
PHYSICAL REVIEW B 93, 085440 (2016)

Consistent bosonization-debosonization. I. A resolution of the nonequilibrium transport puzzle
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We critically reexamine the bosonization-debosonization procedure for systems including certain types of
localized features (although more general scenarios are possible). By focusing on the case of a tunneling junction
out of equilibrium, we show that the conventional approach gives results that are not consistent with the exact
solution of the problem even at the qualitative level. We identify inconsistencies that can adversely affect the
results of all types of calculations. We subsequently show a way to avoid these and proceed consistently. The
extended framework that we develop here should be widely applicable.
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I. INTRODUCTION

It is well known that quantum physics gets richer and
more peculiar as one considers reduced-dimensionality sce-
narios. Such scenarios are nowadays far from being esoteric.
From highly anisotropic and artificially layered materials, to
nanostructures, to confined ultracold atomic gases, examples
abound of what was once a playground for theorists but
modern experimental techniques turn into a practical reality.
The physics of one-dimensional systems provides an example
in which strong quantum effects together with interactions and
restricted kinematics modify the expectations we bring with
us from our more familiar three-dimensional world [1,2]. A
case in point, the successful paradigm of the Landau Fermi
liquid generically breaks down and gives rise to a new type of
quantum fluid known as the Luttinger liquid [3]. A technical
stepping stone on which the generality of this new paradigm
rests is the technique known as bosonization.

The term bosonization refers to the practical possibility
of describing the excitations of fermionic systems via a
description based on bosonic degrees of freedom. The key
observation is that for a fermionic one-dimensional system
with strictly linear dispersion and no cutoff, the excitations
at constant fermion number are particle-hole pairs that can
be used to construct bosonic operators which completely
capture the full excitation spectrum; such a view is known
as the constructive approach [4]. The conceptual advantage
of the constructive point of view is that it highlights the
fact that bosonization is an exact correspondence between
the two systems. There are also various complementary
presentations based on the matching of correlators and
known as the field-theoretic or the hydrodynamic approaches
(these are, for example, more amenable to the conceptual
description of the phenomenology of Luttinger liquids)
[1,2,5].

Since the conditions of linear dispersion with large band-
width and conserved particle number are all natural approx-
imations for systems at sufficiently low temperatures (much
lower than the bandwidth and the energy range of deviation
from linearity), the applicability of bosonization is ubiquitous
for all types of one-dimensional systems. Moreover, since
within its applicability conditions the bosonization mapping
is exact, it can equally well be used in both equilibrium and
out-of-equilibrium situations. In particular, it provides a fertile
ground for the study of transport phenomena in a variety of
settings.

A. Transport problems and bosonization

Due to the versatility of the technique, a sizable fraction of
the current theoretical studies of transport in one-dimensional
settings rests on the use of bosonization. If the applied
voltages are sufficiently low (in the same sense as discussed
above for the temperature), one can use bosonization even
if some biases are large compared with other characteristic
energy scales in the system and the problem falls outside
the linear-response regime. Bosonization thus provides us
in many a case with a powerful way of addressing strongly
nonequilibrium transport problems.

Given the vast array of possible experimental situations,
there are many types of setups to be considered and one
has to proceed in a class by class basis [6]. We shall restrict
ourselves to the situation in which the leads are Fermi liquids
in different equilibria (as is typical of Landauer-style setups;
cf. Refs. [7,8]) and the nonequilibrium situation is confined to a
zero-dimensional system (i.e., at most a Hilbert space with just
a few degrees of freedom) adjoining them via point contacts.
In particular, we shall focus on the important example of tun-
neling junctions of different types and steady-state conditions.

II. CASE STUDY: A SIMPLE JUNCTION
OUT OF EQUILIBRIUM

How to set up the bosonization formalism so that it remains
valid under nonequilibrium conditions is a delicate procedure,
often used but not so very often discussed in the literature. We
shall focus on the important case of nonequilibrium steady
states and we will expand on the details via a particular
example that will also serve to highlight certain subtleties
whose resolution will be the main focus of this paper.

We choose to study the problem of a point-contact junction
for noninteracting spin-1/2 fermions formed between two
leads separated by a tunneling barrier. This situation is
captured via a standard tunneling Hamiltonian [9]. Provided
the interactions in the leads are screened so one can describe
them with a noninteracting model, the problem can be
reduced to one dimension via the use of symmetries [10] or,
alternatively, introducing a lattice regularization and applying
a Lanczos-Haydock recursion [11] which is valid even in
the presence of disorder. One ends up with a semi-infinite
chain with the junction or impurity attached to its boundary.
In a continuum description (after introducing an appropriate
bandwidth cutoff and linearizing the spectrum) we have
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FIG. 1. Schematic representation of the mapping procedure.
When each lead can be described as fermions on a half line and there
are no interactions (or at least no backscattering), one can unfold the
space into a full line with only one type of mover. These are called
chiral fermions and the final setting is in many ways similar to that
which presents itself naturally in setups involving quantum-Hall edge
states. By convention, one sets the junction at the point x = x0 = 0
(with x̂ being the vertical axis in the figure). In the present case to
be studied, the junction is simply a potential barrier modeled with a
tunneling-overlap matrix element γt. More in general, one could have
a more complicated tunneling system (such as a double barrier with
resonant levels in between) in order to describe tunneling through
nanostructures such as quantum dots. The unfolding procedure can
also clearly be generalized to three-terminal settings and more [15].

two degrees of freedom which can be called the incoming
and outgoing electrons, that move towards or away from
the boundary, respectively. These are defined for r > 0 and
obey the boundary condition ψ

†
in(r = 0,t) = ψ

†
out(r = 0,t); we

omitted internal indexes for brevity. One can introduce the new
operator ψ†(r,t) = θ (−r)ψ†

in(−r,t) + θ (r)ψ†
out(r,t) defined in

the whole axis, where θ (r) is the Heaviside step function.
These are now chiral fermions and the junction problem has
been mapped to two chiral-fermion leads adjoined at a point
(see Fig. 1). These standard transformations are commonly
used in the context of (quantum-)impurity problems [12,13]
(see also Refs. [14] for a related description in the context
of numerical renormalization). Notice that we could equally
well exchange ψ

†
in and ψ

†
out while defining ψ†, which means

that we have the freedom to work with either right or left
movers and which type to choose is a matter of convention.
In what follows, after the mapping to a one-dimensional
model, we will refer to the spatial axis as the x̂ axis. The
open-circuit (open-junction) boundary conditions now read
ψ†(x = 0−,t) = ψ†(x = 0+,t).

A. Setting of the problem and direct solution

In Hamiltonian language, the model we shall focus on is
given by

H =
∑
σ,�

(∫
H0

� dx + Htun

)
, (1)

eV
t

L R
γ

FIG. 2. Schematic depiction of the setting in which two Fermi
seas kept at different chemical potentials with a difference given
by eV = μL − μR are connected via quantum tunneling across
the potential barrier that separates them. The tunneling across the
classically forbidden region is modeled by a tight-binding matrix
overlap γt that can be taken to be energy independent in certain cases
(in particular, the characteristic energy scale of dependence of the
transmission coefficient, |γt|2, has to be much larger than both eV

and kBT [8]). Here we assume that the barrier region does not allow
for internal states; a situation when that happens will be discussed
elsewhere [16].

where the Hamiltonian (densities) describing the leads and
the Hamiltonian for the tunneling across a barrier modeled
as a quantum point contact between the two leads [17],
respectively, are

H0
� = vF ψ

†
σ�(x,t)(−i∂x)ψσ�(x,t), (2a)

Htun = −γt ψ
†
σ�(0,t)ψσ�̄(0,t). (2b)

Here ψσ�(x,t) are spin-1/2 (σ = ↑,↓) chiral fermions in the
Heisenberg representation that are obtained after “unfolding”
the two leads as described above. Notice that the leads
are modeled with an exactly linear dispersion and vF is
the Fermi velocity. The tunneling matrix element, γt, that
characterizes the barrier is taken to be energy independent
and the local fields at x = 0 are understood in the sense of the
local-action formalism used for the calculations as explained
below. We took here γt to be real for notational simplicity
(though that is not necessary and we will write more general
expressions later). Going beyond the standard (physically
motivated) regime, we will consider |γt| to be arbitrarily large.
To fully define the physical situation, we still need to describe
the (nonequilibrium) state of the system. We assume now
that at a much earlier time the connection between the two
leads was established and that there is a battery keeping a
constant chemical-potential difference between the two leads.
Let us call μ� the chemical potential of lead � = L,R = ∓1,
such that μL − μR = eV and the full potential drop takes
place in the junction region (see Fig. 2 for a sketch of the
physical configuration). The information about these chemical
potentials will enter into the distribution functions for each
lead. Under these conditions we know, by design, that the
system would have reached some nonequilibrium steady state
[18] and can be described with a time-translationally invariant
action (this is only important for the particular solutions we
discuss below, but not for the more general conclusions that
we reach).

1. Transport characteristics

One of the reasons for defining the problem as we did
is that it is amenable to an exact solution. How to find the
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transport characteristics is well known and there exist a number
of standard ways of going about it. So we shall be brief but
give a complete summarized account in order to highlight
notations and conventions. Our approach is to integrate out the
degrees of freedom in the leads that are not directly active in
the tunneling process (i.e., away from x = 0) and thus derive a
local action for the problem [2]. When doing that, one obtains
the diagonal matrix elements as momentum-space integrals of
the two-point Green’s functions regularized as principal-value
integrals. Notice this is consistent with the normal order and
the regularization of the diagonal terms in the action, which are
needed for the bosonization treatments that are the focus of this
work. One can capture the nonequilibrium situation by using
a standard Schwinger-Keldysh formalism (see Refs. [19] for
examples). At the moment we neglect the spin, which will just
give a factor of 2 at the end, and choose the following spinor
basis in Keldysh space (here we follow the same notation as
in Ref. [20], but we reorder the basis):

� = (
ψκ=−

L ψκ=+
L ψκ=−

R ψκ=+
R

)T
, (3)

where the index κ labels the Keldysh-contour branch following
the “minus-means-forward” convention [21]. Let us define
γt = 2vFt and use the result for the local inverse Green’s
function of the junction [20],

G−1(ω) = −2ivF

⎛
⎜⎜⎜⎝

−sL sL − 1 it 0

sL + 1 −sL 0 −it

it∗ 0 −sR sR − 1

0 −it∗ sR + 1 −sR

⎞
⎟⎟⎟⎠,

(4)

where s� = s�(ω) ≡ 1 − 2f (ω−μ�

T�
) = tanh ω−μ�

2T�
and T� is the

temperature of each lead; f (x) = 1/(ex + 1) is the Fermi
function. The current can be computed according to

Î = ∂t

�N

2
= i

2
[H,�N ] = i

2
[Htun,NR − NL]

= i�γtψ
†
� (0,t)ψ�̄(0,t) ⇒ �γtG

−+
�̄�

(δt = 0) (5)

(we shall follow the convention in which sums over
varying indexes are implicit). Thus, restoring the com-
plex conjugate tunneling amplitude γ ∗

t , we have I = 〈Î 〉 =
− ∫

dω
2π

[γtG
−+
RL − γ ∗

t G−+
LR ], where the expectation value is

evaluated via a choice of appropriate Green’s functions in
the Schwinger-Keldysh formalism. Next one can proceed to
invert the inverse of the Green’s function and find the necessary
expressions for the integrand,

γtG
−+
RL − γ ∗

t G−+
LR = 2|t |2(sL − sR)

(1 + |t |2)2
. (6)

More explicitly, and including now the spin-degeneracy factor,
we have

I = 4|t |2
(1 + |t |2)2

∫ +∞

−∞
[sL(ω) − sR(ω)]

dω

2π

= 4|t |2
π (1 + |t |2)2

∫ +∞

−∞
[fR(ω) − fL(ω)]dω. (7)

This expression has a standard form and is intuitively ap-
pealing, as the integrand selects a window (smeared by the

temperature) that is 1 in the frequency interval between the
two chemical potentials and zero outside of it. The integral
can be carried out in general, but we will be taking the
zero-temperature limit (TL = TR = T → 0) for simplicity. In
that limit, both s� become sign functions (f� become step
functions) and the integration is trivial:

I −→
T →0

4|t |2eV
π (1 + |t |2)2

. (8)

This gives the particle current, and as always one needs to
multiply by (−e) to get the electric current instead. The result
is standard [17] and the fact that the response is exactly linear
in V to all orders is a property of the linear spectrum of the
model.

B. Bosonizing in the steady state

On the one hand, to study a problem using bosonization,
one of the first things to do is to factor out the fast modes
[1]. On the other hand, to study a problem in which a finite
voltage bias is present, one of the first things to do is to
introduce it into the calculations (for instance, via a careful
treatment of the interaction picture [22]). Here, we need to
take care of both things, so it is better to discuss them in the
more formal unified language of gauge transformations. (See,
though, Ref. [23] for an approach in terms of scattering states
that provides an alternative to ours but is ultimately equivalent
[24].)

As discussed already in the introduction, bosonization is a
rewriting of the excitation spectrum in terms of bosonic de-
grees of freedom. As such, it does not capture the information
about the reference state or ground state (which is a Fermi-
Dirac sea of noninteracting fermions). Technically, one would
say that what one knows how to bosonize is the normal-ordered
Hamiltonian in which the vev (vacuum expectation value)
has been subtracted. The type of nonequilibrium situation
we are considering here presents thus a problem, because
one knows in principle how to normal-order for each lead,
but only in an open-junction configuration. The subsequent
inclusion of the tunneling term constitutes a delicate task.
A systematic way of carrying this out starts by using time-
dependent gauge transformations to map the finite-bias prob-
lem into a zero-bias one but with explicitly time-dependent
couplings.

Let us first switch to Lagrangian language (to fully capture
the effects of a time-dependent gauge transformation), in
which the system is described by the Lagrangians (densities):

L0
� = ψ

†
σ�(x,t)(i∂t )ψσ�(x,t) − H0

�

= ψ
†
σ�(x,t)(i∂t + ivF∂x)ψσ�(x,t), (9a)

Ltun = −Htun = γtψ
†
σ�(0,t)ψσ�̄(0,t). (9b)

We can now make the following field transformation
ψσ�(x,t) = e−iμ�t ψ̃σ�(x,t) (notice that some authors follow
as an alternative a prescription of including a time de-
pendence related to the lead chemical potentials into the
respective Klein factors when bosonizing the model [25]). This
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gives

L0
� = ψ̃

†
σ�(x,t)(i∂t + μ� + ivF∂x)ψ̃σ�(x,t), (10a)

Ltun = ei(μ�−μ�̄)t γtψ̃
†
σ�(0,t)ψ̃σ �̄(0,t)

= eieV tγtψ̃
†
σL(0,t)ψ̃σR(0,t)

+e−ieV tγ ∗
t ψ̃

†
σR(0,t)ψ̃σL(0,t) (10b)

(where, in the last line, we restored explicitly the complex
conjugate γ ∗

t ). An important point is that now the distribution
functions in the Keldysh action do not contain information
about the chemical potentials any longer [26]. Next we
subtract the vev’s of each lead which, by assumption, are the
same as those in the absence of the tunneling term (this is
where the Landauer prescription [8] enters the calculation)
and drop the now ineffectual chemical potential terms. For a
noninteracting problem this is equivalent to factoring out the
fast oscillations in each lead according to an additional field
transformation: ψ̃σ�(x,t) = eik�

Fxψ̆σ�(x,t), with k�
F = μ�/vF

for this linear-dispersion case, and then subtracting the same
(infinite) constant for all leads. So we are naturally left with
the normal-ordered formulation of the problem,

L0
� = : ψ̆

†
σ�(x,t)(i∂t + ivF∂x)ψ̆σ�(x,t) : , (11a)

Ltun = eieV tγtψ̆
†
σL(0,t)ψ̆σR(0,t) + e−ieV tγ ∗

t ψ̆
†
σR(0,t)ψ̆σL(0,t).

(11b)

At this point we lost all the information about any absolute-
energy reference, but we still have the information about
the potential drop encoded in the time-dependent phase of
the tunneling term (cf. Fig. 2). Given the infinite-bandwidth
setting, we are also in a situation in which space is naturally
to be regarded as half filled. Now one is ready to bosonize the
problem following the standard procedure.

1. Abelian bosonization and standard transformations

The Abelian-bosonization recipe is by now textbook ma-
terial [1,2,5,27] and there is no need to present the details
here. There exist though a number of different conventions,
which can bring in some confusion at times. Our notation and
conventions follow closely the review article in Ref. [4] (which
in turn is based on the constructive presentation given earlier
by Haldane [3]), with the only difference of factors of 1/

√
2π

that are needed in order to have a more standard normalization
for the real-space Fermi-field anticommutators [28].

In order to bosonize we go back to the Hamiltonian
formulation

H0
� = : ψ̆

†
σ�(x,t)(−ivF∂x)ψ̆σ�(x,t) : , (12a)

Htun = −eieV tγtψ̆
†
σL(0,t)ψ̆σR(0,t)

−e−ieV tγ ∗
t ψ̆

†
σR(0,t)ψ̆σL(0,t), (12b)

and we proceed to bosonize according to H0
� , which is akin

to working in the interaction picture (with Htun taken as
the interaction term) [29]. We shall follow the bosonization

prescription [30]

ψ̆σ�(x,t) = 1√
2πa

Fσ�(t)e−iφσ�(x,t), (13)

where the Fσ�(t) are the so-called Klein factors and a is a
short-distance regulator [3]. We shall not include subleading
1/L corrections in the bosonization formulas, because infinite
size is the appropriate limit for a description of the leads in a
Landauer-style transport setup to describe a steady state; as a
bonus, this keeps formulas shorter. In terms of these bosons
the Hamiltonian density for the leads can be shown to take the
usual form,

H0 =
∑

�

H0
� = vF

4π

∑
σ=↑,↓; �=L,R

: [∂xφσ�(x,t)]2 : . (14)

One of the main advantages of the bosonic description is that
with it one can more easily recombine degrees of freedom in
order to, for instance, separate the effects of charge and spin
dynamics (phenomena such as spin-charge separation are thus
very naturally described with the use of bosonization). Using
the standard, physically motivated, rotated boson basis φσ� =
1
2 (φc + σφs + �φl + σ�φsl), where σ,� = ±1 when entering
as multiplying factors, the noninteracting Hamiltonian density
retains its quadratic form,

H0 = vF

4π

∑
ν=c,s,l,sl

: [∂xφν(x,t)]2 : , (15)

and, as usual, the Klein factors drop out from these terms. We
shall refer to these “physical” sectors as charge, spin, lead (or
flavor), and spin-lead (or spin-flavor), respectively. We will
see how they naturally reorganize the information about the
physics of tunneling transport.

Let us now bosonize the tunneling term, rotate the bosons
into the physical sectors, and make some standard simplifica-
tions (the sum over σ is implicit and the fields are evaluated at
x = 0):

Htun = −eieV t γt

2πa
F

†
σLFσReiφσLe−iφσR

−e−ieV t γ ∗
t

2πa
F

†
σRFσLeiφσRe−iφσL (16a)

= −eieV t γt

2πa
F

†
σLFσRe−i(φl+σφsl )

−e−ieV t γ ∗
t

2πa
F

†
σRFσLei(φl+σφsl ). (16b)

To proceed further we need to take care of the mapping of
Klein factors. We anticipate no subtleties coming from these,
but we carry out a careful treatment nevertheless so as to
show that explicitly. The most rigorous way to proceed is by
identifying relations between different bilinears of old and new
Klein factors, and fixing the four arbitrary phases that appear
[31–33]:

F
†
↑RF↓R = F

†
slF

†
s , (17a)

F
†
↑LF↓L = FslF

†
s , (17b)

F
†
↑RF↑L = F

†
slF

†
l , (17c)

F
†
↑RF

†
↑L = F †

c F †
s . (17d)
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All the rest of the Klein-factor bilinear relations can be derived
from these. In particular, in order to simplify Htun we will need
the following ones:

F
†
↑RF↑L = F

†
slF

†
l , (17e)

F
†
↓RF↓L = F

†
l Fsl , (17f)

F
†
↑LF↑R = FlFsl , (17g)

F
†
↓LF↓R = F

†
slFl (17h)

(where the last two are simply the Hermitian conjugate of
the first two). Notice that, as one should have expected
by looking at the boson fields and comparing Eqs. (16a)
and (16b), the right-hand sides involve only the lead and
spin-lead Klein factors. The tunneling Hamiltonian density
can thus be further rewritten referring only to the “physical”
sectors. One can then undo the steps of the bosonization
procedure and debosonize (also called reverse bosonization or
refermionization) in order to arrive again at a problem written
in terms of Fermi fields. Using the standard debosonization
prescription, ψ̆ν(x,t) = 1√

2πa
Fν(t)e−iφν (x,t), which parallels

the one we used for bosonizing in the first place, we arrive
at

H0
ν = : ψ̆†

ν (x,t)(−ivF∂x)ψ̆ν(x,t) : , (18a)

Htun = −[eieV tγtψ̆l(0,t) + e−ieV tγ ∗
t ψ̆

†
l (0,t)]

×[ψ̆sl(0,t) − ψ̆
†
sl(0,t)]. (18b)

We find that the tunneling term involves only the lead and spin-
lead sectors, while the charge and spin sectors have decoupled
from the tunneling process.

The new problem, defined by H = ∫
H0 + Htun, can now

be regarded as arising from an original problem with the
voltage acting as a chemical-potential shift of the lead fermions
only (ν = l). In other words, if we consider the problem given
by

H0 =
∑

ν

H0
ν = ψ†

ν (x,t)(−ivF∂x)ψν(x,t), (19a)

Htun = −[γtψl(0,t) + γ ∗
t ψ

†
l (0,t)][ψsl(0,t) − ψ

†
sl(0,t)],

(19b)

where the chemical potential is set as μν=l = −(eV ) and is
zero for all sectors ν = l, this can be connected with the
debosonized problem of interest following equivalent steps
to those we presented above via the combined transformation
ψl(x,t) = eieV (t−x/vF)ψ̆l(x,t). Moreover, this “parent” prob-
lem can be seen to be unique (i.e., there is only one way to

eliminate the time dependence from the tunneling term by
reintroducing chemical potentials into the problem).

C. Indirect solution using conventional
bosonization-debosonization

One of the goals of a bosonization-debosonization pro-
gram (BdB for short), as exemplified above, is to achieve
a simplification of the problem at hand that would not
be so easy otherwise. (There could be other alternative or
additional motivations for bosonizing, such as carrying out a
renormalization-group analysis that is more easily done in
the bosonic language; see Ref. [1] for examples.) Indeed,
transformations like the one introduced by the simple rotation
of the bosonic basis would be hardly evident if one were to
express them directly in terms of the old and new fermions
instead. The example that we picked is special, because we
are able to solve it exactly already in the original formulation
and even in an out-of-equilibrium setting. However, the BdB
program is, in most other cases, crucial for simplifying the
problems and being able to find solutions either exact or
approximate.

In the case of our simple junction problem, the BdB
program does indeed show some apparent simplifications. A
simple glance at the final form of Htun shows that only the lead
and spin-lead sectors are involved in the transport while the
other two sectors (spin and charge) do not participate. This
provides a certain economy of description that we will discuss
further below. For now, our immediate goal in this section is
to recompute the I-V characteristics of the junction.

1. Recalculation of transport after conventional BdB

We need again the operator expression of the current, but
now in terms of the new fermionic degrees of freedom. One
can translate it from the expression we gave above [see Eq. (5)]
using BdB or, equivalently, it can be recomputed directly in
terms of the new fields:

Î = ∂t

�N

2
= i

[
H,

�N

2

]
= i[Htun,Nν=l]

= −i[ψ†
sl(0,t) − ψsl(0,t)][γtψl(0,t) − γ ∗

t ψ
†
l (0,t)]. (20)

Notice that this time the spin degeneracy is already included
implicitly in the formalism. Thus, I = 〈Î 〉 is given as

I = −iγt(〈ψ†
sl(0,t)ψl(0,t)〉 − 〈ψsl(0,t)ψl(0,t)〉)

+ iγ ∗
t (〈ψ†

sl(0,t)ψ†
l (0,t)〉 − 〈ψsl(0,t)ψ†

l (0,t)〉).
Next we calculate the necessary Green’s function elements

using the same procedure as in Sec. II A 1. However, this time
we need to introduce a Nambu structure due to the presence
of anomalous processes in Htun. As a result, we adopt the
following spinor basis (including also the Keldysh indexes
and with the frequencies restricted to the positive semiaxis
only in order to avoid double counting):

�(ω) = (ψ−
l (ω) ψ+

l (ω) ψ
†−
l (ω̄) ψ

†+
l (ω̄) ψ−

sl (ω) ψ+
sl (ω) ψ

†−
sl (ω̄) ψ

†+
sl (ω̄))T . (21)
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We write the local inverse Green’s function of H 0, using the
fact that all nonequilibrium Green’s functions (i.e., advanced,
retarded, and Keldysh components) are diagonal in the Nambu
basis. The only change required for the time-reversed Nambu
component, as compared with the time-forward one, is to

define s̄ν ≡ tanh ω+μν

2Tν
for ω as given in the argument of the

spinor (and we will be taking the temperature to be uniform,
Tν = Temp). Including also the contribution of Htun, the local
inverse Green’s function for the junction is thus given by

G−1(ω) = −2ivF

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−sl sl − 1 0 0 it∗ 0 −it∗ 0

sl + 1 −sl 0 0 0 −it∗ 0 it∗

0 0 −s̄l s̄l − 1 it 0 −it 0

0 0 s̄l + 1 −s̄l 0 −it 0 it

it 0 it∗ 0 −ssl ssl − 1 0 0

0 −it 0 −it∗ ssl + 1 −ssl 0 0

−it 0 −it∗ 0 0 0 −s̄sl s̄sl − 1

0 it 0 it∗ 0 0 s̄sl + 1 −s̄sl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

We invert the matrix, identify the relevant matrix elements,
and replace them into the expression for the current. After
some algebra one gets

I = |t ′|2
(1 + |t ′|2)

∫ +∞

0
[sl(ω) − s̄l(ω)]

dω

2π
, (23)

where t ′ = 2t . The integral can be done in general, but in the
zero-temperature limit reduces to

I −→
Tν→0

|t ′|2eV
π (1 + |t ′|2)

= (1 + |t ′|2)

4

4|t ′|2eV
π (1 + |t ′|2)2

. (24)

We see that the result we obtained for the current shows
several discrepancies from the one in Sec. II A 1. Such
differences need to be understood.

III. THE NONEQUILIBRIUM TRANSPORT PUZZLE

We have carefully chosen the nonequilibrium junction
problem so that it meets all the requirements for bosonization
to be an exact operator correspondence between fermions and
bosons (cf. Ref. [4]). All the transformations we carried out
are thus rigorous and the discrepancy between the results
of Secs. II A 1 and II C 1 is not only unexpected but also
unwelcome. There has to be an inconsistency somewhere and,
given that the result of the direct solution is standard and
can be reobtained in a number of alternative ways, everything
seems to indicate that the problem has to be with the indirect
solution. Moreover, the actual transport calculation of the
indirect solution proceeded in a very similar way to the case
of the direct one. As a result, the reason for the discrepancies
is likely not in there, but in the preceding BdB-based mapping
used to rewrite the junction problem in terms of the new
fermionic degrees of freedom.

Before furthering the analysis, let us first catalog the
discrepancies between the two solutions:

(1) To match the solutions one needs to arbitrarily correct
the tunneling matrix element of the indirect solution by a factor
of 2 (namely, t ′ �→ t) in order to make it look closer to the exact
direct solution.

(2) There is a overall factor of 4 difference between the two
solutions (the indirect solution would need to be multiplied by
4 to match with the direct solution).

(3) There is also an additional factor of (1 + |t |2) in the
numerator of the indirect solution that cancels one power from
the denominator and introduces a further discrepancy with the
exact direct solution.

These three discrepancies are present no matter which
method we use for the final transport calculation (they all
yield the same result). We highlighted them by looking at
the zero-temperature limit, but it is easy to see that they
are also exactly the same at finite temperature. Additionally,
very similar discrepancies can be seen to be present in
equilibrium thermodynamic calculations using a Matsubara
formalism (see the Appendix). Thus, the puzzle is not
restricted only to transport, but it is more evident in transport
calculations.

Motivated specially by the third entry from the list of
discrepancies, one could imagine expanding the results of the
direct and indirect solutions in powers of t . It is clear that big
differences will show up as soon as one goes beyond leading
order in the tunneling matrix element for both calculations. We
therefore expect to be able to gain some insight by studying
the problem using perturbation theory in t .

A. A diagrammatic diagnosis

Let us start by setting up a dictionary for processes allowed
by the different vertexes in Htun. There are four of those,
given by the two possible spin orientations and the two
possible directions of tunneling. Since our BdB program rests
neither on the SU(2) invariance nor on the Hermiticity of
Htun, we can, in principle, set the four corresponding matrix
elements to different constants and thus individually trace
each process thorough the BdB procedure to construct the
dictionary given in the table below. Alternatively, one can
construct the dictionary by looking at the changes operated
by the different graph vertexes on the fermion numbers of the
different sectors (which is essentially the construction that is
used to identify the different Klein-factor bilinears [31]). The
translation between the fermionic structure of the vertexes in
terms of “old” (original) and “new” fermions is thus given by
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Simple-junction Graph-vertex Dictionary

Original Fermions New Fermions

ψ†
↑Rψ↑L ↑ L ↑ R ψ†

slψ
†
l l sl

ψ†
↓Rψ↓L ↓ L ↓ R ψ†

l ψsl sl l

ψ†
↑Lψ↑R ↑ R ↑ L ψlψsl sl l

ψ†
↓Lψ↓R ↓ R ↓ L ψ†

slψl l sl

Notice that the second two lines are the Hermitian conjugate of the first two. We can refer to them as (i)–(iv) from top to
bottom. Now in order to calculate the current we need to find the fully dressed vertexes. We can proceed to dress them by carrying
out a perturbative expansion in Htun (the Keldysh structure is not important for the present argument and will be suppressed for
the sake of clarity).

Let us consider, for instance, the dressing of vertex (i) in terms of the original fermions. It proceeds by alternating vertexes (i)
and (iii) at different orders of expansion. Up to third (the first nontrivial) order we have

↑ L ↑ R= ↑ L ↑ R
+

↑ R ↑ L
↑ L ↑ R

+ . . .

which in terms of the new fermions translates according to our dictionary into

l sl = l sl

+
sl l

sl l

+ . . .

For spin-down, the diagrams in terms of the original fermions are exactly the same with the obvious label replacement
(↑) → (↓). This corresponds to alternating vertexes (ii) and (iv) at different orders of expansion. After translation to the
new-fermions language one just changes the labels according to (↓ L) → (sl) and (↓ R) → (l), but this time the arrows of the
fermion propagators stay unchanged (no anomalous processes are involved in this case, exactly the opposite from the example
above with spin-up).

Difficulties arise when we start directly from the new-fermions language and proceed to dress the vertex in question. This is
so because we have additional (and, we shall claim, unphysical) ways of introducing contractions. Consider, for instance, again
the case of vertex (i). One would proceed to dress it as follows:

l sl = l sl

+
sl l

sl l

+
sl l

sl l

+
sl l

sl l

+
sl l

sl l

+ . . .
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The four third-order processes correspond to vertex insertions (i-iii-i), (ii-iv-i), (i-ii-iv), and (ii-i-iv), respectively, which, according
to our dictionary, translated back in terms of the original fermions, read as follows:

↑ L ↑ R= ↑ L ↑ R
+

↑ R ↑ L
↑ L ↑ R

+
↓ R ↓ L | ↑ L

↓ L ↑ R

+
↑ R | ↓ L ↓ R

↑ L ↓ L

+
↓ R | ↑ L ↑ R | ↓ R

↓ L ↓ L
+ . . .

The last three contractions are not allowed in the original-
fermions framework, as they require spin flip and some
even L ↔ R exchange (as indicated by the inner labelings).
Moreover, they do not even dress the correct vertex (as
indicated by the outer labelings). From a practical point of
view, one may notice that while we deal with four distinct
types of original fermions (↑ L, ↓ L, ↑ R, and ↓ R), we
deal with only two types of new fermions (l and sl). We
conclude that the more compact description achieved after
the BdB-based mapping introduces the possibility of spurious
processes that should not have been there. These are processes
that mix vertexes (i) and (iii) with vertexes (ii) and (iv), which
in terms of the original fermions cannot happen due to spin
conservation. This clearly hints at the possibility that, in the
new-fermions framework, the spin sector should not really be
decoupled after all.

IV. CONSISTENT APPROACH TO
BOSONIZATION-DEBOSONIZATION

We need to revisit the transformations in the BdB-based
mapping used above, with the goal of finding the source of
the discrepancies with respect to the direct calculations. In
particular, one needs to be careful about the fact that the
tunneling term is not normal ordered (since the procedure
of subtracting the vev is not well defined for the processes in
Htun for they are not diagonal in fermion “internal indexes”).

A. Keys to consistency

We proceed to study again the bosonization of the tunneling
term but taking care of not combining exponentials. If we start
from Eq. (16a) and perform the change of basis for the bosons,
we arrive at

Htun = −eieV t γt

2πa
F

†
σLFσRei(φc+σφs−φl−σφsl )/2

× e−i(φc+σφs+φl+σφsl )/2

− e−ieV t γ ∗
t

2πa
F

†
σRFσLei(φc+σφs+φl+σφsl )/2

× e−i(φc+σφs−φl−σφsl )/2.

We will now, on the one hand, combine the exponentials in
which the bosons appear with the same sign (we are prompted

to do this by a study of the corresponding operator product
expansions, OPEs, and by the consistency with the mapping
of the Klein factors [31,32]). On the other hand, we will
be careful not to combine the exponentials in which the
bosonic exponents appear with opposite signs (prompted by
the suspicion, from our perturbative analysis, that the ν = c,s

sectors should not completely decouple from the tunneling
process). We will discuss the charge and spin sectors carefully
momentarily; for now we debosonize in the lead and spin-lead
sectors only (using the same prescription that was introduced
above). The tunneling term takes the following form (all the
fields are evaluated at x = 0 and at time t):

Htun = −eieV tγtψ̆lψ̆sle
iφc/2e−iφc/2eiφs/2e−iφs/2

− eieV tγtψ̆
†
slψ̆le

iφc/2e−iφc/2e−iφs/2eiφs/2

− e−ieV tγ ∗
t ψ̆

†
slψ̆

†
l e

iφc/2e−iφc/2eiφs/2e−iφs/2

− e−ieV tγ ∗
t ψ̆

†
l ψ̆sle

iφc/2e−iφc/2e−iφs/2eiφs/2,

which is the same as before but with the addition of the extra
exponential factors.

A pragmatic way to proceed in order to debosonize in the
charge and spin sectors as well is by replacing the vertex
products by lattice-like fermionic densities according to the
prescription

e±iφc,s /2e∓iφc,s /2 �→ ñ±
c,s . (25)

These new objects (to be defined and discussed more in detail
below) can be interpreted as particle and hole densities for new
fermionic degrees of freedom in the charge and spin sectors.
They shall be considered in their “eigenbasis” and they have
eigenvalues 0 or 1 and 1 or 0, respectively and correspondingly.
This is the central result of the consistent way to debosonize
and the (almost) final form of the tunneling Hamiltonian is

Htun = −eieV tγtñ
+
c ñ+

s ψ̆lψ̆sl − eieV tγtñ
+
c ñ−

s ψ̆
†
slψ̆l

− e−ieV tγ ∗
t ñ+

c ñ+
s ψ̆

†
slψ̆

†
l − e−ieV tγ ∗

t ñ+
c ñ−

s ψ̆
†
l ψ̆sl .

It can be easily seen that the inclusion of the ñ factors
naturally avoids the mixing of graph vertexes (i) and (iii)
with graph vertexes (ii) and (iv), exactly as was concluded
to be necessary in the diagrammatic discussion of the previous
section (Sec. III A). Notice also that, in the same vein, these
factors also stop us from being able to rewrite Htun in terms of
Majorana-fermion combinations.
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In the next two subsections we provide some additional
rationale, but those readers that want to skip some of the
technical discussion can jump ahead to the last subsection
of this section (Sec. IV D) and see how we are now able to
recover exactly the results of the direct calculation (which can
be taken as a pragmatic justification for the procedure).

B. Matters of regularization

The exponentials of bosonic fields of the type eiλφν are
central objects in the bosonization formalism known as vertex
operators. The bosonization prescription tells us that ψ†

ν ∝
eiφν (with λ = 1) while normal-ordered densities are bosonized
according to : ψ†

νψν := 1
2π

∂φν . The consistency between these
two prescriptions can be checked by bosonizing the non-
normal-ordered case, ψ†

νψν = eiφν e−iφν /2πa, and expanding
the right-hand side by using known results for the OPEs of
vertex operators [4].

However, when bosonizing, oftentimes our aim is to change
basis from the spin-and-lead (or spin-and-flavor) states to a
basis that separates physical sectors (charge, spin, lead, and
spin-lead) because some of the physics will simplify by doing
that (this is the transformation that we performed in Htun).
Proceeding formally for each vertex operator of a density
operator [using φσ�(x) = ∑

n φνn
/2, where the νn label the

physical sectors and we absorbed minus signs that are not
important for this part of the discussion], we have

eiφσ�e−iφσ� =
∏
n

eiφνn /2e−iφνn /2, (26a)

[1 + a ∂φσ� + · · · ] ≈ 1 +
∑

n

a ∂φνn
/2 + · · · , (26b)

1 + δnσ� + · · · ≈ 1 +
∑

n

δnνn
/2 + · · · , (26c)

where in the third line we introduced lattice-like density fluc-
tuations, δnσ� ≡ a ∂φσ� and δnνn

≡ a ∂φνn
, to stress that they

need to be small in order to connect to the first line. (A standard
view is to treat a as a control parameter for the expansions in the
second line.) Therefore, these transformations are consistent
if bosonization is treated as an expansion around a half-filled
ground state (in a real-space picture). While the bosonization
identities are precise, some manipulations might not hold when
the deviations from the local half-filled state are large. If a
particular problem, as is the case of some transport problems
like the one that we are studying, forces us to consider large
δn fluctuations, then we need to proceed with caution while
expanding.

One solution is to expand around a different state, which
can be achieved via a linear transformation. Consider the
following vertex OPE at some x = x0 (the position of the
junction or impurity) and treat a as an expansion parameter
(not necessarily small) [34]:

eiφσ�e−iφσ� ≈ 1 + a ∂φσ� + · · · ≡ 1 + (1 + a ∂φ̃σ�) + · · · .

This serves as a definition of a shifted set of bosons, φ̃σ�, which
are used to expand around a differently filled state (unit-filling
in this case) and need to obey ∂φ̃σ� = ∂φσ� − 1/a. Reintroduc-
ing the x dependence from the OPE before taking the a → 0
limit [i.e., replacing 1/a �→ πδ(x − x0)], and integrating this

relation one gets φ̃σ�(x) = φσ�(x) − π
2 sgn(x − x0), up to an

additive constant. The new bosons have identical commutation
relations and OPEs except at x = x0 due to the presence of
these solitonic shifts.

Expanding around a∂φσ� = 1 is equivalent to expanding
around a∂φ̃σ� = 0 and we can use small-variable expansions
in terms of the latter. For the kind of vertex products we are
considering (at x = x0) we have

eiφσ�e−iφσ� ≈ 2

(
1 + a

2
∂φ̃σ� + · · ·

)
+ · · · (27a)

≈ 2
√

1 + a∂φ̃σ� + · · · (27b)

≈ 2
√

eiφ̃σ�e−iφ̃σ� , (27c)

where to get to the second line we used a Taylor expansion
for the square root of a binomial (the first two lines are strictly
equivalent to the order that is given explicitly; their connection
can be regarded as a sort of partial resummation that is also
consistent with a further study of other vertex OPEs that we
carried out as well). Alternatively, applying the same vertex-
vertex OPE, but in reverse, to the parentheses in the first line
of the equation above we have

eiφσ�e−iφσ� ≈ 2 eiφ̃σ�/2e−iφ̃σ�/2. (28)

This implies that, generically,

eiφ/2e−iφ/2 ≈
√

eiφe−iφ , (29)

as will be proven below by working to all orders without
resorting to OPEs [see Eq. (33)].

There is a delicate point regarding the proper normalization
(or scaling of the coupling constants) of non-normal-ordered
terms as those in Htun. This is more easily understood
considering vertex products diagonal in internal indexes. Using
the consistent identities derived above, we can proceed as
follows:

eiφσ�e−iφσ� ≈ 2
√

eiφ̃σ�e−iφ̃σ� (30a)

≈ 1

2

√
16

∏
n

eiφ̃νn /2e−iφ̃νn /2 (30b)

≈ 1

2

√∏
n

2
√

eiφ̃νn e−iφ̃νn (30c)

≈ 1

2

∏
n

√
eiφ′

νn e−iφ′
νn (30d)

≈ 1

2

∏
n

eiφ′
νn

/2e−iφ′
νn

/2, (30e)

where (i) in the first line we shifted the bosons away from
half filling; (ii) from the first to the second line we did a
change of basis; (iii) going to the third line we used Eq. (29);
(iv) from the third to the fourth line we shifted the bosons
back to half filling and we also distributed the overall square
root; and (v) finally we redistributed the square root between
the two vertex operators again using Eq. (29). Notice the
introduction of the primes (in φ′

ν) to distinguish this case
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when the change of basis is done with the φ̃’s from the case
when it was done directly with the original φ’s. The primes
will be dropped when a comparison is not being done and
the case in point is clear from the context (this notational
variation is used in this subsection only).

What we found is that if the change of bosonic basis is
done in terms of shifted bosons, then a prefactor of 1/2
appears for proper normalization (and we shall make this
conclusion extensive to nondiagonal products as well). This
kind of normalization changes, or rescaling of couplings, is
common in bosonization treatments and can often be traced
to subtle differences in regularization schemes. In particular,
shifting the bosons is equivalent to acting with so-called
boundary-condition changing operators [2,35], which are
a known source for “coupling-constant redefinitions” (for
another example, also involving a relative factor of 2, the
reader can look at Sec. 2 of Appendix A in Ref. [31]).
To summarize our result, we should contrast the differences
between Eq. (30e) and the one we presented at the start of
this subsection in Eq. (26a). To develop some intuition, let
us introduce the lattice-like notation 2nν ≈ 1 + δnν , so that,
near half filling, the left-hand side is close to 1 and near
maximum filling it is close to 2. We will also use the notation√

2ñν ≈ √
2nν ≈ √

1 + δnν (these will be made more precise
in the next subsection). The two BdB-mapping relations can
then be rewritten as

2nσ� ≈
∏
n

√
2ñνn

when 2nσ� ≈ 1, (31a)

2nσ� ≈ 1

2

∏
n

√
2ñνn

when 2nσ� ≈ 2 (or 0), (31b)

where we highlighted that they are useful in different regimes.
Which one, or when each of the two, should be used needs to
be judged depending on the problem that is being solved (and
that is part of what we mean by a consistent use of BdB-based
transformations). We argue that the junction problem requires
the use of the second one, because the physics of tunneling calls
for the consideration of unit-size particle-number fluctuations
at the junction (nσ� = 0 ↔ 1).

It is instructive to see how these two different regimes (i.e.,
half filling versus maximum/minimum filling) are connected
in our formalism to a change of boundary conditions for the
new fermions after the BdB-based mapping. We start from the
continuum boundary conditions, ψ

†
σ�(0−) = ψ

†
σ�(0+) for all

σ�. After changing basis in the intermediate bosonic language
of the φ’s, we get to the new fields with ψ†

νn
(0−) = ψ†

νn
(0+) for

all νn = c,s,l,sl , as naturally expected. If we do the change of
basis with the φ̃’s instead, the resulting boundary conditions
are different. In the charge sector, from the definition of the
φ̃’s it follows that φ̃c = φc − π sgn(x) (where we went back
to x0 = 0), and thus φ′

c = φ̃c + π
2 sgn(x) = φc − π

2 sgn(x).

From there it follows that ψ
†
c (0−) = −ψ

†
c (0+). For the

other sectors (νn = c), we simply have φ̃νn
= φνn

, and thus
φ′

νn
= φ̃νn

+ π
2 sgn(x) = φνn

+ π
2 sgn(x), so that, in a different

way, we still get that ψ†
νn

(0−) = −ψ†
νn

(0+).
Remarkably, these antiperiodic boundary conditions par-

allel what Affleck calls “strong-coupling boundary condi-
tions” in the context of the boundary-conformal-field-theory

approach to quantum-impurity problems (see Eq. (1.29) of
Ref. [13]). The name is because these are the type of
boundary conditions needed in the strong-coupling limit of
those problems. What these boundary conditions actually do
is to decouple the band-fermion degrees of freedom at x = x0

from the rest of the bulk; that way they are not tied to half filling
(or other) conditions and they are available to couple them
(strongly) to the impurity. In our case, we shall in general need
those degrees of freedom to be available (even if there is no
impurity) to participate unrestrainedly in transport situations.

We shall thus refer in our context more generically to
consistent boundary conditions (CBCs). These depend on
the problem at hand and in the particular example studied
here they turn out to be antiperiodic boundary conditions.
Notice that the need for a factor of 1/2 as discussed above
can be seen as the practical manifestation of the boundary
conditions that were (implicitly) adopted. Let us also mention
that the use of CBCs does not modify the form of the kinetic
part of the action [i.e., when rewriting Eq. (15) in terms of
φ → φ′]. The solitons that we introduce with φ′ will induce
in H0 additional slips of 2π localized to a length scale of a

around x0, but since that is the limit of length resolution and the
bosonic fields are compact with radius 2π , those contributions
consistently drop out.

C. Tunneling of new fermions

It is now a matter of a delicate but ultimately simple
replacement to finish the debosonization of Htun in the charge
and spin sectors. We (re)introduce the following definitions
(all fields are at x0 = 0 and time t):

√
2ñ+

c,s ≡ eiφc,s/2e−iφc,s /2

≡ √
1 + a ∂φc,s =

√
eiφc,s e−iφc,s

≡
√

2πaψ
†
c,sψc,s =

√
2n+

c,s , (32a)
√

2ñ−
s ≡ e−iφs/2eiφs/2

≡ √
1 − a ∂φc,s =

√
e−iφs eiφs

≡
√

2πaψsψ
†
s =

√
2n−

s . (32b)

Thus ñ+
c,s (ñ−

s ) are simply the square roots of the particle
(hole) density of charge or spin fermions at the site of
the junction. For a physical picture, one could think of
them as corresponding to a single lattice site after a lattice
discretization with πa as the lattice constant, even though
that is not the type of regularization adopted when bosonizing
[3]. One can explicitly check consistency by calculating
their squares via the equal-time, full operator product. For
that we need to write the bosons in terms of their creation
and annihilation components, φ(x) = ϕ†(x) + ϕ(x), which
obey [ϕ(x),ϕ†(x ′)] = − ln(1 − e− 2π

L
[i(x−x ′)+a]) (see Ref. [4]

for the notational convention to point-split the product and
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normal-order the vertex operators):

[ñ]2 = 1

2
eiφ(x)/2e−iφ(x ′)/2eiφ(x)/2e−iφ(x ′)/2

=
√

πa

2L
e

i
2 ϕ†(x)e

i
2 ϕ(x)e− i

2 ϕ†(x ′)e− i
2 ϕ(x ′)

× e
i
2 ϕ†(x)e

i
2 ϕ(x)e− i

2 ϕ†(x ′)e− i
2 ϕ(x ′)

=
√

πa

2L

(
1 − e− 2π

L [i(x−x ′)+a]

1 − e− 2π
L

[i(x ′−x)+a]

)1/4

×
√

1 − e− 2π
L

a eiϕ†(x)eiϕ(x)e−iϕ†(x ′)e−iϕ(x ′)

≈ πa

L
eiϕ†(x)eiϕ(x)e−iϕ†(x ′)e−iϕ(x ′)

= 1

2
eiφ(x)e−iφ(x ′)

= n, (33)

where φ stands for either ±φc or ±φs .
The squares of the ñ’s have the properties that (n±

c,s)
2 = n±

c,s

and n±
c,sn

∓
c,s = 0; we shall refer to these as idempotence and

co-nilpotence, respectively (notice that if an operator on a
finite Hilbert space is idempotent, one of its square roots is the
operator itself). In addition, the sum of their squares resolves
the identity, n+

c,s + n−
c,s = 1. Thus, as we will see below, they

can be consistently assigned the eigen-expectation-values 0 or
1, as if 〈ñ±

c,s〉 �→
√

〈n±
c,s〉.

Let us introduce the notation γtσ ≡ γtñ
+
c ñσ

s =
γt(

√
2ñ+

c )(
√

2ñσ
s )/2 (where the factor of 1/2 at the end

is included for a coupling-constant rescaling in accordance
with our discussion in the previous subsection). The consistent
form of the tunneling term is then more compactly rewritten
as

Htun = −eieV tγt↑ψ̆lψ̆sl − eieV tγt↓ψ̆
†
slψ̆l

− e−ieV tγ ∗
t↑ψ̆

†
slψ̆

†
l − e−ieV tγ ∗

t↓ψ̆
†
l ψ̆sl . (34)

And we can finally gauge out the applied voltage from the
explicit time dependence, as we discussed already for the con-
ventional procedure, by using ψl(x,t) = eieV (t−x/vF)ψ̆l(x,t).
This gives

Htun = −[γt↑ψl − γ ∗
t↓ψ

†
l ]ψsl − ψ

†
sl[γt↓ψl − γ ∗

t↑ψ
†
l ].

Notice that we are not able to combine the fields into Majorana
components, as we did in the conventional framework, due to
the spin dependence acquired by γtσ . We see how this time
the spin plays a role and starts to show up clearly, as expected
from our diagrammatic analysis of the problem.

D. A resolution of the puzzle

We are now ready to recompute the indirect solution to the
transport problem after debosonizing consistently. Revising
the expression for the current we find

I = −iγt↑〈ψl(0,t)ψsl(0,t)〉 − iγt↓〈ψ†
sl(0,t)ψl(0,t)〉

+ iγ ∗
t↑〈ψ†

sl(0,t)ψ†
l (0,t)〉 + iγ ∗

t↓〈ψ†
l (0,t)ψsl(0,t)〉.

We adopt the same conventions as before for the definition
of the Keldysh-Nambu spinor basis and make also the
same redefinitions of the couplings to factor out the Fermi
velocity. The expression for the inverse Green’s function is
like in Eq. (22) with the addition of the spin index into
the tunneling terms (which is straightforward, since all the
Nambu-off-diagonal components acquire σ =↑ while the
Nambu-diagonal components go with σ =↓).

It should be remarked that unpaired ψ
[†]
c,s fields do not enter

in the tunneling term and appear only in the kinetic one (as
bilinears). As a result, any connected perturbative expansion
in Htun does not involve the charge and spin sectors and the
ñ±

c,s can be treated as c-numbers, (restoring the Gaussianity of
the problem). Due to global gauge invariance for each lead,
the final expressions involve always the squares of the ñ’s and
can thus be simplified thanks to their idempotence and co-
nilpotence. An alternative equivalent calculational procedure
is to set the ñ’s to their different eigen-expectation-values, to
do the calculation, and to trace over all such values (not average
over, because they are not exactly conserved quantities). This
second path is shorter and makes more explicit the connection
with the direct solution.

The result one gets for the I-V characteristics, by following
the procedure outlined above, is what one was hoping for:

I = 4|t |2
(1 + |t |2)2

∫ +∞

0
[sl(ω) − s̄l(ω)]

dω

2π

−→
Tν→0

4|t |2eV
π (1 + |t |2)2

. (35)

When comparing with the result of the direct calculation, given
in Eqs. (7) and (8), the matching is now exact and all the
discrepancies are gone. Namely, (i) the t �→ t/2 correction is
not required as it happened naturally courtesy of the CBCs;
(ii) the spin degeneracy arises automatically and the correct
overall prefactor arises also naturally; (iii) the extra factor of
(1 + |t |2) in the numerator is not present.

V. CONCLUSION AND PROSPECTS

By focusing on a case study in which bosonization is rigor-
ously applicable and, not less importantly, exact calculations
are possible and enable detailed comparisons, we were able
to uncover some subtleties of the bosonization-debosonization
procedure that had quite strong implications. Besides directly
comparing the mathematical expressions as we have been
doing, it is instructive to compare the two results graphically.
To that end, we plot in Fig. 3 the two indirect solutions
for the differential conductance (G = dI/dV ) computed
conventionally and consistently. As expected, the two results
only agree in the limit of t → 0. Expanding for small t , the
two results coincide to order O(t2) and start to disagree in
the coefficient of the t4 term (with the conventional result
being larger by a factor of 2). This is as expected from the
diagrammatic analysis. Let us remark that, for t > 1, the
differential conductance computed conventionally not only
lacks the t ↔ 1/t duality of the exact result, but it does not
even go to zero for t → ∞. In that limit, one should have
expected a resonating-tunneling bond at the site of the junction
to trap an electron (for each spin) and thus block the passage

085440-11



NAYANA SHAH AND C. J. BOLECH PHYSICAL REVIEW B 93, 085440 (2016)

consistent exact

conventional

0 0.5 1 0.5 0
0

1

2

t 1 t

G
G

Q

FIG. 3. Comparison of the differential conductance for the simple
junction calculated both consistently (or directly) and conventionally.
Notice the unusual convention for the horizontal axis in order to
highlight the t ↔ 1/t duality of the problem. The vertical axis is in
units of the single-channel quantum of conductance, GQ = e2/h, and
G = 2GQ is the quantum limit for this problem.

of the current. A different way to describe it is by appealing
to a tight-binding picture. The Hamiltonian for the two sites
linked by t needs to be diagonalized first when t is the largest
scale in the problem. One finds bonding and antibonding states
that, in the t → ∞ limit, will be always occupied and always
empty, respectively. The rest of the leads are relatively weakly
coupled to these two states and not able to change their fillings
and thus not able to produce a current. Instead of agreeing
with this picture, the whole curve for the conventional I-V
characteristics resembles the result for a diode-like asymmetric
junction with a non-Hermitian Hamiltonian [20], in which
the formation of a resonating-tunneling bond is precluded
by the model. This behavior alone could have been a clear
indication that there are problems with the conventional way
of calculating (even if one did not have a direct solution to
compare with).

The possible ramifications of our findings are many. A large
number of the calculations done in the past, for example any
problems sharing similarities with the one considered here
(i.e., involving a junction, an impurity, or simply a boundary),
will need to be reexamined critically. More generally, problems
involving backward scattering or other types of nondiagonal
interactions or processes need to be reconsidered for possible
changes. Not all past results will be significantly affected
though. For instance, on the one hand, the (weak-coupling)
renormalization-group analysis of the effects of a “classical
impurity” in a Tomonaga-Luttinger liquid [36] requires the
knowledge of the impurity-potential β function to leading
order only, at which consistent and conventional calculations
could be expected to (at least roughly) coincide; as our present
results have shown it is the case if there are no interactions.
There will be differences, but those would be expected in the
finer details, probably appear at the next-leading order, and a
calculation would be needed to determine them. On the other
hand, the implications for the case of “quantum impurities”
will be more dramatic. To put things in perspective, the good
news is that we were able to provide a clear procedure, in the

form of the ñ factors, to bosonize and debosonize a large class
of models consistently.

This paper was focused on the motivation and presentation
of the formalistic details. In the future we will look at more
involved examples of greater physical significance. We already
started to reexamine some salient cases, and in the next paper
we shall focus on the important case of transport through
quantum impurities in Fermi liquids [16].
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APPENDIX: JUNCTION THERMODYNAMICS

The subtleties with the BdB-based mapping are quite
generic and not restricted to nonequilibrium situations. Let
us briefly compute the junction contribution to the free energy
(or grand potential) and thus, indirectly, all thermodynamic
quantities. We define the junction contribution in the same
way as is done for impurity models: as the difference between
the full thermodynamic potentials with the junction closed and
open, respectively. There is no voltage applied to the junction.

1. Direct calculation

We start with the original (old) fermions and neglect the
spin which will just give a factor of 2 at the end. Here we
follow the procedure and notations as in Ref. [32]. We will
use, for convenience, a Nambu structure [otherwise we need to
introduce sgn(ωn) in the diagonal entries], but we do not need
to use Keldysh and, instead, we will use Matsubara formalism
and the following spinor basis:

�(ωn) = (ψL(ωn) ψ
†
L(−ωn) ψR(ωn) ψ

†
R(−ωn))T .

Let us use again the definition γt = 2vFt and use the standard
result for the local inverse Green’s function for the leads to
write the local inverse Green’s function for the whole junction:

G−1(ωn) = −2ivF

⎛
⎜⎝

1 0 it 0
0 1 0 −it

it∗ 0 1 0
0 −it∗ 0 1

⎞
⎟⎠. (A1)

We compute the junction contribution to the thermodynamic
potential via the standard method of “integrating over the
coupling constant”:

�� = � − �0 =
∫ 1

0

dξ

ξ
〈ξ Htun〉ξ . (A2)

Introducing the action determinant

D(ωn,ξ ) ≡ det G−1
ξ (ωn)

= |t |4ξ 4 + 2|t |2ξ 2 + 1 = (|t |2ξ 2 + 1)2, (A3)
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we can use the formula

�� = −
∫ 1

0
dξ

1

β

∑
n�0

∂ξD(ωn,ξ )

D(ωn,ξ )
.

Since D(ωn,ξ ) = D(ξ ) does not depend on frequency for the
problem at hand, we factor out the divergent sum and indicate
it as δτ=0 ≡ 2

β

∑
n�0 1. We have

�� = −δτ=0

2

∫ 1

0
dξ ∂ξ ln D(ξ )

= −δτ=0 ln(1 + |t |2)

−→×spin
−2δτ=0 ln(1 + |t |2), (A4)

and we want to compare it with the result after the BdB-based
transformations.

2. Conventional indirect calculation

Let us work in terms of the new fermions and adopt the
following spinor basis:

�(ωn) = (ψl(ωn) ψ
†
l (−ωn) ψsl(ωn) ψ

†
sl(−ωn))T .

With the same definitions, the local inverse Green’s function
for the junction is

G−1(ωn) = −2ivF

⎛
⎜⎜⎜⎝

1 0 −it∗ it∗

0 1 −it it

−it −it∗ 1 0

it it∗ 0 1

⎞
⎟⎟⎟⎠. (A5)

This time the action determinant reads

D(ωn,ξ ) = 4|t |2ξ 2 + 1, (A6)

and applying the same formulas we find

�� = −δτ=0

2
ln(1 + 4|t |2). (A7)

But notice that if we “correct” the coupling constant we get

�� −→
t �→t/2

−δτ=0

2
ln(1 + |t |2). (A8)

We see that (i) the same “correction” as in the transport
calculation is needed; (ii) we again lack an overall factor of
4, but (iii) the extra factor of (1 + |t |2) is not an issue this
time (but notice that the logarithm would turn powers into
factors). Because of the last point, a perturbative analysis is
not effective to pinpoint the source of the discrepancies the
way it is for transport calculations.

Nota bene: Working in the consistent approach and using
the (non-number-eigenstates) half-filled basis (|0〉 ± |1〉)/√2
in both the charge and spin sectors, if we have 〈ñc〉 = 〈ñσ

s 〉 ≡
1/

√
2 then the “correction” of the coupling constant reappears

explicitly (but due to the use of CBCs). Moreover, tracing
over the c and s sectors gives the missing factor of 4. One
is thus able to recover the direct result with a calculation
which does not differ much from the conventional one at the
level of the local inverse Green’s function, but in an ad hoc
way.

3. Consistent indirect calculation

Let us repeat the calculation but introducing γt → γtσ =
γtñcñ

σ
s (recall we divided by 2 since we need to use CBCs).

Using the appropriately modified result for the local inverse
Green’s function for the junction, one finds the following
action determinant:

D(ωn,ξ ) = 1 + (2t∗↑t↑ + 2t∗↓t↓)ξ 2 + [t2
↓(t∗↓)2 + t2

↑(t∗↑)2]ξ 4

= (|t |2ξ 2 + 1)2, (A9)

where the last expression is valid for either eigen-expectation-
value of ns . One thus recovers the same expression as in
the direct calculation in the original-fermions language [cf.
Eq. (A3)]. All the ensuing results are thus identical. Notice
the factor of 2 for spin will be contributed by tracing over
eigenstates of ñs , while on the charge sector only the 〈ñc〉 = 1
subspace contributes.
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[8] Ya. M. Blanter and M. Büttiker, Shot noise in mesoscopic
conductors, Phys. Rep. 336, 1 (2000).

085440-13

http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4%3C225::AID-ANDP225%3E3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4%3C225::AID-ANDP225%3E3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4%3C225::AID-ANDP225%3E3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4%3C225::AID-ANDP225%3E3.0.CO;2-L
http://dx.doi.org/10.1103/RevModPhys.71.S306
http://dx.doi.org/10.1103/RevModPhys.71.S306
http://dx.doi.org/10.1103/RevModPhys.71.S306
http://dx.doi.org/10.1103/RevModPhys.71.S306
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
http://dx.doi.org/10.1016/S0370-1573(99)00123-4


NAYANA SHAH AND C. J. BOLECH PHYSICAL REVIEW B 93, 085440 (2016)

[9] J. Bardeen, Tunnelling from a Many-Particle Point of View,
Phys. Rev. Lett. 6, 57 (1961); M. H. Cohen, L. M. Falicov, and
J. C. Phillips, Superconductive Tunneling, ibid. 8, 316 (1962).

[10] I. Affleck and A. W. W. Ludwig, Critical-theory of overscreened
Kondo fixed-points, Nucl. Phys. B 360, 641 (1991).

[11] M. Cini, Topics and Methods in Condensed Matter Theory:
From Basic Quantum Mechanics to the Frontiers of Research
(Springer Verlag, Berlin, 2007).

[12] I. Affleck, Conformal field theory approach to the Kondo effect,
Acta Phys. Pol. B 26, 1869 (1995) (lecture given at the XXXVth
Cracow School of Theoretical Physics, Zakopane, Poland, June
4–14, 1995).

[13] I. Affleck, Quantum Impurity Problems in Condensed Matter
Physics (Oxford University Press, 2008) (Les Houches 2008
school on Exact Methods in Low-Dimensional Statistical
Physics and Quantum Computing).

[14] K. G. Wilson, The renormalization group: Critical phenomena
and the Kondo problem, Rev. Mod. Phys. 47, 773 (1975); R.
Bulla, T. Costi, and Th. Pruschke, Numerical renormalization
group method for quantum impurity systems, ibid. 80, 395
(2008).

[15] N. Shah and A. Rosch, Nonequilibrium conductance of a
three-terminal quantum dot in the Kondo regime: Perturbative
renormalization group study, Phys. Rev. B 73, 081309 (2006).

[16] C. J. Bolech and N. Shah, Consistent bosonization-
debosonization. II. The two-lead Kondo problem and the fate
of its nonequilibrium Toulouse point, Phys. Rev. B 93, 085441
(2016).

[17] J. C. Cuevas, A. Martı́n-Rodero, and A. Levy Yeyati, Hamilto-
nian approach to the transport properties of superconducting
quantum point contacts, Phys. Rev. B 54, 7366 (1996); C.
Berthod and T. Giamarchi, Tunneling conductance and local
density of states in tight-binding junctions, ibid. 84, 155414
(2011).

[18] B. Doyon and N. Andrei, Universal aspects of nonequilibrium
currents in a quantum dot, Phys. Rev. B 73, 245326 (2006).

[19] C. J. Bolech and T. Giamarchi, Point-Contact Tunneling In-
volving Low-Dimensional Spin-Triplet Superconductors, Phys.
Rev. Lett. 92, 127001 (2004); Keldysh study of point-contact
tunneling between superconductors, Phys. Rev. B 71, 024517
(2005); C. J. Bolech and E. Demler, Observing Majorana Bound
States in p-Wave Superconductors Using Noise Measurements
in Tunneling Experiments, Phys. Rev. Lett. 98, 237002 (2007).

[20] P. Kakashvili and C. J. Bolech, Time-loop formalism for irre-
versible quantum problems: Steady-state transport in junctions
with asymmetric dynamics, Phys. Rev. B 78, 033103 (2008).

[21] L. P. Pitaevskii and E. M. Lifshitz, Course of Theoretical
Physics, Volume 10: Physical Kinetics (Pergamon Press, Oxford,
1981).

[22] G. D. Mahan, Many-Particle Physics, 3rd ed., Physics of Solids
and Liquids (Kluwer Academic/Plenum Publishers, New York,
2000).

[23] S. Hershfield, Reformulation of Steady State Nonequilibrium
Quantum Statistical Mechanics, Phys. Rev. Lett. 70, 2134
(1993).

[24] A. Schiller and S. Hershfield, Toulouse limit for the nonequi-
librium Kondo impurity: Currents, noise spectra, and magnetic
properties, Phys. Rev. B 58, 14978 (1998).

[25] F. Elste, D. R. Reichman, and A. J. Millis, Transport through
a quantum dot with excitonic dot-lead coupling, Phys. Rev. B

83, 085415 (2011);Transport through a quantum dot with two
parallel Luttinger liquid leads, ibid. 83, 245405 (2011).

[26] A. Altland and B. D. Simons, Condensed Matter Field Theory,
2nd ed. (Cambridge University Press, Cambridge, 2010).

[27] M. Stone, Bosonization (World Scientific, Singapore, 1994).
[28] The less standard normalization is, however, of widespread use

in conformal field theory, thus the proliferation of different
conventions.

[29] T. Banks, D. Horn, and H. Neuberger, Bosonization of the SU(N)
Thirring models, Nucl. Phys. B 108, 119 (1976).

[30] Recall that we have the freedom to work with either chirality, so
we choose to work with “holomorphic” fields; cf. Ref. [35].

[31] J. von Delft, G. Zaránd, and M. Fabrizio, Finite-Size Bosoniza-
tion of 2-Channel Kondo Model: A Bridge between Numerical
Renormalization Group and Conformal Field Theory, Phys.
Rev. Lett. 81, 196 (1998); G. Zaránd and J. von Delft,
Analytical calculation of the finite-size crossover spectrum of
the anisotropic two-channel Kondo model, Phys. Rev. B 61,
6918 (2000).

[32] C. J. Bolech and A. Iucci, Mapping of the Anisotropic Two-
Channel Anderson Model onto a Fermi-Majorana Biresonant
Level Model, Phys. Rev. Lett. 96, 056402 (2006); A. Iucci and
C. J. Bolech, Bosonization approach to the mixed-valence two-
channel Kondo problem, Phys. Rev. B 77, 195113 (2008).

[33] M. J. Rufino, D. L. Kovrizhin, and J. T. Chalker, Solution
of a model for the two-channel electronic Mach-Zehnder
interferometer, Phys. Rev. B 87, 045120 (2013).

[34] From this OPE it also follows that {eiφσ� ,e−iφσ�} ≈ 2. Thus
e±iφσ�/

√
2 would be properly normalized to be regarded as

fermionic ladder operators.
[35] K. D. Schotte and U. Schotte, Tomonaga’s model and the

threshold singularity of x-ray spectra of metals, Phys. Rev.
182, 479 (1969); I. Affleck and A. W. W. Ludwig, The Fermi
edge singularity and boundary condition changing operators,
J. Phys. A: Math. Gen. 27, 5375 (1994); J. Ye, Solution of
the two-channel spin-flavor Kondo model, Phys. Rev. B 56,
R489 (1997); N. Shah and A. J. Millis, Dissipative Dynam-
ics of an Extended Magnetic Nanostructure: Spin Necklace
in a Metallic Environment, Phys. Rev. Lett. 91, 147204
(2003).

[36] C. L. Kane and M. P. A. Fisher, Transport in a One-Channel Lut-
tinger Liquid, Phys. Rev. Lett. 68, 1220 (1992); Transmission
through barriers and resonant tunneling in an interacting
one-dimensional electron gas, Phys. Rev. B 46, 15233
(1992).

[37] D. B. Gutman, Y. Gefen, and A. D. Mirlin, Bosonization of
one-dimensional fermions out of equilibrium, Phys. Rev. B
81, 085436 (2010); Bosonization out of equilibrium, Europhys.
Lett. 90, 37003 (2010).

[38] C. Chamon, M. Oshikawa, and I. Affleck, Junctions of Three
Quantum Wires and the Dissipative Hofstadter Model, Phys.
Rev. Lett. 91, 206403 (2003); A. Agarwal, S. Das, S. Rao,
and D. Sen, Enhancement of Tunneling Density of States
at a Junction of Three Luttinger Liquid Wires, ibid. 103,
026401 (2009); M. Mintchev and P. Sorba, Luttinger liquid in
a non-equilibrium steady state, J. Phys. A: Math. Theor. 46,
095006 (2013); S. Mardanya and A. Agarwal, Enhancement
of tunneling density of states at a Y junction of spin- 1

2
Tomonaga-Luttinger liquid wires, Phys. Rev. B 92, 045432
(2015).

085440-14

http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1103/PhysRevLett.8.316
http://dx.doi.org/10.1103/PhysRevLett.8.316
http://dx.doi.org/10.1103/PhysRevLett.8.316
http://dx.doi.org/10.1103/PhysRevLett.8.316
http://dx.doi.org/10.1016/0550-3213(91)90419-X
http://dx.doi.org/10.1016/0550-3213(91)90419-X
http://dx.doi.org/10.1016/0550-3213(91)90419-X
http://dx.doi.org/10.1016/0550-3213(91)90419-X
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/PhysRevB.73.081309
http://dx.doi.org/10.1103/PhysRevB.73.081309
http://dx.doi.org/10.1103/PhysRevB.73.081309
http://dx.doi.org/10.1103/PhysRevB.73.081309
http://dx.doi.org/10.1103/PhysRevB.93.085441
http://dx.doi.org/10.1103/PhysRevB.93.085441
http://dx.doi.org/10.1103/PhysRevB.93.085441
http://dx.doi.org/10.1103/PhysRevB.93.085441
http://dx.doi.org/10.1103/PhysRevB.54.7366
http://dx.doi.org/10.1103/PhysRevB.54.7366
http://dx.doi.org/10.1103/PhysRevB.54.7366
http://dx.doi.org/10.1103/PhysRevB.54.7366
http://dx.doi.org/10.1103/PhysRevB.84.155414
http://dx.doi.org/10.1103/PhysRevB.84.155414
http://dx.doi.org/10.1103/PhysRevB.84.155414
http://dx.doi.org/10.1103/PhysRevB.84.155414
http://dx.doi.org/10.1103/PhysRevB.73.245326
http://dx.doi.org/10.1103/PhysRevB.73.245326
http://dx.doi.org/10.1103/PhysRevB.73.245326
http://dx.doi.org/10.1103/PhysRevB.73.245326
http://dx.doi.org/10.1103/PhysRevLett.92.127001
http://dx.doi.org/10.1103/PhysRevLett.92.127001
http://dx.doi.org/10.1103/PhysRevLett.92.127001
http://dx.doi.org/10.1103/PhysRevLett.92.127001
http://dx.doi.org/10.1103/PhysRevB.71.024517
http://dx.doi.org/10.1103/PhysRevB.71.024517
http://dx.doi.org/10.1103/PhysRevB.71.024517
http://dx.doi.org/10.1103/PhysRevB.71.024517
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevB.78.033103
http://dx.doi.org/10.1103/PhysRevB.78.033103
http://dx.doi.org/10.1103/PhysRevB.78.033103
http://dx.doi.org/10.1103/PhysRevB.78.033103
http://dx.doi.org/10.1103/PhysRevLett.70.2134
http://dx.doi.org/10.1103/PhysRevLett.70.2134
http://dx.doi.org/10.1103/PhysRevLett.70.2134
http://dx.doi.org/10.1103/PhysRevLett.70.2134
http://dx.doi.org/10.1103/PhysRevB.58.14978
http://dx.doi.org/10.1103/PhysRevB.58.14978
http://dx.doi.org/10.1103/PhysRevB.58.14978
http://dx.doi.org/10.1103/PhysRevB.58.14978
http://dx.doi.org/10.1103/PhysRevB.83.085415
http://dx.doi.org/10.1103/PhysRevB.83.085415
http://dx.doi.org/10.1103/PhysRevB.83.085415
http://dx.doi.org/10.1103/PhysRevB.83.085415
http://dx.doi.org/10.1103/PhysRevB.83.245405
http://dx.doi.org/10.1103/PhysRevB.83.245405
http://dx.doi.org/10.1103/PhysRevB.83.245405
http://dx.doi.org/10.1103/PhysRevB.83.245405
http://dx.doi.org/10.1016/0550-3213(76)90127-9
http://dx.doi.org/10.1016/0550-3213(76)90127-9
http://dx.doi.org/10.1016/0550-3213(76)90127-9
http://dx.doi.org/10.1016/0550-3213(76)90127-9
http://dx.doi.org/10.1103/PhysRevLett.81.196
http://dx.doi.org/10.1103/PhysRevLett.81.196
http://dx.doi.org/10.1103/PhysRevLett.81.196
http://dx.doi.org/10.1103/PhysRevLett.81.196
http://dx.doi.org/10.1103/PhysRevB.61.6918
http://dx.doi.org/10.1103/PhysRevB.61.6918
http://dx.doi.org/10.1103/PhysRevB.61.6918
http://dx.doi.org/10.1103/PhysRevB.61.6918
http://dx.doi.org/10.1103/PhysRevLett.96.056402
http://dx.doi.org/10.1103/PhysRevLett.96.056402
http://dx.doi.org/10.1103/PhysRevLett.96.056402
http://dx.doi.org/10.1103/PhysRevLett.96.056402
http://dx.doi.org/10.1103/PhysRevB.77.195113
http://dx.doi.org/10.1103/PhysRevB.77.195113
http://dx.doi.org/10.1103/PhysRevB.77.195113
http://dx.doi.org/10.1103/PhysRevB.77.195113
http://dx.doi.org/10.1103/PhysRevB.87.045120
http://dx.doi.org/10.1103/PhysRevB.87.045120
http://dx.doi.org/10.1103/PhysRevB.87.045120
http://dx.doi.org/10.1103/PhysRevB.87.045120
http://dx.doi.org/10.1103/PhysRev.182.479
http://dx.doi.org/10.1103/PhysRev.182.479
http://dx.doi.org/10.1103/PhysRev.182.479
http://dx.doi.org/10.1103/PhysRev.182.479
http://dx.doi.org/10.1088/0305-4470/27/16/007
http://dx.doi.org/10.1088/0305-4470/27/16/007
http://dx.doi.org/10.1088/0305-4470/27/16/007
http://dx.doi.org/10.1088/0305-4470/27/16/007
http://dx.doi.org/10.1103/PhysRevB.56.R489
http://dx.doi.org/10.1103/PhysRevB.56.R489
http://dx.doi.org/10.1103/PhysRevB.56.R489
http://dx.doi.org/10.1103/PhysRevB.56.R489
http://dx.doi.org/10.1103/PhysRevLett.91.147204
http://dx.doi.org/10.1103/PhysRevLett.91.147204
http://dx.doi.org/10.1103/PhysRevLett.91.147204
http://dx.doi.org/10.1103/PhysRevLett.91.147204
http://dx.doi.org/10.1103/PhysRevLett.68.1220
http://dx.doi.org/10.1103/PhysRevLett.68.1220
http://dx.doi.org/10.1103/PhysRevLett.68.1220
http://dx.doi.org/10.1103/PhysRevLett.68.1220
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.81.085436
http://dx.doi.org/10.1103/PhysRevB.81.085436
http://dx.doi.org/10.1103/PhysRevB.81.085436
http://dx.doi.org/10.1103/PhysRevB.81.085436
http://dx.doi.org/10.1209/0295-5075/90/37003
http://dx.doi.org/10.1209/0295-5075/90/37003
http://dx.doi.org/10.1209/0295-5075/90/37003
http://dx.doi.org/10.1209/0295-5075/90/37003
http://dx.doi.org/10.1103/PhysRevLett.91.206403
http://dx.doi.org/10.1103/PhysRevLett.91.206403
http://dx.doi.org/10.1103/PhysRevLett.91.206403
http://dx.doi.org/10.1103/PhysRevLett.91.206403
http://dx.doi.org/10.1103/PhysRevLett.103.026401
http://dx.doi.org/10.1103/PhysRevLett.103.026401
http://dx.doi.org/10.1103/PhysRevLett.103.026401
http://dx.doi.org/10.1103/PhysRevLett.103.026401
http://dx.doi.org/10.1088/1751-8113/46/9/095006
http://dx.doi.org/10.1088/1751-8113/46/9/095006
http://dx.doi.org/10.1088/1751-8113/46/9/095006
http://dx.doi.org/10.1088/1751-8113/46/9/095006
http://dx.doi.org/10.1103/PhysRevB.92.045432
http://dx.doi.org/10.1103/PhysRevB.92.045432
http://dx.doi.org/10.1103/PhysRevB.92.045432
http://dx.doi.org/10.1103/PhysRevB.92.045432



