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nonequilibrium Toulouse point
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Following the development of a scheme to bosonize and debosonize consistently [N. Shah and C. J. Bolech,
Phys. Rev. B 93, 085440 (2016)], we present in detail the Toulouse-point analytic solution of the two-lead
Kondo junction model. The existence and location of the solvable point is not modified, but the calculational
methodology and the final expressions for observable quantities change markedly as compared to the existent
results. This solvable point is one of the remarkably few exact results for nonequilibrium transport in correlated
systems. It yields relatively simple analytical expressions for the current in the full range of temperature,
magnetic field, and voltage. It also shows precisely, within the limitations of the Toulouse fine-tuning, how the
transport evolves depending on the relative strengths of interlead and intralead Kondo exchange couplings
ranging from weak to strong. Thus its improved understanding is an important stepping stone for future
research.
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I. INTRODUCTION

In the first part of this series [1], we introduced a
consistent prescription in order to be able to bosonize, make
transformations, and debosonize consistently in the presence
of “active local impurities or boundaries,” which we called
the consistent bosonization-debosonization (BdB) program.
In this paper we explore the implications of this formalism for
the important case of quantum impurity problems.

Just over fifty years ago, in 1964, Kondo showed that a
mysterious finite-temperature minimum in the resistivity of
metals was due to the contributions from dilute magnetic
impurities present in the samples [2]. This marked the start
of the study of the so-called Kondo problem, which is one
of the pillars of modern condensed-matter theory [3]. On the
technical side, the reason for this is that the problem of a single
magnetic impurity in a metal is one of the very first examples of
an asymptotically free theory [4]. When the system is below a
certain energy scale known as the Kondo temperature, standard
perturbation theory fails and one needs to resort to more
sophisticated theoretical tools (many of which were actually
first developed studying this problem [5]). These range from
the exact to the versatile, or from the Bethe ansatz [6–10]
to auxiliary-particle perturbation methods [11–15]. On the
application side, the relevance of the Kondo problem extends
nowadays well beyond the original system of impurities in met-
als. The so-called Kondo lattice is the central model in the study
of heavy fermions [4] and, even more generally, a formalism
know as dynamical mean field theory is based on the mapping
of any complicated tight-binding model of a material to an
effective quantum impurity problem [16]. Moreover, since the
last two decades, as the study of artificial mesoscopic systems
reached the nanoscale, the Kondo problem can show up in
all sorts of electronic devices, most notably in semiconductor
quantum dots [17,18] but also in molecular electronics [19],
etc.

The experiments with artificial nanostructures brought in
an additional layer of complication to the theory of the Kondo
effect. Most of the typical experiments involve transport
measurements in nonequilibrium conditions, while our best

theoretical tools to describe systems out of equilibrium are
perturbative. Since the Kondo effect is nonperturbative, a lot
of theoretical activity continues to ensue, to the point that it is
fair to say that a deep understanding of correlated systems out
of equilibrium is still work in progress.

Early on during the nanoscale revolution in mesoscopics,
the pioneering theoretical work of Schiller and Hershfield
(S&H) provided the first (and still now one of the few)
exact solution of a nonequilibrium strongly correlated quantum
problem [20]. A few years before them, Emery and Kivelson
(E&K) found a solvable point (called a Toulouse point) for
the two-channel Kondo model [21] (in which, besides spin,
the band electrons have one more two-valued discrete degree
of freedom [22]). S&H realized that they could adapt it to the
case of a Kondo impurity interacting with two separate leads.
They thus found a mapping that allows for the calculation of
transport in a problem that has strong correlations due to the
exchange interaction between the electrons and the impurity
spin. We will revisit the central aspects of their work below.
We shall find that while the key insights of S&H about the
existence of a nonequilibrium Toulouse point remain valid, our
generic consistent-debosonization procedure shows that the
actual observables being calculated are substantially modified
and yield more physically consistent results.

II. MODEL OF A KONDO JUNCTION

We shall be interested in a class of systems in which the
transport between two leads or terminals happens across a
microscopic region in which the fermionic degrees of freedom
are such that the region has a total magnetic moment that
remains unscreened (and we will focus on the case of spin-
1/2). This situation is typical of nano-scale quantum dots with
strong Coulomb blockade and has been an experimental reality
since the late 1990s [17,18]. At low temperatures, remarkably,
the system enters the so-called Kondo regime and is able to
conduct despite the Coulomb blockade.

We are thus interested in the low-temperature characteris-
tics of nonlinear transport across a quantum dot in the Kondo
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FIG. 1. Schematic depiction of the setting in which two Fermi
seas kept at different chemical potentials with their difference given
by eV = μL − μR are connected via quantum tunneling across the
potential barrier that separates them. The situation when the barrier
region does not allow for internal states was discussed before [1].
Here there exists a many-body state trapped by the barrier with an
unscreened total spin 1/2 that we refer to as the impurity (depicted
by an arrowhead). Due to a strong Coulomb blockade, the impurity
interacts with the electrons in the leads via exchange processes
only. For the purpose of the figure we generically denote by Jra

the intralead exchange terms (either parallel or perpendicular) and by
Jer the interlead cotunneling exchange processes that can give rise to
a current (a similar notation will be introduced in the text later).

regime. We will model the system with a two-lead version of
the Kondo model (see Fig. 1). In analogy to the equilibrium
case, this model can be derived from a more microscopic
Anderson-type model via a (time-dependent) Schrieffer-Wolff
transformation [5,23]. In Hamiltonian language, the model is
given by

H =
∑
σ,�

(∫
H0

� dx + Hz
K + H⊥

K

)
+ Hfield , (1a)

H0
� = ψ

†
σ�(x,t)(−ivF∂x)ψσ�(x,t), (1b)

Hz
K = J z

��′ S
z
imp

(
σ

2
ψ

†
σ�(0,t)ψσ�′(0,t)

)
, (1c)

H⊥
K = J⊥

��′ S
σ
imp

(
1
2ψ

†
σ̄ �(0,t)ψσ�′(0,t)

)
, (1d)

Hfield = −h Sz
imp , (1e)

where ψσ�(x,t) are chiral fermions in the Heisenberg repre-
sentation that are obtained after unfolding the two leads in
the usual way [1,24]. We adopt the notation σ = {↓,↑} =
{−1, + 1} and � = {L,R} = {−1, + 1} for the spin and lead
index, respectively. The bar notation denotes a sign change—
e.g., σ̄ = −σ . The impurity is described by Sz

imp and Sσ
imp =

Sx
imp + iσS

y
imp. We assume now that at a much earlier time

the connection between the two leads was established and
that there is a battery keeping a constant chemical-potential
difference between the two leads (what we call a Landauer-
type configuration [25,26]). Under these conditions the system
will be in a nonequilibrium steady state [27]. Let us call μ�

the chemical potential of lead �, such that μL − μR = eV ,
with V the voltage drop across the junction. The information
about these chemical potentials will enter into the distribution
functions for each lead.

III. BOSONIZATION-DEBOSONIZATION APPROACH

To set the stage for the bosonization of the model, we start
by gauging away the chemical-potential difference. For that,

let us first switch to Lagrangian language in which the system
is described by

L0
� = ψ

†
σ�(x,t)(i∂t )ψσ�(x,t) − H0

�

= ψ
†
σ�(x,t)(i∂t + ivF∂x)ψσ�(x,t), (2a)

Lz
K = −Hz

K = −J z
��′ S

z
imp

(
σ

2
ψ

†
σ�(0,t)ψσ�′(0,t)

)
, (2b)

L⊥
K = −H⊥

K = −J⊥
��′ S

σ
imp

(
1

2
ψ

†
σ̄ �(0,t)ψσ�′(0,t)

)
. (2c)

We can now make the following (gauge) field transformation
ψσ�(x,t) = e−iμ�t ψ̌σ�(x,t). The important point is that now
the distribution functions do not contain information about
the chemical potentials any longer (cf. with the discussion
for the case of a simple junction [1]). Next we subtract the
vev (vacuum expectation value), which for a noninteracting
problem is equivalent to factoring out the fast oscillations
in each lead according to ψ̌σ�(x,t) = eik�

Fxψ̆σ�(x,t), with
k�

F = μ�/vF for this linear-dispersion case. So we are naturally,
thanks to the linear dispersion, lead to the normal-ordered
formulation of the problem:

L0
� = : ψ̆

†
σ�(x,t)(i∂t + ivF∂x)ψ̆σ�(x,t) : , (3a)

Lz
K = −J z

�� Sz
imp

(
σ

2
: ψ̆

†
σ�(0,t)ψ̆σ�(0,t) :

)

− ei�̄eV tJ z

��̄
Sz

imp

(
σ

2
ψ̆

†
σ�(0,t)ψ̆σ �̄(0,t)

)
, (3b)

L⊥
K = −J⊥

�� Sσ
imp

(
1
2 ψ̆

†
σ̄ �(0,t)ψ̆σ�(0,t)

)
− ei�̄eV tJ⊥

��̄
Sσ

imp

(
1
2 ψ̆

†
σ̄ �(0,t)ψ̆σ �̄(0,t)

)
. (3c)

Notice that in the case of the parallel intralead impurity terms
we wrote them also as normal ordered (since the vev’s of the
two spin projections cancel each other due to the σ/2 factor),
which is customary in other approaches such as boundary
conformal field theory (BCFT), whereas the interlead impurity
terms naturally remain non-normal-ordered. At this point we
lost the information about the absolute energy reference but
we still have the information about the potential drop encoded
in the time-dependent phase of the tunneling term.

A. Bosonization and initial mappings

The first part of the BdB program starts by bosonizing, of
course. In order to do that, we go back to the Hamiltonian
formulation of the problem,

H0
� = : ψ̆

†
σ�(x,t)(−ivF∂x)ψ̆σ�(x,t) : , (4a)

Hz
K = J z

�� Sz
imp

(
σ

2
: ψ̆

†
σ�(0,t)ψ̆σ�(0,t):

)

+ ei�̄eV tJ z

��̄
Sz

imp

(
σ

2
ψ̆

†
σ�(0,t)ψ̆σ �̄(0,t)

)
, (4b)

H⊥
K = J⊥

�� Sσ
imp

(
1
2 ψ̆

†
σ̄ �(0,t)ψ̆σ�(0,t)

)
+ ei�̄eV tJ⊥

��̄
Sσ

imp

(
1
2 ψ̆

†
σ̄ �(0,t)ψ̆σ �̄(0,t)

)
; (4c)
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and we bosonize according to H0
� , with H

z,⊥
K taken as the

interaction terms. We follow the same standard bosoniza-
tion prescription as we did for the junction problem [1],
ψ̆σ�(x,t) = 1√

2πa
Fσ�(t)e−iφσ�(x,t), and in terms of the bosons

the Hamiltonian density for the leads takes the usual form (the
Klein factors, Fσ�, drop out from these terms):

H0 =
∑

�

H0
� = vF

4π

∑
σ = ↑,↓
� = L,R

: [∂xφσ�(x,t)]2 : . (5)

Using the same standard physically motivated rotated boson
basis, φσ� = (φc + σφs + �φl + σ�φsl)/2, as we did for the
simple junction [1], the noninteracting Hamiltonian density
retains its quadratic form:

H0 = vF

4π

∑
ν=c,s,l,sl

: [∂xφν(x,t)]2 : . (6)

Let us postpone the discussion of Hz
K, and proceed to

bosonize the “perpendicular” part of the Kondo term. The first
part is the intralead one, or lead-nonmixing, and it is present
also in the standard two-channel Kondo model, while the
second part is interlead, or lead-mixing, and is responsible for
transport as can already be seen from the voltage dependence
(we keep the time and space dependence of the bosonic fields
implicit for the sake of brevity):

H⊥
K = J⊥

��

2πa
Sσ

imp

(
1

2
F

†
σ̄ �e

iφσ̄�Fσ�e
−iφσ�

)

+ ei�̄eV t
J⊥

��̄

2πa
Sσ

imp

(
1

2
F

†
σ̄ �e

iφσ̄�Fσ �̄e
−iφσ �̄

)
. (7)

We now change to the rotated boson basis and being careful
of not combining vertex operators with opposite signs we
introduce ñ factors in the same manner as in our consistent
BdB treatment of the simple junction problem [1]; notice
as well that we are also introducing the 1/2 factors asso-
ciated with consistent boundary conditions (CBCs) [1]. We
get

H⊥
K = J⊥

��

2πa

ñcñ
�
l

2
Sσ

imp(F †
σ̄ �Fσ�e

iσ̄φs eiσ̄ �φsl )

+ ei�̄eV t
J⊥

��̄

2πa

ñcñ
σ̄ �
sl

2
Sσ

imp(F †
σ̄ �Fσ �̄e

iσ̄φs ei�φl ), (8)

where almost all possible ñ factors, i.e.,

ñc ≡ eiφc/2e−iφc/2/
√

2 , (9a)

ñσ
s ≡ eiσφs/2e−iσφs/2/

√
2 , (9b)

ñ�
l ≡ ei�φl/2e−i�φl/2/

√
2 , (9c)

ñσ�
sl ≡ eiσ�φsl/2e−iσ�φsl/2/

√
2 , (9d)

appear except for the ones from the spin sector.
The same as in the case of the simple barrier junction, we

do not expect the Klein factors to modify the physics. We treat
them as we did in that case [28,29] by identifying relations
between different bilinears of original and new Klein factors
and fixing the four arbitrary phases; see Eqs. (16a)–(16d) from
Ref. [1]. The rest of the Klein-factor relations can be derived

from these [30]. In particular, for the intralead terms, we
need

F
†
↑RF↓R = F

†
slF

†
s , (10a)

F
†
↑LF↓L = FslF

†
s , (10b)

F
†
↓RF↑R = FsFsl , (10c)

F
†
↓LF↑L = FsF

†
sl , (10d)

whereas for the interlead terms we need

F
†
↑RF↓L = F †

s F
†
l , (10e)

F
†
↑LF↓R = FlF

†
s , (10f)

F
†
↓LF↑R = FlFs , (10g)

F
†
↓RF↑L = FsF

†
l . (10h)

Replacing the Klein factors and expanding H⊥
K explicitly one

arrives at

H⊥
K = J⊥

RR

2πa

ñcñ
+
l

2
(S+

impFsFsle
−iφs e−iφsl

+ F
†
slF

†
s eiφs eiφsl S−

imp)

+ J⊥
LL

2πa

ñcñ
−
l

2
(S+

impFsF
†
sle

−iφs eiφsl

+ FslF
†
s eiφs e−iφsl S−

imp)

+ e−ieV t J⊥
RL

2πa

ñc

2
(ñ−

sl S
+
impFsF

†
l e−iφs eiφl

+ ñ+
sl F

†
s F

†
l eiφs eiφl S−

imp)

+ eieV t J⊥
LR

2πa

ñc

2
(ñ+

sl S
+
impFlFse

−iφs e−iφl

+ ñ−
sl FlF

†
s eiφs e−iφl S−

imp). (11)

It is easy to notice that the impurity spin and the lead degrees of
freedom associated with the spin sector always appear together
in the combination S+

impFse
−iφs and its Hermitian conjugate.

B. Toulouse limit and completion of the square

It is natural to describe the strong-coupling limit between
the impurity and the electrons by looking for a transformation
that binds those two degrees of freedom together as a single
one. As shown by E&K, that is achieved by the following
transformation (the boson field is evaluated at the position of
the impurity):

U = eiγsφsS
z
imp . (12)

It follows by simple algebra that U is unitary and commutes
with all the Klein factors and vertex operators (notice that
one defines U so that no point splitting is involved when
applying it). Using the spin algebra, [S±

imp,S
z
imp] = ∓S±

imp, and
the Baker-Campbell-Hausdorff (BCH) formula, e−BAeB =
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A + [A,B] + 1
2! [[A,B],B] + · · · , we find

US±
impU

† = S±
impe

±iγsφs , (13a)

USz
impU

† = Sz
imp . (13b)

Therefore, the perpendicular Kondo term in the Hamiltonian
transforms as H̃⊥

K = UH⊥
K U †, which with the simplifying

choice of γs = 1 to absorb the spin-sector vertex into the
impurity, and further defining d† = S+

impFs (so that d†d =
Sz + 1/2), takes the form

H̃⊥
K = J⊥

RR

2πa

ñcñ
+
l

2
(d†Fsle

−iφsl + F
†
sle

iφsl d)

+ J⊥
LL

2πa

ñcñ
−
l

2
(d†F †

sle
iφsl + Fsle

−iφsl d)

+ e−ieV t J⊥
RL

2πa

ñc

2
(ñ−

sl d
†F †

l eiφl − ñ+
sl F

†
l eiφl d)

− eieV t J⊥
LR

2πa

ñc

2
(ñ+

sl d
†Fle

−iφl − ñ−
sl Fle

−iφl d). (14)

Note that no ñ±
s factors appeared in these terms; they would

appear in the interlead cotunneling terms of Hz
K, but we follow

S&H and set the coupling constants of those terms to zero
as part of the definition of the Toulouse limit. So we need to
discuss the intralead part of Hz

K and the kinetic terms. Let us
examine further the effects of the E&K transformation. The
transformation of a boson derivative is given by

U∂φs(x)U † = ∂φs(x) − iγsS
z
imp[∂φs(x),φs(0)] + · · ·

= ∂φs(x) − 2πγsS
z
impδ(x), (15)

where we used AeB = eB(A + [A,B] + · · · ), which follows
immediately from the BCH formula and the equal-time
commutator [φν(x),∂φν ′(y)] = 2πiδ(x − y)δνν ′ . In terms of
the corresponding fermions, via debosonization, this shift
translates into a change of boundary conditions and thus U

is sometimes called a “boundary-condition changing opera-
tor” [31,32]. When γs = 1 this gives (up to a conventional sign)
an Abelian version of the shift that Affleck and Ludwig use to
“complete the square” and absorb the impurity in a redefinition
of the “spin density” at the infrared fixed point [24]. On the
one hand, for the spin-sector part of the kinetic energy, we use
this shift and obtain

H̃0
ν=s = vF

4π

[
∂φs(x) − 2πγsS

z
impδ(x)

]2

= vF

4π
[∂φs(x)]2 − vFγsS

z
imp∂φs(0) + γ 2

s vF
π

4
δ(0).

(16)

On the other hand, for the parallel Kondo terms we get

H̃ z
K = 1

4π
J z

avgS
z
imp

[
∂φs(0) − 2πγsS

z
impδ(0)

]

+ 1

8π

(
J z

RR − J z
LL

)
Sz

imp∂φsl , (17)

where J z
avg = (J z

RR + J z
LL)/2. For the Toulouse limit one

considers the symmetric case, J z
RR = J z

LL, and sets J z
avg →

4πvFγs = 4πvF. Combining these two results and disregard-
ing constant energy shifts, one has

U
(
H0

ν=s + Hz
K

)
U † = vF

4π
[∂φs(x)]2. (18)

In summary, all the parallel Kondo terms were either set to
zero or absorbed into the kinetic term and dropped out from
the problem.

Finally, the local-field term is not affected by the transfor-
mation procedure and is written as

Hfield = −h Sz
imp = −h (d†d − 1/2). (19)

C. Debosonization

The kinetic terms are easily written back in terms of
fermions, becoming similar to the original kinetic terms of
the model. The only nontrivial part of the Hamiltonian that we
need to debosonize and discuss carefully is the “perpendicular”
Kondo terms. The final result for the lead-symmetric case
reads

H̃⊥
K = Jra

ñcñ
+
l

2
(d†ψsl(0) + ψ

†
sl(0)d)

+ Jra
ñcñ

−
l

2
(d†ψ†

sl(0) + ψsl(0)d)

− Jer
ñcñ

+
sl

2
(d†ψl(0) + ψ

†
l (0)d)

− Jer
ñcñ

−
sl

2
(ψ†

l (0)d† + dψl(0)), (20)

where (cf. Fig. 1)

Jra = J⊥
��/

√
2πa and Jer = J⊥

��̄
/
√

2πa ; (21)

and later we will compactly denote

J± = Jrañcñ
±
l

4vF
and T± = Jerñcñ

±
sl

4vF
. (22)

The ñ±
ν ’s defined in Eq. (9) are now viewed as square roots of

local fermionic densities at the site of the impurity. While
writing Eq. (20), we have already gauged away the time
dependence from the coupling constants so that μν=l = −(eV )
and all other chemical potentials are zero. This is achieved by
using the transformation ψl(x,t) = eieV (t−x/vF)ψ̆l(x,t) where
ψ̆ν = 1√

2πa
Fνe

−iφν are the debosonized fields, as was done for
the simple junction [1].

IV. TRANSPORT CALCULATIONS

In order to solve for the transport characteristics, we
derive an expression for the current according to Î = ∂t

�N
2 =

i[H,�N
2 ] = i[H⊥

K ,Nν=l], which gives I = 〈Î 〉 as (notice
[ñ±

l ,Nν=l] = 0)

I = −iJer
ñc

2
[ñ−

sl(〈d†ψ†
l 〉 − 〈ψld〉) − ñ+

sl(〈ψ†
l d〉 − 〈d†ψl〉)],

(23)
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and the problem reduces to finding those matrix
elements.

A. Conventional approach

In the conventional BdB program, the boson exponentials
that result after changing basis are freely recombined and
as a result they simply disappear. This is equivalent, in the
expressions above which already incorporate CBCs that are

conventionally not discussed, to replacing ñ±
ν → 1 everywhere

[cf. Eq. (9)].
To calculate the necessary Green’s function elements,

using the same local action scheme and principal-value
regularization (cf. Ref. [33]) as we did for the case of the
junction [1], we adopt the following Keldysh-Nambu spinor
basis (with the frequencies restricted to the positive semiaxis
only in order to avoid double counting),

�(ω) = (ψ−
l (ω) ψ+

l (ω) ψ
†−
l (ω̄) ψ

†+
l (ω̄) d−(ω) d+(ω) d†−(ω̄) d†+(ω̄) ψ−

sl (ω) ψ+
sl (ω) ψ

†−
sl (ω̄) ψ

†+
sl (ω̄))

T
.

Let us define sν(ω) ≡ tanh ω−μν

2Temp
and s̄ν(ω) ≡ tanh ω+μν

2Temp
, where Temp is the temperature that is taken to be uniform (and that we

will set to zero for the most part). The local inverse Green’s function for the junction, G−1(ω)/2vF, is thus given by the following
matrix:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

isl −isl + i 0 0 T+ 0 T− 0 0 0 0 0

−isl − i isl 0 0 0 −T+ 0 −T− 0 0 0 0

0 0 is̄l −is̄l + i −T− 0 −T+ 0 0 0 0 0

0 0 −is̄l − i is̄l 0 T− 0 T+ 0 0 0 0

T+ 0 −T− 0 ω + h 0 0 0 −J+ 0 −J− 0

0 −T+ 0 T− 0 −ω − h 0 0 0 J+ 0 J−
T− 0 −T+ 0 0 0 ω − h 0 J− 0 J+ 0

0 −T− 0 T+ 0 0 0 −ω + h 0 −J− 0 −J+
0 0 0 0 −J+ 0 J− 0 issl −issl + i 0 0

0 0 0 0 0 J+ 0 −J− −issl − i issl 0 0

0 0 0 0 −J− 0 J+ 0 0 0 is̄sl −is̄sl + i

0 0 0 0 0 J− 0 −J+ 0 0 −is̄sl − i is̄sl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

we also rescaled frequencies and the magnetic field with 2vF (alternatively, one can think we took vF = 1/2).
After finding the Green’s functions of interest we replace T± �−→ Jer/2 and J± �−→ (Jra ± K)/2, where in the second one

(in order to facilitate the comparison with previous results from the literature) we reintroduced the possible asymmetry between
right and left leads, which stretching our notation is given by K = (J L

ra − J R
ra )/2. Combining these results one gets the following

expression for the current:

I =
∫ +∞

0

J 2
er

[(
J 2

er + K2
)(

ω2 + J 4
ra

) + h2J 2
ra

]
[sl(ω) − s̄l(ω)]

ω4 + [
J 4

ra + (
J 2

er + K2
)2 − 2h2

]
ω2 + [

J 2
ra

(
J 2

er + K2
) + h2

]2

dω

2π
. (24)

This expression is completely equivalent to the one S&H
reported in their original work. [See Eqs. (7) and (8) of
Ref. [20] and match their notation to ours according to
�a = �1 + K2 where �1 = J 2

er, and �b = J 2
ra.] In particular, it

is interesting to consider the case of zero magnetic field. One
finds

I =
∫ +∞

0

J 2
er

(
J 2

er + K2
)

ω2 + (
J 2

er + K2
)2 [sl(ω) − s̄l(ω)]

dω

2π
, (25)

which is a rather peculiar result, since the dependence on Jra

has completely dropped out from the problem. This integral is
elementary in the zero-temperature limit,

lim
Temp→0

I = 1

π

∫ V

0

J 2
er

(
J 2

er + K2
)

ω2 + (
J 2

er + K2
)2 dω

= 1

π
J 2

er arctan
V

J 2
er + K2

, (26)

and it can also be carried out at finite temperature in terms of
digamma functions [34].

Let us focus back on the lead-symmetric case with K = 0.
When there is no magnetic field, there is no dependence on Jra

in the conventional result and it applies to the case of Jra = 0
in particular. But in that case the structure of H̃⊥

K resembles
closely that of the tunneling term in a simple junction [1],
with ñ±

sl playing the role that was played there by ñ±
s and

d† replacing ψ
†
sl . Therefore, in this limit we know (based on

our experience with the junction) how to take the ñ’s into
account. And we thus know one should expect the consistent
result to be rather different from the conventional one, except
perhaps for small Jer. Indeed, due to the presence of the ñ

factors in the consistent approach, the structure of the problem
is that of a resonant level attached to a single lead. Because
of the alternation of different ñ’s, there are no Majorana-like
operators that could contribute to the transport and give a
nonzero current (cf. Ref. [35]), unlike in the conventional
approach. In other words, the expected consistent-approach
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FIG. 2. Graphical representation of the states that contribute to
transport. Intralead processes are indicated by the vertical arrows
(J±) that conserve ñl , while interlead processes are given by the
horizontal arrows (T±) that conserve ñsl . The circles indicate the
state labels for the single-particle sector of an equivalent Gaussian
problem that shares the exact same processes (see the discussion in the
text).

result when Jra = 0 is simply dI/dV = 0 for any value of
Jer. It follows that we need to treat the ñ’s consistently for all
values of Jra, but that requires additional insights.

B. Consistent approach

Let us turn again to the problem of finding the necessary
expectation values, fully dressed by H̃⊥

K as in Eq. (20), needed
to compute the current as in Eq. (23). The challenge is to
treat the factors ñ±

l and ñ±
sl consistently. This is a nontrivial

problem, but we are nevertheless able to provide an ad hoc
solution. In order to achieve that, we start by studying the
local Hilbert space at the impurity site and the structure of the
processes that take place; this is graphically summarized in
Fig. 2.

Let us consider the possible sets of eigen-expectation-
values of ñd,l,sl = 0,1 (cf. Ref. [1]). There are eight combina-
tions in total, but those in which they add up to an odd number
constitute isolated states that are not connected by processes
in H̃⊥

K and, in particular, do not contribute to transport. That
leaves only four states as depicted in the figure.

From our study of the simple junction [1], we know that
the physical content of the ñ factors is actually to avoid
contractions between normal and anomalous terms; in the
present case, however, those are allowed but when and only
when Jra and Jer processes alternate. By considering processes
at different orders of perturbation in H̃⊥

K , one can conclude
that we can achieve the same set of processes, and also
avoid the presence of anomalous terms, by modifying the
anomalous terms in Eq. (20) according to the following
prescription:

d† −→ f̃ †,

ψ
†
l −→ −ψ̃sl,

ψ
†
sl −→ ψ̃l,

while not adjusting those same fields (only renaming them by
adding twiddles) in the regular terms, and removing all the

ñ factors everywhere. In particular, one can check processes
to fourth order in perturbation, when there are combinations
in which all possible vertexes enter and the state of the
system goes around full circle; cf. Fig. 2. We verified all
these processes are in one-to-one correspondence in both
formulations. This mapping is also argued for in a different
way in the Appendix, by studying some exactly solvable limits
of the two-lead Kondo model.

The mapping has to be applied to a version of H̃⊥
K previous

to that in Eq. (20), that is already debosonized but in which
the factors of e±ieV t still appear explicitly in the interlead
terms and can be removed ulteriorly. We are thus lead to
consider

H̃⊥
K = J+

ra

2
(d̃†ψ̃sl(0) + ψ̃

†
sl(0)d̃)

+ J−
ra

2
(f̃ †ψ̃l(0) + ψ̃

†
l (0)f̃ )

− J+
er

2
(d̃†ψ̃l(0) + ψ̃

†
l (0)d̃)

− J−
er

2
(f̃ †ψ̃sl(0) + ψ̃

†
sl(0)f̃ ), (27)

where the ± superscripts are used simply to keep track of
what was the corresponding superscript in the now-absent
ñ±

s ’s of the different terms, but in the calculations the two
couplings will be taken as having equal numerical values.
The e±ieV t factors were removed from the couplings by using
again a time-dependent gauge transformation. The choice of
gauge transformation is this time not unique. We adopted the
following symmetric choice: μl = μf = −eV/2 and μsl =
μd = eV/2. Another choice could have been μl = μf = −eV

and the other two zero; we checked that these and other choices
are all equivalent. We need to stress that we introduced the
ψ̃ notation to emphasize an important interpretational differ-
ence with Eq. (20): after applying the prescribed mapping,
and even though we kept similar notations for the fields,
there is no connection left to the physical sectors of the
theory.

We also want to consider the local magnetic-field term
which is naturally rewritten in a symmetric way (see the
Appendix):

H̃field = −h (d̃†d̃ + f̃ †f̃ − 1). (28)

The current is given by

I = 〈Î 〉 = i

[
J−

er

2
(〈ψ̃sl f̃

†〉 − 〈f̃ ψ̃
†
sl〉) (29)

+ J+
er

2
(〈d̃ψ̃

†
l 〉 − 〈ψ̃l d̃

†〉)
]

.

The resulting calculation is straightforward. Using the spinor
basis

�(ω) = (ψ̃−
sl ψ̃+

sl ψ̃−
l ψ̃+

l d̃− d̃+ f̃ − f̃ +)
T

(30)
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and adopting the same notations as for the conventional calculation, the local inverse Green’s function for the junction is given
by

G−1(ω) = 2vF

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

issl −issl + i 0 0 J+ 0 −T− 0
−issl − i issl 0 0 0 −J+ 0 T−

0 0 isl −isl + i −T+ 0 J− 0
0 0 −isl − i isl 0 T+ 0 −J−
J+ 0 −T+ 0 ω + h − V 0 0 0
0 −J+ 0 T+ 0 −ω − h + V 0 0

−T− 0 J− 0 0 0 ω + h + V 0
0 T− 0 −J− 0 0 0 −ω − h − V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where it should be noticed that the voltage now enters explicitly also in the resonant-level-like diagonal-block action matrix
elements corresponding to d̃† and f̃ †. The voltage was written here absorbing a factor of e/2 only to keep the matrix expression
short; it will be reinserted below. The final expression for the current is

I =
∫ +∞

−∞

dω

2π

2
(
J 2

ss − J 2
ds

)
(ω + h)2

[
(ω + h)2 − J 2

ds − (eV/2)2
]2 + 4J 2

ss(ω + h)2
[sl(ω) − ssl(ω)], (31)

where Jss/ds = (J 2
ra ± J 2

er)/4 are the sum and the difference of the squares of the couplings, respectively. Notice that only the squares
of the couplings enter into the final expression, which means that all the ñ’s would have appeared squared as well. As anticipated,
the current vanishes if either Jra or Jer is zero. The integral can be done in general, but it is simpler and more illuminating in the
zero-temperature limit. Using d(sl − ssl)/dV = (e/2)d(sl − ssl)/d(eV/2) → e[δ(ω + eV/2) + δ(ω − eV/2)], we directly write
down an expression for the zero-temperature differential conductance,

dI

dV
=

∑
s=±1

2(e/2π )
(
J 2

ss − J 2
ds

)
(h + s eV/2)2

[
(h + s eV/2)2 − J 2

ds − (eV/2)2
]2 + 4J 2

ss(h + s eV/2)2

+
∫ +∞

−∞

dω

2π

4e(eV/2)
(
J 2

ss − J 2
ds

)[
(ω + h)2 − J 2

ds − (eV/2)2
]
(ω + h)2

{[
(ω + h)2 − J 2

ds − (eV/2)2
]2 + 4J 2

ss(ω + h)2
}2 [sl(ω) − ssl(ω)]. (32)

C. Comparison of results

In what follows we will illustrate the differences between
the results obtained using the conventional and consistent
approaches discussed in the previous two sections. We will
do so mainly by considering the behavior of the differential
conductance, first as a function of Jer and Jra for specific
values of h and eV as shown in Fig. 3 and then by looking at its
behavior as a function of h and eV for specific values of Jer and
Jra as shown in Figs. 4, 5, and 6. The physical interpretation and
plausibility of the consistent-approach results will be presented
as well.

Figure 3 shows the values of the differential conductance
for voltage V = 0 and field h = vF as a function of Jer while
fixing Jra = 1, or vice versa. We denote Jer and Jra by J in the
two cases, respectively. The two cases produce completely
identical plots at zero voltage, as can be seen from the
symmetry of Eqs. (24) and (31). From these expressions, one
can also see that for the current and differential conductance
derived using the consistent scheme, the symmetry under
exchange of Jer and Jra continues to be present also at finite
voltage. On the other hand, the symmetry is absent when
one puts h = 0 for any value of voltage in the conventional
expression and further the transport is dictated solely by the
value of Jer. It is to be noted that the order of limits for Jer,
Jra, V , and h going to zero is in general important and needs
to be treated carefully, as can be seen by a direct study of the
expressions for the current.

From a diagrammatic point of view, one would have
expected the conventional and consistent plots in Fig. 3
to be asymptotically equivalent for small J . An expansion
in the couplings of the zero-voltage dI/dV derived from
Eqs. (24) and (31) shows that, unlike the case of a junction [1]
or the Ising limit considered in the Appendix, there is no
contribution to the current in the lowest order. That is the
order at which the two calculations would have matched (as
indeed happens for the simple junction and the Ising limit). The
next order is O(J 2

erJ
2
ra), which is the first nonvanishing order

for the differential conductance and the first one consistent
with the emerging Jer ↔ Jra duality of the problem at the
Toulouse point that was discussed above. At this order, the
conventional calculation is larger than the consistent one by
a factor of 2; which is the same factor that one finds for the
(same) next-to-lowest order of the expansion of the consistent
calculation as compared with the exact direct results in the
cases of both the junction and the Ising limit. Interestingly,
as can be seen from the comparison of the dI/dV results for
Jer = Jra, the two calculational schemes yield, at zero voltage,
results that are identical except for the aforementioned factor
of 2. Motivated by these two observations, we also provided
in Fig. 3 the conventional result scaled by a factor of 1/2.

Although the tails do not match in Fig. 3, the two ways of
calculating give the same result as J (i.e., Jer or Jra) goes to zero
while the other one (i.e., Jra or Jer, respectively) is nonzero.
However, similarly to the case of a simple junction [1], the
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consistent

conventional
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0
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G
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0
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Q

FIG. 3. Comparison of the differential conductance for the two-
lead Kondo junction, G = dI/dV (in units of the single-channel
conductance quantum, GQ = e2/h), calculated according with the
conventional procedure or using our consistent scheme. The plot is
at zero applied voltage and finite magnetic field (h = vF). Notice the
convention used for the horizontal axis in order to cover the full range
of J (see also the corresponding plot for the simple junction [1]). Here,
differently from previous sections, J stands for either Jer or Jra while
the other (Jra or Jer, respectively) is set to 1; the resulting plots are
identical for both cases at zero voltage. The dashed line gives for
comparison the conventional result divided by a factor of 2.

results are different for finite J , the difference being most
marked for large J . While the consistent conductance first
increases and then falls down, eventually going to zero as
J → ∞, the conventional conductance continues to grow with
increasing J and approaches the value 2e2/h.

One can gain some additional insights by appealing to
physical arguments. The current is obviously zero if Jer = 0,
but also if Jer → ∞ due to the formation of a resonating-
tunneling state that will block other electrons from approach-
ing the junction (the same as what happens for a simple
junction [1], since those arguments are not affected by the
fact that tunneling now involves also spin flip). Therefore,
a nonzero current requires the interlead exchange coupling
to take some intermediate value. The physical picture is
similar but more involved concerning the intralead couplings.
If Jra = 0, for instance, then the parallel Kondo terms which
reach their maximal value at the Toulouse point (measured
in terms of phase shifts) promote the formation of a strongly
bound “static doublet” between an electron at each side and
the impurity. Such a bound state “sits” at the location of
the junction and Pauli-blocks the passage of a current: since
electrons tunnel with spin flip, there is always one bound-
state electron already occupying the site with the same spin
projection that the tunneling electron would have either before
or after tunneling. If Jra → ∞, in the opposite limit, then
a complicated resonating-exchange state would form instead,
but again the current would be blocked because other electrons
would be blocked from approaching the junction (similarly
as for Jer → ∞). As a result, a steady-state current requires
intermediate values of both inter- and intralead couplings.

In all the limits that involve strong coupling, the intuitive
physical picture discussed above does not agree with the

results of the conventional calculation, but it does with the
consistent calculation in which the ñ’s are properly taken
into account. This is a strong validation for the need to
manipulate and debosonize models consistently after the initial
bosonization. Additionally, it should also be remarked that
the consistent conductance never exceeds the value of one
single-channel quantum of conductance (GQ ≡ e2/h). This
is also an emergent property at the nonequilibrium Toulouse
point in addition to the Jer ↔ Jra transport duality, both of
which are indicated by physical arguments along the lines
discussed above.

It is interesting to take a more systematic look at the
variation of the differential conductance with applied field and
voltage. In Fig. 4 we show contour color maps of dI/dV

for the conventional and consistent calculational schemes,
while fixing the Kondo couplings to the symmetric choice
Jer = 1 = Jra. For additional clarity, in Fig. 5 we show also two
half-plane cuts of the differential conductance maps: a vertical
one at constant magnetic field, h/vF = 5, and a horizontal one
at constant voltage, eV/vF = 5. For these cuts, the horizontal
axis is defined in terms of either x = eV/h (dashed lines)
or x = h/eV (solid lines), respectively. As is clearly evident
from the figures, the effects of field and voltage turn out to be
exactly equivalent in the conventional calculation (as seen from
the 90◦ rotational symmetry of the first contour plot or from
the complete overlap of the two “conventional” traces in the
cuts). However, the consistent calculation yields inequivalent
dependencies on field and voltage.

Both ways of calculating show a splitting of the zero-bias
differential-conductance anomaly due to the finite magnetic
field when plotting as a function of voltage, but the peaks are
sharper and more asymmetric in the consistent calculation.
The contrast between the two results is even greater at finite
applied voltage when plotting as a function of magnetic
field. In the consistent case and for low applied voltages,
only part of the zero-bias anomaly splits, while a relatively
broad relic of it remains pinned at zero bias. As a result the
contour plots are star- or butterfly-shaped, instead of being
cross-shaped as in the conventional calculation. For small x

(as compared with Jer and Jra), the differential conductance
can additionally be described as showing a small “deep”
developing right after/before the “peak” when plotting as
a function of voltage or field, respectively. In other words,
besides the “ridges” in the contour maps for |h| = 0,|eV |,
there are also “furrows” at |2h| = |eV | which are absent from
the conventional calculation. This can be seen analytically
by looking at the small-coupling expansion of the differential
conductance.

To take a closer look at the central part of the contour
maps, we plot in Fig. 6 horizontal and vertical cuts going
through h = V = 0 (solid and dashed lines, respectively).
In the conventional calculation, the differential conductance
reaches the maximum value of 2GQ at zero field and bias, and
decreases towards zero as either of them increases (once again,
the symmetry of the behavior with h and V make the solid and
dashed lines coincide with each other). On the other hand,
the consistently calculated differential conductance reaches a
maximum value of GQ at the origin—only half as tall—and
it decreases towards zero differently with field or with applied
voltage, with the latter being the slowest decay and the only one
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FIG. 4. Contour color maps of the differential conductance, G = dI/dV , in units of (twice) the single-channel conductance quantum as
a function of applied field and voltage. The two panels compare the conventional calculation (left panel, in units of 2GQ) and our consistent
calculation (right panel, in units of GQ) for the case of Jer = 1 = Jra. While, conventionally, applying a field or a finite voltage have the same
effect, that is not the case in a consistent calculation.

of these four curves not following a steepest descent. Notice in
addition, from the contour maps, that only along the diagonal
ridges would the differential conductance not go to zero
asymptotically. Let us point out that the way the asymptotic
values are approached in all cases is as a power law instead
of the expected logarithmic tail [23,36]. This is a peculiarity
of the Toulouse limit, in which the voltage or local magnetic
field can never be larger than the parallel Kondo couplings
and the bandwidth is infinite. So the standard argument in

consistent

conventional

0 0.5 1 0.5 0
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FIG. 5. Differential conductance for the two-lead Kondo junc-
tion, G = dI/dV (in units of the single-channel conductance
quantum), calculated according with the conventional procedure (in
red) or using our consistent scheme (in blue). The plots are either at
a finite constant field (h = 5vF) and as a function of applied voltage
(dashed lines), or at a finite constant applied voltage (eV = 5vF) and
as a function of magnetic field (solid lines). For the conventional
calculation, both plots are identical and the dashed line is covered by
the solid one. Notice the convention used for the horizontal axis in
order to cover the full range of x (defined in terms of either x = eV/h

or x = h/eV , with the field that is kept constant being the one in the
denominator).

which such energy scales stop the renormalization-group
flow of the couplings does not apply. Moreover, already in
the conventional framework and for equilibrium situations,
a standardly formulated renormalization-group scheme [37]
is not compatible with the nature of the Toulouse-limit
fixed-point manifold, which calls for a careful reformulation
[29,38].

Let us also stress and comment on the differences between
the ways in which applied voltage and temperature enter in
both calculations. In the conventional calculation, both enter
into the expression for the charge current, Eq. (24), through
the thermal factors sl(ω) and ssl(ω) only, but not via the
kernel multiplying them (the spectral function of a Majorana

consistent

conventional
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FIG. 6. Differential conductance for the two-lead Kondo junc-
tion, G = dI/dV (in units of the single-channel conductance
quantum), calculated according with the conventional procedure (in
red) or using our consistent scheme (in blue). The plots are either at
a zero field and as a function of applied voltage (dashed lines), or at a
zero voltage and as a function of magnetic field (solid lines). For the
conventional calculation, both plots are identical and the dashed line
is covered by the solid one.
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fermion in this case). The latter is independent of both eV

and Temp, which is ascribed to the quadratic nature of the
problem at the solvable point [34]. Only as one moves away
from the solvable point, the voltage and temperature will
explicitly enter into the kernel of the integrand [39]. This
is in contradistinction to the consistent calculation in which
the voltage enters explicitly into the kernel of Eq. (31), but not
the temperature. Thus, not only voltage and magnetic field, but
also voltage and temperature, interplay differently as compared
with the previously accepted, conventional results for the
nonequilibrium Toulouse point. If one were to imagine that
these kernels capture the Kondo-resonance part of the spectral
function of some parent Anderson-type impurity model, one
could see how the resonance reacts to applied field or voltage.
On the one hand, in both calculations the resonance would shift
from zero frequency with magnetic field. On the other hand,
the resonance would not depend on voltage in the conventional
picture, but it would split with the applied drain-source bias
in the consistent picture. The latter would be in agreement
with experimental results and the accepted phenomenological
picture of Kondo transport out of equilibrium [40] (and as first
predicted in Ref. [41]).

V. CONCLUSION AND FINAL REMARKS

In the companion work [1], we presented a consistent
bosonization-debosonization program in which we introduced
the ñ factors, defined here in Eq. (9), to assist in making
the results consistent after performing transformations in the
bosonic language and later debosonizing models that include
terms with single-point non-normal-ordered operators. How
these factors should be treated depends on the physical setup
being considered and needs to be studied on a case by case
basis. Sometimes the conventional way (i.e., ñ → 1 for all
of them) could be the one consistent with the problem, but
other times the consistent treatment is different. Moreover,
this treatment can be connected to the choice of boundary
conditions that is dictated by the problem (cf. Ref. [1]).

We applied these ideas here to the important case of
quantum impurity problems. In particular, we focused our
attention on the two-lead Kondo model of a junction out of
equilibrium. By considering certain regimes of the problem,
we were able to argue that the conventional way of calculating
does not produce consistent results, while a different treatment
of the ñ factors seems to fix those problems (as it did for
the case of the simple junction problem [1]). Moreover, the
calculations can then be carried out in the full regime of
parameters of the system. This way, the key insights of the
work by S&H (and also by E&K) can be retained and the
calculations fixed to produce consistent results (our method of
solution was ad hoc and there is no exact solution to refer to as
in the case of the junction, but we do know it interpolates
between consistent limits). We thus were able to make a
number of predictions for the transport characteristics of the
two-lead Kondo model that can, in principle, be looked for in
experiments.

Certainly, more work should be done along this line
following the developments of the literature of the past two
decades, and we are already exploring some directions. To
name but a few: (i) the consistent solution can be explored

further, including additional aspects of transport (such as the
noise spectrum and possibly thermal transport), alternatives
such as charge sensing [42], and also the thermodynamics;
(ii) one can study ac-drive effects that are realizable in
experiments [43,44]; (iii) a study of multiterminal models
would provide new insights, cf. Refs. [31,45]; (iv) perturbation
around the solvable Toulouse point needs to be considered
anew, cf. Refs. [39,46]; (v) connections to other approaches
such as boundary CFT can bring in synergy [47,48], show-
ing for example how to possibly extend those methods to
nonequilibrium transport problems; (vi) ditto for approaches
that exploit the connections to integrability [49] or to renormal-
ization ideas [50]; (vii) one could combine our approach with
a finite-size bosonization analysis to further bridge with CFT
and numerical renormalization ideas [28]. The list can go on
(even though we restricted it to quantum impurity problems
only). Given the continued challenge posed by the need to
better understand strongly correlated quantum systems out of
equilibrium, the consistent Toulouse-point solution will play
an important role as a reference case for a class of problems
in which a lot is still not well understood and there is a lack of
exact results to guide the theoretical developments.
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APPENDIX: SOME EXACTLY SOLVABLE LIMITS

In the following, we consider two different limits that can
be rigorously treated via exact direct calculations. They further
motivate the prescription mapping discussed in the main text
to solve for the transport within the consistent approach.

1. x̂-axis Ising limit

We call the Ising limit of the anisotropic Kondo model that
in which all the spin-spin exchange interactions take place
along a single axis. We will choose it to be the x̂ axis (as is often
done for the transverse-field Ising model). The virtue of this
limit is that it is exactly solvable: the electrons still interact with
the impurity but the latter does not have dynamics (i.e., no spin
flips take place along the x̂ axis). As a result, all one has to do is
to solve for each possible impurity orientation and average over
the results (this is reminiscent of the treatment of the boundary
sine-Gordon model that one obtains at the solvable point of
the problem of a classical impurity in a Tomonaga-Luttinger
liquid [31,52]; cf. Ref. [53]). When the impurity is frozen, the
only remaining degrees of freedom are the electronic ones and
the problem becomes Gaussian and thus exactly solvable in a
direct way. We shall keep the ẑ axis as the quantization axis for
the electrons, as this will show some structure that will help us
understand how to deal with the full two-lead Kondo model in
the language of Abelian bosonization.
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In the zero-field case, and setting in Eq. (1) all the non-x
couplings to zero, J

y

��′ ,J
z
��′ = 0, we are left with (the time

dependence is implicit)

H =
∑
σ,�

(∫
H0

� dx + Hx
K

)
, (A1a)

H0
� = ψ

†
σ�(x)(−ivF∂x)ψσ�(x), (A1b)

Hx
K = J x

��′ S
x
imp

(
1

2
ψ

†
σ̄ �(0)ψσ�′(0)

)
, (A1c)

where we have made use of the relation 2Sx
impS

x
elec =

Sx
imp(S+

elec + S−
elec). Hermiticity requires J x

RL = J x
LR = J x

er. It is
a simple exercise to solve the model directly and find a closed
expression for the differential conductance (for brevity, we do
not quote that result here).

We are interested in bosonizing, changing boson basis,
and debosonizing in the same way as we did for the full
model (gauging the voltage in and out from the couplings
also in the same way). Of course, no unitary transformation is
required this time since Sx

imp commutes with the Hamiltonian
and thus plays a simple spectator role. The Kondo part of the
Hamiltonian is finally rewritten as (all fields are at time t and
x = 0)

Hx
K = J x

RR
ñcñ

+
l

2
Sx

imp(ψ†
slψ

†
s + ψsψsl)

− J x
LL

ñcñ
−
l

2
Sx

imp(ψ†
s ψsl + ψ

†
slψs)

+ J x
er

ñcñ
+
sl

2
Sx

imp(ψ†
s ψ

†
l + ψlψs)

− J x
er

ñcñ
−
sl

2
Sx

imp(ψ†
l ψs + ψ†

s ψl). (A2)

One could now set all ñ → 1 and proceed conventionally
to calculate the differential conductance. The result is that
the expression differs from the direct calculation in a way
that parallels what we discussed for a simple junction [1]. In
particular, a small-coupling expansion shows that the results
match to lowest order, O[(J x

er)
2], but the conventional result is

twice bigger than the direct one at next-leading order, as was
the case for the simple junction. Therefore, one needs to treat
the ñ’s more carefully.

The practical problem that arises is that the factors ñ±
l

and ñ±
sl introduce complicated dynamics into the Hamiltonian

because there are linear terms in ψ
[†]
l and ψ

[†]
sl present as

well. From our study of the simple junction [1], we know
that the physical content of these factors is actually to avoid
contractions between regular and anomalous terms of the
same type (i.e., inter- or intralead). Here the situation is more
complicated because regular and anomalous terms of a given
type can be combined provided there is an intervening term of
the other type, and vice versa. One can check this conclusion
order by order via a matching of perturbative expansions as
we did for the case of the simple junction [1].

But since the present problem is directly solvable in terms
of the original fermions, we know there exists a way of
organizing the perturbation theory as if the model was purely
Gaussian. We shall thus focus on the structure of the terms

while comparing new and original fermions. We do that by
looking at the four Klein factor relations [see Eqs. (10a)–(10h)]
that involve F

†
s : (i) for the regular terms, FslF

†
s = F

†
↑LF↓L and

FlF
†
s = F

†
↑LF↓R; and (ii) for the anomalous terms, F

†
slF

†
s =

F
†
↑RF↓R and F

†
l F

†
s = −F

†
↑RF↓L. The other four are just the

Hermitian conjugates of these.
A first observation is that in terms of the original fermions

there are no anomalous terms present in the model; see
Eq. (A1). This prompts us to attempt a mapping in which we
do not change the regular terms but “regularize” the anomalous
ones. Notice that while F

†
s appears in all four terms, no single

original Klein factor appears four times; while F
†
↑L repeats in

the regular terms, F
†
↑R does in the anomalous ones. A second

observation is that the pair of spin-down original Klein factors
repeat in regular and anomalous terms, but they exchange roles
as to which one goes in the intralead process and which in the
interlead process in each case.

These two observations indicate that we can achieve
the same perturbative processes (and, as a bonus, avoid
the presence of anomalous terms) by modifying only the
anomalous terms according to the following prescription:

ψ
†
s −→ ψ̃

†
z ,

ψ
†
l −→ −ψ̃sl,

ψ
†
sl −→ ψ̃l,

(A3)

and removing all the ñ factors. To keep the same phase
conventions as we used for the matching of Klein factor
bilinears, we also need to introduce a minus sign in all the
terms (this is not essential as the current is not sensitive to it).
Explicitly, one has

Hx
K = 1

2
J x

RSx
imp(ψ̃†

l ψ̃z + ψ̃†
z ψ̃l)

+ 1

2
J x

L Sx
imp(ψ̃†

s ψ̃sl + ψ̃
†
slψ̃s)

+ 1

2
J x

erS
x
imp(ψ̃†

slψ̃z + ψ̃†
z ψ̃sl)

+ 1

2
J x

erS
x
imp(ψ̃†

l ψ̃s + ψ̃†
s ψ̃l), (A4)

and, trivially since the ψ̃’s can be put in one-to-one corre-
spondence with the original fermions in Eq. (A1), all the
results will be the same as in the direct solution. We stress
that, even though we kept the notation with s, l, and sl, these
are different fermions and there is no direct connection left
to the physical sectors of the theory (we introduced the ψ̃

notation to emphasize this point).

2. Flat-band limit

If one introduces a lattice discretization, the flat-band limit
is the limit of zero hopping between sites. Then all sites in
each band are independent fermionic degrees of freedom,
except for the sites at x0, the location of the impurity, which
are connected by the tunneling terms in the Hamiltonian. We
could consider this limit for the Toulouse-point Hamiltonian
with its Kondo part given by Eq. (20) or for the BdB-mapped
x̂-axis-Ising Hamiltonian corresponding to Eq. (A2). Both
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yield equivalent models in the flat-band limit; for brevity, we
frame our presentation around the second case. Taking the band
energies to be zero, we introduce the notation ψ†

ν (x0) → c†ν
for ν = s,l,sl (or d† → c

†
s in the first case) to emphasize the

lattice nature of the problem and the sector of the Hamiltonian
containing x = x0 turns into the following three-site model
(taking the expectation value of the “spectator” impurity spin
and absorbing it in redefined coupling constants),

H3s = J a
ran

+
l (c†slc

†
s + cscsl) − J r

ran
−
l (c†s csl + c

†
slcs)

+ J a
ern

+
sl(c

†
s c

†
l + clcs) − J r

ern
−
sl(c

†
l cs + c†s cl). (A5)

Since now we are dealing with lattice fermions, we can directly
identify ñν → nν .

This model has an eight-state Hilbert space split into two
particle-number-parity sectors. The states with even number
of particles are all disconnected degenerate states with zero
energy. The states with odd particle number hybridize and
can be diagonalized (using exact diagonalization) into four

eigenstates with energies ±
√

−b/2 ±
√

b2/4 − c where b =
−[(J a

ra)2 + (J r
ra)2 + (J a

er)
2 + (J r

er)
2] and c = (J a

raJ
r
ra − J a

erJ
r
er)

2.
Applying the prescribed changes for the anomalous terms,

this Hamiltonian turns into the equivalent of Eq. (A4),
which is now a four-site model with no anomalous
terms,

H4s = − J a
ra(c̃†zc̃l + c̃

†
l c̃z) − J r

ra(c̃†s c̃sl + c̃
†
sl c̃s)

− J a
er(c̃

†
zc̃sl + c̃

†
sl c̃z) − J r

er(c̃
†
l c̃s + c̃†s c̃l). (A6)

This model conserves particle number and, in the single-
particle sector, its spectrum coincides with the odd sector
of H3s (cf. Fig. 2). Moreover, the same conclusion remains
true when we introduce a local magnetic field as in Eqs. (19)
or (28), appropriately rewritten. This serves as a check of how

to correctly normalize the local-field term after the mapping.
In other words, the Hamiltonian matrices in those two sectors
are unitary equivalent,

PoddH3sPodd ≡
U

P1pH4sP1p . (A7)

Due to the absence of interactions in H4s, its many-particle
physics can be calculated in terms of a Green’s function for a
single fermion injected into an empty band [54], and thus the
single-particle sector is the crucial one to determine the full
dynamics. Notice, in addition, that the way this kind of Green’s
functions at the bare level enter into the transport calculations
of the main text is via their inverses. As such, the propagator
of any hybridized local or flat-band degree of freedom will
not require independent regularization and will inherit its
causal properties (i.e., its Keldysh structure [33]) from other
extended-band degrees of freedom; and thus the difference
between “empty-band” and “degenerate-gas” Green’s func-
tions does not enter the calculations. Thus, for those physical
properties whose calculation requires only the two-point
Green’s functions and, by extension, only the single-particle
sector, the Hamiltonian mapped via the prescription should
work fine. And in the particular example above we were able
to show explicitly that the single-particle sector of the mapped
model reproduces the nontrivial part of the original spectrum.

In summary, the mapping we prescribed for the anomalous
terms works in both cases, namely the linear- and the flat-band
limits. In the case of the two-lead-Kondo-model Toulouse
point, we encountered two linear-band and one local degrees
of freedom, which is a combination of these two cases we
just discussed. One can resort to neither bosonization nor
exact diagonalization to prove the mapping rigorously, but it
is nevertheless justified on physical grounds as a combination
of these two limits and as argued also in terms of processes in
the main text.
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