applications of the
CPA to the calculation of energies of bulk alloys, a disordered
substitutional arrangement of atoms over the sites of a parent
lattice is modeled using a single effective atomic species
defined to have the average electron-scattering properties of the
alloy. This procedure restores the translational symmetry of the
underlying parent lattice, facilitating direct DFT calculations
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of bulk alloy energetics. The CPA approach has been gener-
alized to consider layered structures, to enable calculations of
stacking fault (stable and generalized) and surface energies
[32,35–43]. At present, however, the implementations of the
approach do not allow for the accurate treatment of atomic
displacements and the generalization of the method to general
low-symmetry twin boundaries, such as those found in hcp
metals, for which significant atomic shuffles may arise, has
not been demonstrated to the best of our knowledge.

In the present work, we describe an approach for calculating
the energies of planar defects in disordered substitutional
alloys, based on a generalization of the SQS method [27,28]
developed to compute the electronic structure and energetics of
bulk substitutional alloys. Compared to previously employed
methods, the present approach offers the advantage that it
readily enables consideration of arbitrary crystal structures; for
example, most of the previous work on this topic has consid-
ered fcc materials, while in the present work we demonstrate
applications to lower-symmetry hcp structures. It should be
noted that the intended application of the approach outlined in
this work is to compute planar fault energies in solid solutions
relevant to deformation processes at low temperatures. Hence
we do not consider the effect of configurational rearrangements
and segregation on planar-fault energetics. In other words, the
approach is intended to be applied to situations where planar
faults form, e.g., due to glide of dislocations, on time scales
for which the atomic configuration can be considered “frozen
in” due to the slow rate of atomic interdiffusion. Also, we note
that the SQS-based approach presented here is demonstrated
for non-spin-polarized binary solid solutions; extensions of
the approach to the consideration of multicomponent alloys
and/or spin degrees of freedom are beyond the scope of the
present work.

The approach presented in this work was demonstrated
recently in applications to the calculation of twin-boundary
and surface energies in hcp Re-based alloys [44]. In this paper,
we describe a refinement of the approach, employing planar
averaging, and provide details of the SQS structures used in
the method. Further, we demonstrate the application of this
approach also in the study of unstable stacking fault and surface
energies. We present a test of the accuracy of the approach,
through comparisons with large-supercell benchmark results
derived employing a classical embedded-atom-method (EAM)
interatomic potential model for Ti-Al alloys [45]. Finally, an
application of the SQS-based method in DFT calculations of
the dependence of twin boundary energies on Al content in
Ti-Al hcp alloys is demonstrated.

II. METHODOLOGY

In this section, we describe details associated with the
calculation of planar defect energies in alloys, employing
supercell models in conjunction with the SQS approach
for configurational averaging. The focus is on hcp alloys,
considering three types of planar defects that are relevant
to their mechanical properties: twin boundaries, unstable
stacking faults and free surfaces. Specifically, we consider the
{112̄1} twin boundary, which is observed in the deformation
microstructures of many hcp metals and alloys such as Ti, Re,
Mg, and Be [8,46–48]. Further we consider calculations of the

generalized stacking fault (GSF) surface corresponding to the
common {11̄00} 〈112̄0〉 slip system in hcp metals. Finally, the
energies of {11̄00} free surfaces are considered. We begin by
describing the supercells and planar averaging employed for
the modeling of these planar defects and the calculation of their
energies. A discussion of the generation of the SQS models is
then presented, followed by the computational details for the
present studies.

A. Supercell geometries

1. Twin boundaries

The {112̄1} twin boundary in the hcp structure can be
described by four twinning elements K1 = (112̄1), K2 =
(0001), η1 = [1̄1̄26], and η2 = [112̄0] [49,50]. These twinning
elements denote the twinning plane, conjugate twinning
plane, twinning direction, and conjugate twinning direction,
respectively. The amount of twinning shear for this twin is
S = γ −1, where γ = c/a, i.e., the axial ratio of the c and
a lattice parameters. Since hcp metals have two atoms in
the motif corresponding to a hexagonal Bravais lattice-point,
in general twins cannot be formed by the application of a
homogeneous twinning shear alone, and additional atomic
shuffles are required [49,51]. For the {112̄1} twin boundary,
the required atomic shuffles on both sides of the twin boundary
plane are given by the vector τ = ±0.5[11̄00] [51].

In this work, the {112̄1} twin boundary is constructed
directly from an appropriate bulk cell as follows. First, as
illustrated in Fig. 1(a), the bulk cell is constructed with lattice
vectors parallel to a = [101̄2], b = [101̄0], and c = [1̄100].
The dimension along b is eight times the conventional bulk
hcp lattice constant a. This dimension is chosen such that the
bulk cell can be employed to build twin boundary geometries,
with sufficient spacing between the twin and its periodic

FIG. 1. Example supercell geometry for (a) a bulk alloy with an
appropriate orientation for defect calculations and (b) a {112̄1} twin
boundary cell, formed from the bulk after an appropriate combination
of shear and shuffle. This figure shows a projection along the [1̄100]
direction.
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images to minimize spurious interactions. The required bulk
cell size is established by convergence studies, which show
for the systems considered in this work that beyond six planes
from the twin boundary, the solute formation energies are
essentially converged to the bulk value. This leads to a bulk
cell consisting of 64 atoms. The distance separating the two
twins in the periodic cell that is required to achieve converged
interfacial energies is expected to be system dependent, such
that the dimensions of the cells employed in this work may not
transfer directly to other alloy compositions. For each system,
convergence testing should be undertaken.

In the second step, the twin boundary cell is formed by (i)
applying a twinning shear S to all atoms located on one side
of the twin plane in the middle of the supercell (i.e., half way
along the periodic length along the b direction), followed by
(ii) an atomic shuffle on one side of the twin plane, as described
above. This results in a twinned cell with a twin plane in the
middle and another on the edge of the cell, as illustrated in
Fig. 1(b). Note that there exists a direct mapping between
atoms in the bulk and twinned cell, which is important for
the application of the SQS approach. Further note that several
possible independent locations exist in the bulk cell where the
twin plane can be inserted. In Fig. 1, the twin is placed in the
center of the cell, but this location is arbitrary and for studying
planar defects in alloys, we have found improved accuracy
when results are averaged over all possible locations of the
planar interface, as described below.

For calculations of the twin boundary energy, the initial
and final geometries shown schematically in Figs. 1(a) and
1(b), respectively, are calculated and γt is extracted from the
energy difference divided by the twin boundary surface area,
taking into account the presence of two twin boundaries per
periodic supercell. In the energy calculations for the twinned
supercells ionic relaxations are performed, and the dimension
perpendicular to the twin plane is relaxed, while holding the
periodic distances in the twin plane (i.e., along a and c) fixed
at the values dictated by the bulk hcp supercell.

2. Unstable stacking faults and surfaces

Supercells for the calculation of the {11̄00} 〈112̄0〉 GSF
energy, and the {11̄00} surface energy are constructed by
choosing lattice vectors in the directions a = [112̄0], b =
[0001], and c = [11̄00], as illustrated in Fig. 2(a). As above,
the cells contain atomic configurations derived from the SQS
algorithm described in the next section. When performing
calculations of the GSF and surface energies, two planes are
picked which will be (i) rigidly shifted along the a = [112̄0]
direction in order to create a stacking fault, or (ii) separated
by a vacuum layer in order to create two free surfaces. All
possible choices for these neighboring planes are considered
and the planar energies are derived by averaging results over
these different sets of planes.

Considering first the calculation of the GSF energy, the
bulk supercell is set up initially to be periodic along all three
directions. The size of the original bulk supercell is three times
the bulk hcp lattice constant (a) along a, two times the bulk
hcp lattice parameter (c) along b, and there are 6 layers of
prismatic planes (for each plane there are two sublayers) along
c, resulting in a total number of 72 atoms. To calculate the GSF

FIG. 2. Supercell geometry for (a) a bulk cell with an appropriate
orientation for defect calculations, (b) calculation of the generalized
stacking-fault energy, and (c) calculation of free-surface energies.
These figures show a projection along the [0001] direction.

energy and γUSF in particular, all atoms in the half supercell
below a given (11̄00) plane in the middle of the supercell
are rigidly shifted along the [112̄0] direction with the slip
distances set as 0, 0.35, 0.45, 0.5, and 0.6 a, respectively.
These shifts are accommodated by distorting the unit cell to
have an angle different from 90 degrees between the a and
c directions, so there is only one stacking fault interface in
this periodic supercell, as illustrated in Fig. 2(b). For each slip
vector, all the atoms in the supercells are relaxed along the c
direction but fixed along the a and b directions. The supercell
size along the c = [11̄00] direction is also relaxed to remove
the normal stress perpendicular to the (11̄00) plane. The GSF
energy surface is plotted based on the energy increase at these
slip distances relative to the undeformed structure, and γUSF is
derived by interpolating the maximum point on the GSF curve.

To compute the {11̄00} surface energy γs, we start by
calculating the energy of the bulk supercell illustrated in
Fig. 2(a). This reference energy is computed with periodic
boundaries in all three directions, the same as the reference
supercells for GSF calculations. The energy of this periodic
bulk supercell is then compared to the energy obtained for
the supercell illustrated in Fig. 2(c), where a vacuum layer
of 15 Å is introduced in the middle of the relaxed supercell,
giving rise to two {11̄00} surface planes. From the energy
difference of these two supercells, divided by twice the
cross-sectional area parallel to the surface planes, the value
of γs is derived. In the calculations of the energies of the
bulk and surface supercells, the positions of all atoms are
relaxed.

B. SQS generation

The SQS structures were developed for each of the bulk
supercells defined in the previous subsection at different
compositions starting at approximately 3 at.% solute, up to a
maximum concentration of 25 at.% solute, with increments of
approximately 3 at.%. A genetic algorithm (GA) was used for
optimizing the SQS configuration, as described below. GA’s
have been employed in the materials-science community in the
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study of different topics such as crystal-structure prediction
[52–54] and in the construction of cluster expansions [55,56].

We illustrate the use of a GA for the optimization of SQS
with an example. Consider a hypothetical A-B binary alloy
consisting of 16 atoms, at composition A12B4. The occupations
of A and B atoms across the atomic sites are encoded as a
binary string, for example, as follows: [0010100000100001].
Each entry in the string corresponds to a given atomic site and
can be occupied by either an A atom (represented by 0’s) or
a B atom (represented by 1’s). The ordering of the different
atomic sites in the string is irrelevant, as long as it is consistent
throughout the optimization process. The example alloy has B

atoms located at atomic sites with indices 3, 5, 11, and 16 and
A atoms otherwise.

The mating process entails combining pairs of parents
(alloys) into offspring by means of a process called crossover
[57,58]. This process can be illustrated as follows. Consider
again the alloy configuration introduced above (referred to as
P1) but now also another alloy configuration referred to as P2,
given by the binary string [1000010000000011]. Crossover
is performed by picking a random number N between 1
and 15, splitting the binary strings of the parents at this
number and cross-combining them into two children. For
example, consider the case N = 9. We obtain four strings
after splitting the parents, S1,S2,S3,S4: [001010000

︸ ︷︷ ︸

S1

0100001
︸ ︷︷ ︸

S2

]

and [100001000
︸ ︷︷ ︸

S3

0000011
︸ ︷︷ ︸

S4

]. The crossover process combines

these parents P1 and P2 into two children, P3 and P4. Child P3

consists of S1 and S4: [0010100000000011] and P4 consists
of S2 and S3: [1000010000100001]. In order to perform this
process at constant composition, a special type of crossover
has to be used that preserves the number of 0’s and 1’s in the
binary string. This type of crossover, called edge crossover
[59], is used in this work, and is slightly more complex than
the example described above.

Mutation refers to introducing “defects” in the mating
process and is designed to escape from local minima that may
occur during the optimization process (similar to the ability
of simulated-annealing optimization to allow for energetically
unfavorable moves). For the optimization of SQS, mutation is
implemented by allowing for a small probability to swap a 0
and a 1 in each child in each iteration.

The optimization procedure is initiated by generating an
initial population of 800 randomly generated configurations
at a given composition. The selection method used is roulette
wheel selection, in which selection probability for mating is
proportional to the fitness score. Further, a 0.5% probability
of mutation is allowed and the algorithm is run for 1000
generations. In every iteration, the pairs of “fittest” (most
random) alloys are allowed to produce offspring via crossover,
while allowing for the possibility of mutation to take place. In
practice, we found that after only about 100 generations the
resulting SQS had converged to the optimum near-random
atomic correlation functions.

The objective function to be minimized for SQS optimiza-
tion is the Euclidean difference norm between the vector
describing the atomic correlation functions of a random solid
solution, xrandom and the vector describing the correlation
functions of the finite-sized supercell xscell. The fitness of any

given configuration is inversely proportional to this Euclidean
difference norm ‖xrandom − xscell‖. In this work, six atomic
correlation functions are considered for pairs, and three for
triplets. The six pair terms are obtained by selecting all pairs
smaller than a distance r such that r < 1.8a, where a is the
conventional lattice constant (nearest neighbor distance) for
hcp in the basal plane. Further note that the relaxed hcp
cell of Ti obeys c ≈ 1.585a (where c is the conventional
lattice constant perpendicular to the basal plane), so that the
nearest-neighbor atomic pairs perpendicular to the basal plane
are included in the analysis. In addition, all triplets were
selected that contain no pairs longer than a, leading to a total
of three triplets. The point clusters are imposed by the desired
composition for the SQS. The atomic correlation functions
for both the random alloys and the trial configurations are
calculated using the alloy theoretic automated toolkit (ATAT)
[60,61] and fed to the GA during the iterative optimization
process. In defining the fitness function, we explored different
weighing factors for the different pair and triplet clusters, e.g.,
giving higher weight in the difference norm to shorter pairs
and/or to clusters with higher multiplicities. Several different
sets of weights were explored and even though different SQS
were obtained for each, we found minimal influence on the
resulting planar defect energies.

For an optimized bulk SQS such as shown in Fig. 3, there are
several choices for where the planar faults can be inserted. As
an explicit example, Fig. 3 shows eight possible locations for a
twin-boundary plane within a 64-atom SQS. A single SQS cell
contains [after the deformation process illustrated in Figs. 1(a)
and 1(b)] both a twin boundary at the center (location 5 in
Fig. 3) as well as another at the periodic boundary at location

FIG. 3. Illustration of an SQS and configurational averaging
procedure used to compute the {112̄1} TB energy. For the TB energy
calculations the results are averaged over eight choices for the location
of the twin plane. This figure shows a projection along the [11̄00]
direction.
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1. Hence all possible twin planes can be considered with a
single bulk SQS configuration that is deformed according to
4 separate shear modes. The local atomic environment and
solute-concentration vary along the b-direction and hence, the
twin-boundary energy will vary depending on the location of
the twin plane in the supercell. As discussed above, planar
defect energies are calculated by inserting the planar defect
into different locations in a single SQS and taking an average
over those individual configurations. For the calculation of
twin boundary energies, periodic boundary conditions are
employed and, hence, the eight possible twin planes (Fig. 3)
are covered with only four distinct cells. Consequently, we do
not obtain twin boundary energies for each of the eight twin
planes individually, but rather the sum of pairs. For example,
if the bulk cell in Fig. 3 is sheared into a twin cell (such
as illustrated in Fig. 1), the sum of twin boundary energies
at locations 5 and 1 is obtained. Other configurations are
obtained by translating all atoms in the bulk cell in Fig. 3 by
one unit along the b lattice vector. As such, all combinations
of twin planes considered are 1 and 5, 2 and 6, 3 and 7,
and 4 and 8, yielding a total of four calculations on twinned
cells and a single calculation on the reference bulk cell. The
averaging procedure simply entails taking the mean of all these
computed planar defect energies. Similarly, for the GSF and
surfaces, there are six independent choices for the location
of the surfaces and planar defect energies are computed by
averaging over each, see Supplemental Material Ref. [62].

C. Computational methods

1. Embedded-atom-method calculations

The purpose of the computations based on classical
embedded-atom-method (EAM) potentials performed in this
work is to enable a comparison of planar defect energies
obtained from the relatively small SQS supercells, with
benchmark results obtained from larger supercells having
a size that ensures minimal effects of periodic boundary
conditions and accurate configurational averaging. These large
cells are beyond the size that can be modeled directly by
DFT, but their energies can be readily calculated using EAM
potentials. Specifically, due to the small computational cost
of performing EAM energy calculations, we consider as our
benchmark results obtained from supercell models containing
up to a million (1M) atoms in total, with the configuration of
A and B atoms generated randomly for a given fixed overall
alloy composition. These very large 1M cells are assumed to
provide adequate configurational averaging to yield converged
planar-defect energies for random solid solutions. As in the
small SQS models, the planar defect energy is computed by
subtracting the energy of the bulk cell from the energy of
the corresponding cell containing the desired twin, surface or
unstable stacking-fault defect. We note that, due to the large
size of the 1M atom supercells, planar averaging, as is done
for the smaller SQS cells, was not required and all benchmark
values are derived by considering a single location for the
interface in the supercell. This procedure can be repeated
for different solute compositions such that the concentration
dependence of the defect energies for a random substitutional
alloy can be computed. The results computed as such from
the 1M cells form a benchmark for the defect energies in

disordered substitutional alloys, and the aim is to assess the
accuracy of the SQS models in reproducing these values. In all
of the EAM calculations we consider the defect energies for
hcp-based Ti-Al alloys, modeled with the potential of Zope
and Mishin [45].

2. Density functional theory calculations

In addition to the EAM modeling described in the previous
section, we also demonstrate the application of the SQS
methodology in DFT-based computations of the concentration
dependence of {112̄1} twin boundaries in hcp-based Ti-Al
alloys. These DFT calculations were performed using the
Vienna ab initio simulation package (VASP) [63,64]. The
VASP calculations made use of the Perdew-Burke-Ernzerhof
generalized-gradient approximation (PBE-GGA) [65]. All
calculations made use of the projector augmented wave (PAW)
formalism [66,67], in which the potentials for Ti (Al) treat 4s

and 3d states (3s and 3p states) as valence. An energy cutoff
for the plane waves of 600 eV was used, and smearing of the
electronic occupancies was performed using the Methfessel-
Paxton scheme [68], with a broadening of 0.05 eV. Integrations
in the Brillouin zone were carried out using Monkhorst-Pack
k-point sampling [69] with a density chosen such that the
number of k-points in the first Brillouin zone times the number
of atoms in the cell equals approximately 25 000.

III. RESULTS AND DISCUSSION

A. Embedded atom method results

1. Twin boundary energies

In Fig. 4, the variation of the {112̄1} twin boundary energy
is plotted as a function of the atomic concentration of Al.

FIG. 4. {112̄1} twin boundary energies (γt ) in Ti1−xAlx alloys
calculated using EAM potentials with two different supercell models:
the benchmark Random-1M supercell, and the SQS-64 supercell. For
the 64-atom SQS supercell, the results are an average over eight planes
in one SQS, and the error bars are standard deviations. The “SQS raw”
data points at each composition correspond to the individual values of
the planar fault energies for different positions of the twin boundary.
The line through the benchmark Random-1M results is a guide to the
eye.

094101-5



DE JONG, QI, OLMSTED, VAN DE WALLE, AND ASTA PHYSICAL REVIEW B 93, 094101 (2016)

The (red) open circle symbols are the benchmark results,
labeled “Random-1M,” obtained from a supercell containing
approximately a million atoms, with randomly generated
atomic configurations. The results labeled “SQS-64” were
obtained by averaging over the different possible positions
of the twin planes in SQS 64-atom supercells, generated as
described in the previous section, and are plotted with (blue)
filled squares. The error bars for the SQS results denote one
standard deviation in the values obtained for the different
choices of the TB plane position, and provide a measure of
the width of the distribution in the individual planar defect
energies. In addition, the individual SQS planar fault energies,
corresponding to the different choices for the twin-boundary
plane, are shown in Fig. 4 and labeled “SQS raw data.”

It can be seen from Fig. 4 that the SQS and benchmark
results at each composition agree to within approximately
10%. To further quantify the degree of agreement between
the SQS and benchmark results, we consider the composition
dependence of the twin-boundary energies, as characterized
by a dimensionless parameter, defined as ηγ = (∂γ /∂x)/γ0,
where γ represents the planar defect energy corresponding to
the atomic fraction of Al in the Ti1−xAlx binary alloy, and
γ0 is the defect energy for the pure-Ti reference state. The
results obtained for ηγ , from a linear least squares fit (forced
through the pure-Ti value) to the data sets in Fig. 4 are listed
in Table I. The SQS-64 supercells yield a value for ηγ that is
about 10% larger in magnitude than the corresponding value
for the random-1M cells. Overall, the results in this section
suggest that for atomic fractions of solute up to approximately
x = 0.25, estimates of the twin boundary energy at each
composition converged to within about 10% (10 mJ/m2) can
be derived by averaging results for eight planes of a single
64-atom SQS-supercell configuration.

It can be seen from Fig. 4 that the raw twin boundary
energies for each composition broadly follow the overall down-
ward trend with increasing solute concentration. However,
there are several outliers, in particular near 9 at.% solute,
which underscores the importance of the averaging procedure
proposed in this work in order to obtain reliable statistics for
the random alloy. For the {112̄1} twin boundary, convergence
testing of the composition dependence of the fault energy is
performed with respect to the size of the SQS. By consecutively

doubling both dimensions of the cell in the twin plane (with
respect to the 64-atom cell), we obtain cells consisting of
256, 576, and 1024 atoms, respectively. Table I shows the
composition dependence of the twin energy obtained with
the 64-SQS, 256-SQS, 576-SQS, and 1024-SQS supercells.
Based on the results in Table I, the SQS-64 and SQS-256 both
yield results within 10% of the benchmark Random-1M values.
Further, it can be seen that increasing the size of the SQS leads
to gradual convergence of the results towards the benchmark
Random-1M values. In particular, values obtained with the
576-atom and 1024-atom SQS yield comparable agreement
(within approximately 1%).

It is noted that atomic relaxations have profound effect
on the calculated {112̄1} twin-boundary energy. The as-
constructed {112̄1} twin boundary has several pairs of atoms
with bond lengths contracted by approximately 25%, relative
to bulk hcp. This is heavily penalized by the repulsive energy
term in the interatomic potentials, and leads to high unrelaxed
planar fault energies. Allowing for atomic relaxations drives
down the planar fault energy to lower values: in the case
of elemental Ti from 650 mJ/m2 (unrelaxed) to 164 mJ/m2

(relaxed), amounting to a reduction of 75%. For the SQS
Ti-Al alloys, similar or slightly larger effects caused by the
atomic relaxations are observed, ranging from approximately
80% to 90%, depending on the precise composition and
SQS configuration. We believe this slightly larger effect of
relaxations in the alloys can be attributed to atomic size
mismatch: Al atoms are smaller than Ti atoms and hence,
the Ti atoms are less constrained and can more freely relax
into their lower-energy configurations in the alloy.

2. Unstable stacking-fault energies

In Fig. 5, the unstable stacking-fault energy γUSF results
are plotted as a function of solute concentration, based on
calculations employing the 72-atom SQS supercells illustrated
in Figs. 2(a) and 2(b), and benchmark Random-1M supercells.
As in the previous section, the error bars on the SQS
results were obtained from the standard deviation in the six
values corresponding to different choices for the prismatic
plane defects. In addition, the individual SQS USF energies,
corresponding to the different choices for the stacking-fault
plane, are shown in Fig. 5 and labeled “SQS raw data.”

TABLE I. Concentration dependence of planar defect energies in hcp Ti1−xAlx solid solutions,
ηγ = (∂γ /∂x)/γ0, as calculated with EAM interatomic potentials, using benchmark Random-1M
and SQS-72/64 supercell models. For the twin boundary, 64-atom SQS supercells are employed, and
for the surface and stacking fault energies, 72-atom SQS supercells are employed. For comparison,
the results for the twin boundary, using several larger SQS are also shown. The Al atomic fraction is
denoted by x for the {11̄00} surface.

Planar Defect EAM (Random-1M) EAM (SQS)

{112̄1} Twin (64-atom SQS) −1.56 −1.43
{112̄1} Twin (256-atom SQS) −1.56 −1.47
{112̄1} Twin (576-atom SQS) −1.56 −1.58
{112̄1} Twin (1024-atom SQS) −1.56 −1.57
{11̄00}〈112̄0〉 USF 0.57 0.55
{11̄00} Surface x ≈ 0.08 −0.12 −0.10
{11̄00} Surface x ≈ 0.195 −0.19 −0.22
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FIG. 5. Unstable stacking fault energies in Ti1−xAlx alloys
calculated using EAM potentials with two different supercell models:
the benchmark Random-1M supercell, and the SQS-72 supercell. For
the 72-atom SQS supercell, the results are an average over 6 planes in
one SQS, and the error bars are standard deviations. The “SQS raw”
data points at each composition correspond to the individual values
of the unstable stacking fault energies for different positions of the
stacking-fault plane. The line through the benchmark Random-1M
results is a guide to the eye.

A roughly linear variation of γUSF with Al concentration
is obtained for the benchmark Random-1M supercells, up to
the concentration of x = 0.25 considered in the calculations.
Compared to these benchmark values, those obtained with
the smaller 72-atom SQS supercell show significantly more
scatter. However, for all compositions the SQS-72 supercells
produce values for γUSF that agree to within approximately
10 mJ/m2 (≈ 2.5%) with the benchmark values. The con-
centration dependence of γUSF is slightly underestimated
relative to the benchmark results, by 5.3%, with the SQS-72
supercells, as shown in Table I. Further, the raw SQS results
obey the upward trend in the defect unstable stacking fault
energy, although several data points show large deviations
from the average value, by up to approximately 50 mJ/m2.
The averaging procedure mitigates this effect and leads to a
value of the USF energy that shows good agreement with the
benchmark results.

3. Surface energies

In Fig. 6, results for the calculated {11̄00} surface energy
(γs) are plotted as a function of Al concentration. As in Fig. 5
results are plotted for the benchmark supercells, and for the
72-atom SQS supercells. The average values and error bars
for the SQS cells have again been obtained from results over
six planes. The averaged values obtained from the SQS-72
supercells show agreement with the benchmark results to
within 10 mJ/m2, or less than 1% of the magnitude of γs. As
for the twin boundary and unstable stacking fault energies, the
individual “SQS raw data” surface energies, corresponding to
the different choices for the surface plane in the SQS structure,

FIG. 6. {11̄00} surface energies in Ti1−xAlx alloys calculated
using EAM potentials with two different supercell models: the
benchmark Random-1M supercell, and the SQS-72 supercell. For
the 72-atom SQS supercell, the results are an average over six planes
in one SQS, and the error bars are standard deviations. The “SQS
raw” data points at each composition correspond to the individual
values of the surface energies for different positions of the surface
plane. The line through the benchmark Random-1M results is a guide
to the eye.

follow the overall composition trend, but averaging is required
to obtain good agreement with the benchmark results.

To compare the predictions of the 72-atom supercells for
the concentration dependence of γs, we fit each data set in
Fig. 6 with a parabola, to account for the nonlinear behavior
that can clearly be observed in the figure. The composition
dependence, as characterized by the ηγ parameter, is evaluated
for two compositions and the Random-1M and SQS-72 values
are compared in Table I. The agreement is seen to be at the
level of 15%–17% at the two different compositions listed.

4. SQS versus random supercells

It is interesting to consider whether the SQS configurations
used in the comparisons above lead to improved agreement
with benchmark results, relative to values derived from su-
percells with the same size, but with the atomic configurations
generated randomly rather than by the SQS algorithm. In other
words, it is of interest to consider whether the extra work that
is required to generate the SQS configurations for a given
defect supercell leads to a significant increase in accuracy. To
test this, we have undertaken a statistical analysis comparing
the performance of random and SQS supercell configurations
against the benchmark values. Results of such tests are reported
in this section for the specific case of the twin-boundary planar
defects, but similar conclusions were reached for the GSF and
surface defects.

We begin by generating a large number of randomly
occupied structures and rank these according to a perfor-
mance metric that measures how close the pair and triplet
correlation functions are to the values for a random alloy
with the same composition. For the dilute compositions, an
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FIG. 7. The distribution of ‖corrSQS − corrRandom‖ over a million
substitutional configurations for an hcp Ti56Al8 bulk alloy. A β

distribution is fit to the data and plotted by the solid (red) line in
the histogram.

exhaustive enumeration [70–72] is performed of all symmet-
rically inequivalent atomic configurations at a fixed composi-
tion. For the more concentrated alloys, exhaustive enumeration
is beyond reach and we instead generate a million symmetry
inequivalent structures. These configurations are then ranked
from No. 1, indicating the best agreement with random
correlation functions, in ascending order towards the worst.
For all the configurations generated, the {112̄1} twin boundary
energy is calculated by planar averaging and it is examined how
well the resulting defect energies approximate the benchmark
Random-1M results. In this section, Ti-Al alloys with a solute
concentration of 12.5 at.% Al are considered, but similar
conclusions hold for different compositions.

In total, a million symmetry-inequivalent alloys are gener-
ated at a composition of Ti56Al8 and for each, the atomic cor-
relation functions (6 pairs, 3 triplets) are calculated. These are
referred to as corrSQS. The million structures are then ranked
according to the metric ‖corrSQS − corrRandom‖. Smaller values
for ‖corrSQS − corrRandom‖ indicate a configuration that is a
better approximation of the true random alloy. Figure 7 shows
the distribution of this metric over the million structures,
together with a β distribution that is fit through the data. The
mean of the distribution is approximately 0.26, the best SQS
structures exhibit qualities ‖corrSQS − corrRandom‖ ≈ 0.10 and
for the worst configurations ‖corrSQS − corrRandom‖ ≈ 0.65.

It is now addressed how well the structures used to
generate Fig. 7 perform in their prediction of {112̄1} twin
boundary energies, compared with the Random-1M bench-
mark results. To this end, the million structures are split-
up in 1000 bins of 1000 structures, where the first bin
represents the 1000 best configurations (corresponding to
‖corrSQS − corrRandom‖ ≈ 0.10), the second bin represents the
second best group of configurations, and so forth. The last bin
corresponds to ‖corrSQS − corrRandom‖ ≈ 0.65 and represents
the bin containing the worst performing configurations. It is

FIG. 8. Probability of reproducing the Random-1M twin energies
to within 10% as a function of the metric ‖corrSQS − corrRandom‖.
The curve indicates a second-order polynomial, fit to the calculated
data.

next examined for each of the bins how large the probability
is that a structure picked at random from the bin yields
a {112̄1} twin boundary energy that is within 10% of the
Random-1M benchmark value. The results are shown in Fig. 8,
in which a second order polynomial is fit through the calculated
probability data. The horizontal axis again represents the value
of ‖corrSQS − corrRandom‖, as in Fig. 7. The vertical axis in
Fig. 8 represents P (‖(γ SQS

t − γ Random
t )/γ SQS

t ‖ < 0.1), i.e., the
probability that a configuration in the bin and the random-1M
benchmark twin-boundary energies are within 10%.

Note that the above analysis was based on a total of five
calculations for each 64-SQS at every composition and in
total two calculations for each Random-1M cell at every
composition. For the Random-1M cell, one calculation of
the energy of the (atomically relaxed) bulk cell is required,
together with one calculation of the energy of the (atomically
relaxed) twinned cell. For the 64-SQS, one calculation of the
(atomically relaxed) bulk cell is required, together with four
calculations on the 64-SQS twin cells.

Figure 8 shows clearly that among the best SQS structures
(i.e., amongst the configurations with the lowest values of
‖corrSQS − corrRandom‖), there is a significantly higher prob-
ability of reproducing the Random-1M results for the {112̄1}
twin boundary energy than among the poorly performing
configurations. For example, in the bin containing the best con-
figurations, approximately 80% of the structures reproduce the
Random-1M twin energies to within 10%. On the other hand, in
the bin containing the configurations with the highest values of
‖corrSQS − corrRandom‖, only 25% of the structures reproduce
the Random-1M twin energies to within 10%. Structures that
are located near the mean of the distribution reproduce the
Random-1M energies to within 10% in approximately 50% of
the cases. Hence we conclude that a high-quality SQS structure
is expected statistically to perform significantly better than
structures generated by random occupations.
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FIG. 9. {112̄1} twin boundary energy γt in Ti1−xAlx alloys
calculated with 64-atom SQS supercells by DFT and EAM. The
results plotted are averaged over eight planes per supercell, with
error bars denoting standard deviations. The lines are guides to the
eye.

B. Density functional theory results

As an illustration of the use of the SQS approach in
combination with DFT-based total-energy calculations, we
plot in Fig. 9 calculated results for the {112̄1} twin boundary
as a function of Al concentration in Ti1−xAlx hcp-based solid
solutions. The DFT results were obtained with a 64-atom SQS
supercell, averaging over the different choices for the TB plane
position, as above. The average values and standard deviations
obtained by DFT are plotted with filled circles, and the results
are compared to those obtained from the EAM employing the
same SQS approach, which are reproduced in the lower panel.

It is seen in Fig. 9 that the EAM underestimates the
{112̄1} twin boundary energy significantly with respect to
the DFT value for pure Ti. We further note that EAM
and DFT predict different trends of twin energy versus Al
concentration. Whereas EAM predicts a monotonic and almost
linear decrease of the {112̄1} twin boundary energy with
increasing Al content, the DFT calculations predict a much
weaker concentration dependence.

It should be emphasized that the differences between EAM
and DFT observed here are not a result of the SQS planar
averaging, but a reflection of inaccuracies in the classical
potential model for twin boundary energies in Ti-Al alloys.
This is apparent based on the discrepancies for the results
for pure Ti. Additionally, we have used the 64-atom supercell

models with one Al solute atom present to compute segregation
energies to the {112̄1} twin boundary. It is found that the EAM
potential predicts an energetic preference of an individual
Al-atom to segregate to the twin plane and nearby planes,
whereas DFT shows the opposite: the Al-atom prefers to reside
in positions away from the twin. Since DFT and EAM yield
contradictory results even in this dilute limit, the discrepancies
in the results obtained for more concentrated alloys are not
surprising. We note that discrepancies between EAM and
DFT are not uncommon in cases such as these where the
property of interest (namely twin boundary energetics) were
not included in the fitting of the EAM potential (e.g., Ref. [73]).
We note that it has also been shown that this EAM potential for
Ti-Al alloys was not found to yield good agreement with DFT
calculations for the concentration dependence of the elastic
constants [74–76].

IV. SUMMARY AND CONCLUSIONS

In the present work, we have presented a method for
computing the energetics of planar defects in random sub-
stitutional alloys employing an approach based on the use of
the SQS formalism. It is shown using an EAM model for
hcp-based Ti-Al alloys that averaging over results obtained for
different planes in an SQS cell gives values for twin boundary,
unstable stacking fault and surface energies that agree to
within approximately 10% with benchmark values obtained
from direct configurational averaging using large supercells.
The SQS-based supercells considered in this work are small
enough such that their energies can be computed by DFT. This
is demonstrated in DFT-based studies of the concentration
dependence of {112̄1} twin-boundary energies in hcp-based
Ti-Al alloys. We anticipate that the method presented in
this work will be useful in future DFT-based efforts aimed
at alloy design. By combining results obtained with this
approach within continuum theories of mechanical behavior,
the SQS-approach described here provides a framework for
investigating the effects of specific solute additions on the slip
and twinning properties of alloys for targeted applications.
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