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Surface plasmon spectrum of a metallic hyperbola can be found analytically with the separation of variables in
elliptic coordinates. The spectrum consists of two branches: a symmetric, low-frequency branch, ω < ω0/

√
2, and

an antisymmetric high-frequency branch, ω > ω0/
√

2, where ω0 is the bulk plasmon frequency. The frequency
width of the plasmon band increases with decreasing the angle between the asymptotes of the hyperbola. For
the simplest multiconnected geometry of two hyperbolas separated by an air spacer the plasmon spectrum
contains two low-frequency branches and two high-frequency branches. Most remarkably, the lower of the two
low-frequency branches exists at ω → 0; i.e., unlike a single hyperbola, it is “thresholdless.” We study how
the complex structure of the plasmon spectrum affects the energy transfer between two emitters located on the
surface of the same hyperbola and on the surfaces of different hyperbolas.
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I. INTRODUCTION

The two central issues of contemporary plasmonics are
manipulation and focusing of light on subwavelength scales,
and plasmon-mediated energy transfer; see recent reviews
Refs. [1–4].

With regard to the first issue, strong confinement of optical
fields at small scales is accompanied by their orders-of-
magnitude enhancement. This enhancement can be used, e.g.,
to boost nonlinear effects or to image and detect [5] small
objects. At the core of the second issue is the light-matter
interaction. The effect of the plasmon-supporting interface on
a group of emitters located nearby [6–14] is twofold. First, it
strongly modifies the radiative lifetimes of individual emitters.
Second, virtual plasmon exchange facilitates the dipole-dipole
interaction between emitters.

A metallic strip or a wire of finite thickness can serve
as a plasmonic waveguide. The key approach to plasmon
field focusing utilizes tapering, i.e., gradual narrowing of a
waveguide towards one end [15–26]. Field confinement at
the end of a tapered metal wire waveguide was demonstrated
experimentally [4,27–29].

Current advances in plasmonics are related to engineering
of progressively more complex plasmonic structures [30–35].
Then it is natural to extend the theoretical study of plasmonic
waveguides to these complex, in particular, multiconnected,
geometries, which contain several disconnected metal-air
boundaries. It can be expected that these geometries provide
additional control over plasmon fields. Studies of plasmons
in multiconnected geometries should encompass calculation
of the spectra of plasmonic modes as well as investigation of
interaction of dipole emitters mediated by such modes.

Below we consider the simplest example of a multicon-
nected geometry, illustrated in Fig. 1. Geometries of a metallic
“neck,” Fig. 1(a), and of two tapers separated by a narrow air
“groove,” Fig. 1(b), are dual to each other. Both geometries
possess a characteristic length scale ∼a, which is the size
of the gap or the width of the constriction. This scale, being
much smaller than all other scales in plasmonic structure, see
Fig. 1(c), will therefore determine the plasmon spectrum and
the plasmon field distribution of the entire structure.

We take advantage of the fact that the problem of calculation
of the plasmon spectrum in geometry shown in Fig. 1 can

be solved exactly if the metallic surfaces are hyperbolic. A
natural unit of momentum (wave number) is q ∼ a−1; the
meaning of q in the absence of translational symmetry will be
clarified below. One advantage of the analytical approach over
numerical methods applied to concrete sets of parameters [37]
is that an analytical solution allows us to establish general
properties of the plasmon spectrum.

We compare the analytical results for two hyperbolas,
Fig. 1, to the geometry of a single hyperbola. For a single
hyperbola, the plasmon spectrum resembles the spectrum of a
finite-width metallic strip. It consists of two branches: the
low-frequency branch, ω < ω0/

√
2, where ω0 is the bulk

plasmon frequency, corresponds to a symmetric mode, while
the high-frequency branch, ω > ω0/

√
2, corresponds to an

antisymmetric mode. Adding the second hyperbola, Fig. 1,
leads to the emergence of two additional branches in the
plasmon spectrum. The frequency of the additional symmetric
mode is lower than that for a single hyperbola, while the
frequency of the additional antisymmetric mode is higher than
a single hyperbola’s mode. Since the plasmons mediate the
energy exchange between the emitters close to the surface,
the complex plasmon structure in a multiconnected geometry
leads to a nontrivial frequency dependence of this exchange,
which we study analytically.

The paper is organized as follows. In Sec. II we present
a detailed analysis of the plasmon spectrum and the field
distribution of the plasmon modes in a single-hyperbola
geometry. This analysis is then extended to the geometry of
two hyperbolas is Sec. III. Excitation of plasmon modes by
an emitter located at the metal boundary in a multiconnected
geometry is studied in Sec. IV. Section V concludes the paper.

II. PLASMON SPECTRUM OF A SINGLE HYPERBOLA

A. Elliptic coordinates

We start with a single-hyperbola geometry, Fig. 2. The
boundary of a metal is defined by the equation

(
x

cos η0

)2

−
(

y

sin η0

)2

= a2. (1)
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FIG. 1. Simplest examples of multiconnected plasmonic struc-
tures: (a) “neck” and (b) “gap.” The plasmon spectrum of these
structures can be found analytically if metallic surfaces are confocal
hyperbolas; 2a is the distance between the foci. (c) Schematic view of
a plasmonic array [36]. The field distribution in the array is determined
by the points of contact of metallic islands.

The metal is described with a dielectric permittivity,

ε(ω) = 1 − ω2
0

ω2
, (2)

and occupies the inner part of the hyperbola, which approaches
the asymptotes y = ±x tan η0 at large x. Outside the hyperbola
there is air with ε = 1.

Surface plasmons correspond to the solution of the Laplace
equation, ∇(ε∇�) = 0, for the electrostatic potential, �(x,y),
which propagates along the boundary of the hyperbola and

FIG. 2. Geometry of a single hyperbola. In elliptic coordinates
ξ,η, defined by Eq. (3), the metal with dielectric constant, ε(ω),
occupies the domain (−η0,η0). Outside the hyperbola there is air
with ε = 1.

decays away from the boundary. The variables in the 2D
Laplace equation can be separated in elliptic coordinates

x = a cosh ξ cos η, y = a sinh ξ sin η, (3)

where ξ is positive and η changes in the interval −π < η < π .
The Lamé coefficients are the same for both coordinates, hξ =
hη =

√
cosh2 ξ − cos2 η. In the new coordinates the Laplace

equation,

∇2� = 1

h2
ξ

(
∂2�

∂ξ 2
+ ∂2�

∂η2

)
= 0, (4)

has a structure similar to its usual Cartesian form. The solutions
of Eq. (4) should satisfy the boundary conditions at η = η0

(upper half of the hyperbola) and at η = −η0 (lower half of the
hyperbola): the potential � and the normal component of the
displacement field, Dn = εh−1

ξ ∂�/∂η, should be continuous
at this boundary.

B. Plasmon dispersion

The geometry in Fig. 2 is symmetric with respect to the
change of sign of the y axis. Correspondingly, the solutions
of Eq. (4) can be classified into symmetric (even), �s(x,y) =
�s(x, − y), and antisymmetric (odd), �a(x,y) = −�a(x, −
y). In hyperbolic coordinates the reversal of the sign of y

amounts to the change η → −η, so that �s(ξ,η) = �s(ξ, − η)
and �a(ξ,η) = −�a(ξ, − η).

Consider first the symmetric modes. For these modes, a
general solution of Eq. (4) inside the hyperbola, |η| < η0,
which propagates along ξ and grows with η from η = 0
towards the boundary, has the form

�s(ξ,η) = A[exp(imξ ) + α exp(−imξ )] cosh(mη). (5)

In order to satisfy the continuity of the potential at η = ±η0,
the corresponding solution outside the hyperbola, |η| > η0,
must have the same ξ dependence. It should also decay away
from the boundary. This specifies the form of �s(ξ,η) in the
air:

�s(ξ,η) = B[exp(imξ ) + α exp(−imξ )] cosh m(π − |η|).
(6)

By matching �s(ξ,η) and ε∂�s/∂η at the boundary η = ±η0,
we obtain the dispersion equation for the symmetric modes:

ε(ω) tanh (mη0) coth [m(π − η0)] = −1. (7)

At first glance it appears that the constant α in Eqs. (5)
and (6) can be arbitrary. However, from the requirement that
the function �s(ξ,η) be finite and continuous it follows that
α = 1. Indeed, for any α �= 1 the ξ component of electric field,
Eξ = −h−1

ξ ∂�s/∂ξ , diverges when ξ → 0 and η → 0, since
the Lamé coefficient hξ vanishes there. We thus conclude that
�s(ξ ) ∝ cos (mξ ).

Consideration for antisymmetric modes proceeds along
the same lines. It is not difficult to see that the solution
cos (mξ ) sinh(mη) must be discarded as discontinuous across
the region of the x axis, where −a < x < a and ξ = 0: the
odd character of sinh (mη) with respect to η → −η implies
that it can only by multiplied by a function of ξ that vanishes
at ξ = 0. This suggests the following form of the potential,
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FIG. 3. Plasmon spectrum of a single hyperbola for two opening
angles 2η0 = π/10 (red) and 2η0 = π/3 (blue) is plotted from
Eq. (11) for a symmetric mode and Eq. (12) for antisymmetric mode.
At large wave number, m, both branches approach the flat surface
plasmon frequency, ω0/

√
2.

�a(ξ,η), for antisymmetric modes inside the hyperbola:

�a(ξ,η) = C sin(mξ ) sinh(mη). (8)

Correspondingly, the potential outside the hyperbola, which is
odd with respect to y and matches the ξ dependence of Eq. (8),
has the form

�a(ξ,η) = D sin(mξ ) sinh m(π − |η|). (9)

The resulting dispersion equation for antisymmetric modes is

ε(ω) coth (mη0) tanh [m(π − η0)] = −1. (10)

From Eqs. (7) and (10) we can express the plasmon frequencies
in terms of the dimensionless wave number m,

ωs(m) = ω0

{
sinh(mη0) cosh[m(π − η0)]

sinh(mπ )

}1/2

, (11)

ωa(m) = ω0

{
cosh(mη0) sinh[m(π − η0)]

sinh(mπ )

}1/2

. (12)

Examples of dispersions Eqs. (11) and (12) are shown in Fig. 3.
Below we list some general properties of these dispersions:

(i) A hyperbola reduces to a plane for η0 = π/2. Then
Eqs. (11) and (12) reproduce the expected result, ωs(m) =
ωa(m) = ω0/

√
2, for the frequency of a dispersionless surface

plasmon.
(ii) The spectra Eqs. (11) and (12) of the symmetric and

antisymmetric modes satisfy the “sum rule” relation,

ω2
s (m) + ω2

a(m) = ω2
0. (13)

(iii) In the long-wavelength limit, m → 0, the threshold
frequencies are

ωs(0) = ω0

(
η0

π

)1/2

, ωa(0) = ω0

(
1 − η0

π

)1/2

. (14)

The fact that ωs(0) goes to zero for small η0 could be expected,
since at small η0 the hyperbola is effectively a metallic
layer with zero thickness, for which the dispersion of the
longitudinal surface plasmon does not have a threshold [38].
On the other hand, ωa approaching ω0 for η0 → 0 can be
interpreted by noticing that the oscillations of the electron

density, accompanying this plasmon, are normal to the surface;
such oscillations must have the bulk-plasmon frequency ω0.

(iv) Another notable property of the dispersions Eqs. (11)
and (12) is their duality, namely,

ωs(π − η0,m) = ωa(η0,m). (15)

Qualitative interpretation of this relation can be given for small
η0, when Eq. (15) relates the spectrum of a sharp metal “edge”
with the spectrum of a narrow “funnel”: it suggests that the
frequency of a soft symmetric plasmon of the “edge” coincides
with the frequency of an antisymmetric plasmon in a “funnel.”
Indeed, once the plasmon frequency is low, the absolute value
of ε(ω) is big. This, in turn, implies that the normal component
of the oscillating electric field in the metal is small. In the
funnel geometry, this small field amplitude can be realized
only when opposite charges accumulate on the two surfaces
of the funnel. The reason is that, for a small-angle funnel,
such antisymmetric arrangement is similar to the charges of
a parallel-plate capacitor; this distribution of charges ensures
that the field of the parallel-plate capacitor does not extend
outwards. On the other hand, as we mentioned above, the low-
frequency plasmon in a sharp-edge geometry is longitudinal,
which corresponds to symmetric amplitudes of the charge-
density fluctuations for the two surfaces.

C. Field distribution

In addition to the spectrum, ω(m), it is instructive to look at
the spatial distribution of the electric field of the two plasmon
modes. For a given frequency, ω, the value of m is found by
equating it to either ωs(m), when ω < ω0/

√
2, or to ωa(m),

when ω > ω0/
√

2. The found value of m(ω) is then substi-
tuted into the potential distribution �s = cos(mξ ) cosh(mη)
or �a = sin(mξ ) sinh(mη), from which the electric field is
subsequently calculated.

To clarify the physical meaning of the parameter m we
rewrite the potential �s at large distances from the coordinate
origin in the Cartesian coordinates:

�s(x,y)|x,y�a = C cos

[
m

(
ln

2
√

x2 + y2

a

)]

× cosh

[
m arctan

y

x

]
. (16)

The ratio of the amplitudes of �s at the boundary, y = x tan η0,
and along the x axis is equal to cosh (mη0).

The potential distribution Eq. (16) applies inside the
metal. In the air, this distribution differs from Eq. (16)
by the replacement arctan( y

x
) by π − arctan( y

x
) and C by

C cosh(mη0)/ cosh [m(π − η0)].
Consider now a symmetric plasmon propagating with a

wave vector, q, in a metallic film of a constant thickness, 2d.
For this plasmon the ratio of the potentials at the boundary
and at the center is equal to cosh (qd). Identifying d with the
length of the arc between the x axis and the boundary, ρη0,
where ρ =

√
x2 + y2, allows one to specify the local value of

the wave vector,

q(ρ) = m

ρ
. (17)
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With the ρ-dependent wave vector given by Eq. (17), one
would expect for the plasmon phase a “semiclassical” value∫ ρ

a
dρ ′q(ρ ′) = m ln(ρ/a), which is indeed the case, as follows

from Eq. (16).
For a symmetric mode, the electric field on the x axis is

directed along x. The domain x > a on the x axis corresponds
to η = 0, so that �s(ξ ) = C cos (mξ ). In this domain the
behavior of electric field with x = a cosh ξ has the form

Ex(x > a) = Cm
sin

[
m ln

(
x
a

+
√

x2

a2 − 1
)]

√
x2 − a2

. (18)

The field is finite at x = a, and falls off as 1/x for x � a.
In the domain a cos η0 < x < a we have ξ = 0 and �s =

C cosh (mη). Differentiating with respect to x = a cos η, we
obtain

Ex(a cos η0 < x < a) = Cm
sinh

(
m arccos x

a

)
√

a2 − x2
. (19)

Finally, in the air, in the domain 0 < x < a cos η0 the x

component of the field is given by

Ex(0 < x < a cos η0)

= −mC

(
cosh(mη0)

cosh[m(π − η0)]

)
sinh

[
m

(
π − arccos x

a

)]
√

a2 − x2
. (20)

In Eqs. (18) and (19) the frequency and the η0 dependence of
the electric field are incorporated in m(ω,η0), defined by the
condition ωs(m) = ω, where ωs(m) is given by Eq. (11).

For an antisymmetric mode, the electric field on the x

axis is directed along y. Inside the metal, where �a =
C sin(mξ ) sinh(mη), the x dependence of Ey is the same as
the x dependence, Eqs. (19) and (20), of Ex for the symmetric
mode. In the air, the x dependence of Ey is different from
Eq. (20) and has the form

Ey(0 < x < a cos η0)

= −mC

(
sinh(mη0)

sinh[m(π − η0)]

)
sinh

[
m

(
π − arccos x

a

)]
√

a2 − x2
. (21)

The behavior of Ex(x) and Ey(x) is illustrated in Fig. 4(a). It
is seen that the oscillating tail emerges only at large distance
∼ 20a from the tip.

It is possible to understand the difference in the distribution
of the field intensities for symmetric and antisymmetric
modes from simple qualitative arguments. As seen from
Fig. 5, at small momenta, the field of the symmetric mode
is predominantly concentrated outside the metal [39,40]. In
contrast, the field of the antisymmetric mode is predominantly
concentrated inside the metal. This difference can be traced to
the continuity of the normal component of the displacement
vector at the boundary: E(out)

η = ε(ω)E(in)
η . For small m, the

frequency of the symmetric mode is low, so that |ε(ω)| � 1.
Therefore, the field inside the material is much weaker that the
field outside. Conversely, the frequency of the antisymmetric
mode is close to ω0. As a result, ε(ω) is small for that
mode, effectively reversing the relation of the fields inside
and outside.

FIG. 4. (a) Distribution of Ex (for a symmetric mode) and Ey

(for antisymmetric mode), the components of electric field along the
x axis, is plotted from Eqs. (18)–(21) for the wave number m = 2 and
the opening angle 2η0 = π/3. The inset shows the large-x oscillating
tail of Ex . (b) The same as (a) for two hyperbolas.

FIG. 5. Density plot of the field intensity of the plasmon modes
for a single hyperbola with the opening angle 2η0 = π/3. The upper
row corresponds to a symmetric mode, for which the potential
distribution is determined by Eqs. (5) and (6). The lower row
corresponds to an antisymmetric mode with the potential described
by Eqs. (8) and (9). Left, central, and right panels correspond to the
wave numbers m = 0.1, m = 0.4, and m = 0.7, respectively. With
increasing m the plasmon frequencies approach ω0/

√
2, while the

field concentrates near the metal-air surface.
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FIG. 6. The geometry of two hyperbolas with the opening angles
2η0 and 2η1. A dipole emitter close to the tip and polarized along the
interface excites the dipoles located to the left and to the right from
the tip at distances much greater than the focal distance.

III. GEOMETRY OF TWO HYPERBOLAS

A. Splitting of the plasmon spectrum

Consider now the geometry of two hyperbolas, Fig. 6. The
boundary of the first hyperbola is defined by the same Eq. (1);
in addition, metal occupies the domain π − η1 < η < π . The ξ

dependence of the potential for the symmetric modes remains
the same, cos mξ . The η dependence, which decays away from
both boundaries, is characterized by four constants,

�s(η)

=
⎧⎨
⎩

A1 cosh(mη), 0 < η < η0,

B1 cosh(mη) + B2 cosh m(π − η), η0 < η < π − η1,

A2 cosh m(π − η), π − η1 < η < π.

(22)

These constants, A1, A2, B1, and B2, are related by continuity
of �s(η) and ε∂�s/∂η at η = η0 and η = π − η1. These
continuity conditions read

A1 cosh(mη0) = B1 cosh(mη0) + B2 cosh m(π − η0),

ε(ω)A1 sinh(mη0) = B1 sinh(mη0) − B2 sinh m(π − η0),

(23)

A2 cosh(mη1) = B1 cosh m(π − η1) + B2 cosh(mη1),

−ε(ω)A2 sinh(mη1) = B1 sinh m(π − η1) − B2 sinh(mη1).

(24)

These relations, together with the explicit form of ε(ω), given
in Eq. (2), lead to the following characteristic equation:

sinh 2mη0 sinh 2mη1

4

=
[(

ω2

ω2
0

− 1

2

)
sinh mπ + 1

2
sinh m(π − 2η0)

]

×
[(

ω2

ω2
0

− 1

2

)
sinh mπ + 1

2
sinh m(π − 2η1)

]
. (25)

The two brackets on the right-hand side describe the plasmon
dispersion Eq. (11) for a symmetric mode, while the left-hand
side describes the coupling of the two plasmon branches. The
two plasmons decouple when η1 is small. Then the dispersion
of the upper symmetric branch is simply ωs(η0,m), Eq. (11).
In order to find the dispersion of the lower symmetric branch,
it is sufficient to set ω = 0 in the first bracket. This yields

ω−
s (m)|η1
1 = ω0[mη1 tanh m(π − η0)]1/2. (26)

The general expression for the dispersion of the two coupled
symmetric branches reads

ω±
s (m) = ω0

[2 sinh(mπ )]1/2
{[sinh(mη0) cosh m(π − η0)

+ sinh(mη1) cosh m(π − η1)]

±[sinh2 m(η0 − η1) cosh2 m(π − η0 − η1)

+ sinh(2mη0) sinh(2mη1)]1/2}1/2. (27)

It is easy to see from Eq. (27) that for large m � 1 both
frequencies approach the surface plasmon frequency ω0/

√
2,

as in the case of a single hyperbola. The reason is that the short-
wavelength plasmon is “local,” a metal surface is locally flat,
and the presence of the second surface is of no consequence to
the spectrum in this limit. The behavior of ω±

s (m) in the limit
of long wavelengths is remarkable:

ω−
s (m)|m→0 ≈ mω0

[
η0η1(π − η0 − η1)

η0 + η1

]1/2

,

(28)

ω+
s (0) = ω0

(
η0 + η1

π

)1/2

.

The fact that ω+
s (0) is determined by the “net” angle (η0 + η1)

is consistent with the result Eq. (14) for a single hyperbola.
As this net angle approaches π , the portion of air in this
limit becomes small, and ω+

s (0) approaches the bulk plasmon
frequency. The acoustic behavior of ω−

s (m) is related to the
fact that, unlike for a single hyperbola, in the geometry of two
hyperbolas a low-frequency plasmon is not reflected from the
tip, but goes “through” the gap into the second hyperbola.

For two identical hyperbolas, η0 = η1, Eq. (27) simplifies
to

ω±
s (m)

= ω0

{
sinh(mη0){cosh[m(π − η0)] ± cosh(mη0)}

sinh(mπ )

}1/2

.

(29)

Similar derivation for the antisymmetric plasmons yields

ω±
a (m)

= ω0

{
cosh(mη0){sinh[m(π − η0)] ± sinh(mη0)}

sinh(mπ )

}1/2

.

(30)

From Eqs. (22), (30) one can trace the evolution of the plasmon
spectrum with increasing η0. For η0 
 1 the frequencies of
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both symmetric plasmons are low:

ω−
s (m)|η0
1 ≈ ω0

[
mη0 tanh

(
mπ

2

)]1/2

, (31)

ω+
s (m)|η0
1 ≈ ω0

[
mη0

tanh
(

mπ
2

)]1/2

, (32)

while the frequencies of antisymmetric plasmons are close to
ω0. As η0 increases and achieves the value π/4, the branches
ω+

s (m) and ω−
a (m) collapse into a single frequency ω0/

√
2 and

become flat. As η0 increases further above π/4, the branches
invert: ω+

s (m) is pushed above ω0/
√

2 and ω−
a (m) drops below

it. This evolution is illustrated in Fig. 8.
For the geometry of two hyperbolas there is a duality

relation,

ω+
s

(
π

2
− η0,m

)
= ω−

a (η0,m), (33)

similar to Eq. (15) for a single hyperbola.

B. Comparison of the field distributions for two geometries

Hybridization of plasmon fields of individual hyperbolas
in the geometry of two hyperbolas is illustrated in Figs. 4, 5,
and 7. The curves in Fig. 4 suggest that hybridization along
the x axis is rather weak and becomes progressively weaker
while the wave number increases as the frequency approaches
ω0/

√
2. This behavior is natural, since, the closer the frequency

is to that of the flat surface plasmon, the more localized is the

FIG. 7. Density plot of the field intensity of the plasmon modes
in the geometry of two symmetric hyperbolas with the same opening
angle, 2η0 = π/3, as in Fig. 5. The upper row corresponds to a
symmetric mode for which the potential distribution is determined
by Eqs. (22) and (27). Left, central, and right panels correspond,
respectively, to the wave numbers m = 0.1, m = 0.4, and m = 0.7,
the same as in Fig. 5. While the fields of individual hyperbolas are
disconnected along the x axis, they overlap along the y axis. The
lower row corresponds to antisymmetric modes with the same m

values. The fields of individual hyperbolas overlap, predominantly,
along the y axis.

FIG. 8. Upper panel: Comparison of the plasmon spectra in the
geometry of two hyperbolas for two values of the opening angle. For
η0 = π/6 < π/4 the frequencies of both symmetric modes (blue)
are smaller than the flat surface plasmon frequency ω0/

√
2, while

the frequencies of both antisymmetric modes (red) are bigger than
ω0/

√
2. The relative signs of the oscillating charge density along the

metal surfaces are schematically illustrated to the left of the graph. For
η0 = 2π/5 > π/4 (lower panel) the positions of the upper symmetric
mode and lower antisymmetric mode with respect to ω0 invert.

plasmon field near the metal-air interface. The density plot
of the modes of individual hyperbolas is shown in Fig. 5.
Compared with the latter, the double-hyperbola plot of Fig. 7
demonstrates that hybridization of individual modes has a
“ring”-like character for symmetric modes and the “needle”-
like character for antisymmetric modes. Such different nature
of hybridization can be interpreted with the help of the
patterns of oscillating surface charges in Fig. 8. For the bottom
symmetric mode with low frequency, the positive and negative
charges are separated by air, whereas the dielectric function
of the metal is large. This expels the electric field lines from
the inside of the metal and forces them to go through the air.
The field is strong along the y axis, where it is parallel to the
x axis.

For the antisymmetric mode, the upper and lower sides of
the metal have opposite charges, while the frequency is close
to ω0, so that the dielectric constant of the metal is small.
The force lines of electric field are localized inside the metal.
Thus, the two metal edges can be viewed as the plates of a
parallel-plate capacitor. Correspondingly, the concentration of
electric field near the x axis is analogous to the fringe field
outside a parallel-plate capacitor.

In Sec. II we have established that the field of the plasmon
modes at large distance, ρ � a, from the origin behaves
as 1/ρ. Hence, the field intensity behaves as 1/ρ2; i.e., it
strongly diverges down to the distances ∼a. This, however,
does not translate into a strong enhancement of the net energy,∫

dr E2(r), which grows only logarithmically, ∝ ln(λ/a); the
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FIG. 9. Illustration of the plasmon spectrum in the geometry
of two codirected hyperbolas. Blue and red curves correspond to
symmetric and antisymmetric plasmon modes, respectively. The
spectrum is plotted from Eq. (34) for ηc = δη = π/6.

upper cutoff is provided by the wavelength of light, λ =
2πc/ω, with the same frequency ω.

C. Two codirected hyperbolas

For completeness, in this subsection we will analyze
the plasmon spectrum in the geometry of two codirected
hyperbolas. Assume that the metal occupies the region η0 <

η < η1, while the regions 0 < η < η0 and η1 < η < π are
occupied by air; see the inset in Fig. 9. A straightforward
generalization of Eq. (25) gives

sinh 2mη0 sinh 2m(π − η1)

4

=
[(

ω2

ω2
0

− 1

2

)
sinh mπ − 1

2
sinh m(π − 2η0)

]

×
[(

ω2

ω2
0

− 1

2

)
sinh mπ + 1

2
sinh m(π − 2η1)

]
. (34)

To analyze the plasmon dispersion, we introduce the average
opening angle and the “thickness” of the tip,

ηc = η0 + η1

2
, δη = η1 − η0. (35)

An example of the plasmon spectrum with the two codi-
rected hyperbolas is shown in Fig. 9. In this inverted geometry,
symmetric and antisymmetric modes interchange, compared
with Fig. 8(b). The symmetric branches in the long-wavelength
limit are

ω+
s (0) = ω0

(
δη

π

)1/2

, ω−
s (0) = ω0. (36)

For the upper symmetric mode, ω+
s (0), the signs of the

oscillating charges on the opposite sides of each “sleeve”
are opposite and the electric field lines are confined inside
the metal. For this, the dielectric constant of the metal must
vanish. For the lower symmetric mode, ω−

s (0), the signs of
charges on the opposite sides of each sleeve are the same. The
field lines mostly stay in the air and do not penetrate into the
metal. This, on the other hand, implies that ε(ω) is large, and,
correspondingly, the frequency of the mode is small, vanishing
in the limit of a very thin “coating,” δη → 0.

The acoustic mode, generic for multiconnected geometries,
is now found in the antisymmetric part of the spectrum,
ω+

a (m) → 0 as m → 0. The second mode,

ω−
a (0) = ω0

(
1 − δη

π

)1/2

, (37)

lies above ω0/
√

2 and its frequency increases with decreasing
δη.

IV. INTERACTION OF TWO EMITTERS AT THE
METAL-AIR SURFACE

Numerous studies have demonstrated that, due to proximity
to the metal, the lifetime of the emitter can be dominated by
the excitation of the plasmon modes [6–14]. For a metallic
nanoparticle plasmons significantly shorten the lifetime when
the emitter frequency is close to the frequency of the plasmon
dipole (l = 1) oscillations. A less trivial finding [13,14] is
that the coupling to plasmons can dominate the lifetime when
the emitter is located in the proximity to a nanowire with
a subwavelength radius in which the plasmon spectrum is
continuous. When the emitter is positioned close to the tip,
the plasmon-induced shortening of the lifetime is even more
pronounced [14]. This is caused by the field enhancement
near the tip. In this regard, to calculate the emitter lifetime in
a multiconnected plasmonic structure, we can use the same
general scheme as developed in the previous studies.

Consider for concreteness a dipole emitter with frequency
ω, located at the metal-air interface, and polarized parallel
to the interface, as in Fig. 6. The structure of the plasmon
spectrum in this calculation is captured by the Green’s function
for the electric field,

G(ξ,η; ξ ′,η′; ω) =
∑
m

Eξ (ξ,η; m)Eξ (ξ ′,η′; m)

ω − ω(m)
, (38)

where Eξ (ξ,η; m) is the normalized tangential component of
the electric field of the plasmonic mode and the summation
is taken over all four modes; ω(m) is the plasmon spectrum
found above. The decay rate is proportional to the imaginary
part of the diagonal value G(ξ,ηi ; ξ,ηi ; ω) taken at the position
of emitter. As the summation in Eq. (38) is performed over
acoustic as well as optical modes, a spikelike feature occurs in
the ω dependence of the decay rate. The origin of this feature
is the divergence of the density of the plasmon modes,

g+(ω) = 1

π

∫ ω0√
2

0
dmδ[ω − ω+(m)], (39)

near the threshold frequency ω+
s (0).

Consider for simplicity a symmetric geometry, η0 = η1 <

π/4. Expanding Eq. (22) at small m, we get

ω+
s (m)

ω+
s (0)

∣∣∣∣
m→0

= 1 + m2

3

(
π

4
− η0

)(
π

2
− η0

)
, (40)

where ω+
s (0) = (2η0/π )1/2. Substituting Eq. (40) into Eq. (39),

one finds

g+(ω) = 1

π

[
3(

π
4 − η0

)(
π
2 − η0

)
ω+

s (0)[ω − ω+
s (0)]

]1/2

.

(41)
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The inverse square-root singularity in the density of states
translates into a minimum in the emitter lifetime. A similar
minimum is expected near ω = ω+

a (0) and near the bulk
plasmon frequency, ω0. Near ω = ω0/

√
2 the minimum should

be even stronger, since the divergence of the plasmon modes
diverges as |ω − ω0/

√
2|−1.

The scheme of calculation of the plasmon-mediated energy
transfer between the emitters near the metal-air interface is
also well established; see, e.g., Ref. [10] for two emitters near
a nanoparticle and Ref. [41] for donor and acceptor above the
graphene. Here we emphasize the specifics of this transfer in
the geometry of two hyperbolas. In particular, we study how
the transfer rate between the red emitter near the tip in Fig. 6
and the blue emitter located on the left hyperbola differs from
the transfer rate between the red emitter and the blue emitter
located on the right hyperbola, when both blue emitters have
the same coordinate, ξ .

Quantitatively, the relation of the two transfer rates is
described by the ratio of the tangential components of electric
field at the two interfaces. From Eq. (22) we find

T =
(

Eξ (η0,ω)

Eξ (η1,ω)

)2

=
[
B1 cosh(mη0) + B2 cosh m(π − η0)

B1 cosh m(π − η1) + B2 cosh(mη1)

]2

. (42)

With the help of the continuity conditions Eqs. (23) and (24)
this ratio can be cast in the form

T = [ε(ω) tanh(mη1) sinh m(η0 − η1) + cosh m(η1 − η0)]−2,

(43)
where m(ω) is determined by the dispersion equation (27). In
Fig. 10 we plot the factor T as function of frequency for a
fixed opening angle of the right hyperbola, 2η0 = 4π/5, and
several opening angles of the left hyperbola. Overall, we see
that at ω = 0 the geometric factor T rapidly increases with η1.
This can be understood from the electrostatics of ideal metals.
Indeed, at ω = 0 the field does not penetrate into the metal at
all. Consequently, the sharper the left hyperbola is, the stronger
the field near the left tip becomes, resulting in smaller values
of T (0). This, in turn, means that the energy transfer from the
red emitter in Fig. 6 to the left blue emitter happens faster than
the transfer to the right blue emitter.

We also see that the behavior of T (ω) is different for
small, Fig. 10(a), and large, Fig. 10(b), values of η1. When
geometrical factor T (0) is small, T (ω) falls off with frequency,
suggesting that the left and right hyperbolas become effectively
“disconnected.” To the contrary, for larger starting values T (0),
the finite frequency T (ω) grows with frequency, suggesting
that the energy transfer becomes more symmetric. The
crossover from decay to growth takes place at η1 ≈ 0.19π .
This value can be related to the peculiar behavior of the velocity
of the low-frequency plasmon Eq. (28). Namely, this velocity
has a minimum as a function of η1. By setting ∂ω−

s /∂η1 = 0,
we find the position of this minimum at

η̃1 = (πη0)1/2 − η0. (44)

For η0 = 2π/5, Eq. (44) yields η̃1 ≈ 0.23π , close to the
crossover value of η1, which corresponds to ∂T (ω)/∂ω|ω→0 =
0.

FIG. 10. Geometric factor for the energy transfer is plotted as a
function of frequency from Eq. (43) for the values of the opening angle
2η1 = 0.2π,0.24π,0.28π (a), and 2η1 = 0.56π,0.6π,0.64π (b). The
value of the opening angle, 2η0, is chosen 2η0 = 4π/5.

It is instructive to discuss Eq. (42) from the general
perspective of a resonant energy transfer. Conventionally, the
enhancement of the transfer rate between two emitters due to
neighboring plane, nanowire, or nanoparticle is studied as a
function of the distance between the emitters and the distance
from the emitters to the plasmon-guiding interface. For
the geometry of two hyperbolas with emitters at the interface,
the dependence of the fields on the distance is measured by the
dimensionless coordinate ξ . Moreover, this dependence has a
purely oscillatory form, ∝ cos (mξ ). Thus, the effectiveness
of the resonant energy transfer depends exclusively on the
opening angles and the frequency (in the units of ω0). The most
nontrivial outcome of Eqs. (42) and (43) and Fig. 10 is that, at
frequency close to the surface plasmon frequency ω0/

√
2, the

ratio of the transfer rates to “left” and to the “right” switches
abruptly from 0 to 1 depending on the relation between the
opening angles.

V. CONCLUDING REMARKS

(i) The prime qualitative finding of the present paper is
that, for a singly connected geometry, the opening angle of
the hyperbola, 2η0, defines the minimum frequency, given by
Eq. (14), below which the plasmon bound to the tip of the
hyperbola does not exist. By contrast, in a multiconnected
geometry a symmetric plasmon mode, concentrated near the
region of the closest contact of the surfaces, exists at arbitrary
low frequency.

(ii) A geometry somewhat similar to the one considered
in this paper was studied in Refs. [42–46]. The authors
considered two or more plasmonic wires or radius a in parallel
and separated by distance d. They traced numerically how
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plasmons of individual wires hybridize with decreasing d.
For the case in which both a and d are much less than the
wavelength, the expected distribution of the field is a universal
function of the ratio d/a. However, for the parameters of
interest the retardation effects were important. In the exact
solution found in this paper it is not possible to incorporate the
retardation effects. Understandably, this limitation restricts the
applicability of our analytical results to the domain of small
enough wavelength or large momenta m (see below).

(iii) Originally, the enhancement of the electric field of a
plasmon-polariton as it approaches a wedge has been demon-
strated analytically in Ref. [15]. Calculation in Ref. [15], was
carried out in polar coordinates, i.e., neglecting the rounding
of the wedge near the tip. This curving has been emulated by
introducing a cutoff length ∼a. At distances much greater than
a the form of the plasmon field in Ref. [15] is consistent with
Eq. (16) with the important difference that the plasmon field
Eq. (16) is not traveling, as in Ref. [15], but is a standing wave
instead. This structure is enforced by the boundary condition
at the tip.

The fact that the plasmon mode near the tip is a standing
wave can be viewed from the perspective of focusing of
light on a subwavelength scale, when the plasmon-polariton
with TM polarization (magnetic field along the z axis) is
excited at large (compared to the wavelength, λ) distance,
ρ, from the tip [18]. In the geometry of a single hyperbola this
polariton will be fully reflected. For small enough opening
angles, 2η0, the transformation of the polariton into small-ρ
standing plasmon mode can be traced analytically within the
semiclassical (WKB) description [13,14,18–20,22]. Within
that description, the metal strip at distances ρ � a from the
origin is replaced with a planar film with a thickness dρ , equal
to the arc distance, 2ρη0 = dρ , between the two metal surfaces.
Then the semiclassical expression for the incident and reflected
fields has the form q

−1/2
ρ exp [±i

∫
dρqρ], where qρ(ω) is

the dispersion of the symmetric waveguide mode propagating
along the film. This dispersion law satisfies the equation

ε tanh

{(
q2

ρ − ε
ω2

c2

)1/2
dρ

2

}
= −

(
q2

ρ − ε ω2

c2

q2
ρ − ω2

c2

)1/2

. (45)

The relevant question is, how close to the threshold frequency
ω0(η0/π )1/2 is the semiclassical description applicable, i.e.,
when does the condition dqρ/dρ 
 q2

ρ apply? At small
frequencies we can replace ε(ω) by −ω2

0/ω
2 and simplify

Eq. (45) using the identification qρ = m/ρ, Eq. (17). Then
Eq. (45) reduces to the following equation for m:

tanh

[
η0m

(
1 + ω2

0ρ
2

c2m2

)1/2]
= ω2

ω2
0

(
1 + ω2

0ρ
2

c2m2

)1/2

, (46)

and the semiclassical condition is satisfied provided that
m � 1. As the distance ρ increases, the solution of Eq. (46)
grows starting from m = ω2

ω2
0η0

, which is consistent with

Eq. (11). Thus, for the semiclassical description to apply at all
ρ bigger than a, it is necessary that this minimum m exceeds
1, i.e., ω � ω0η

1/2
0 . The latter condition suggests that the

frequency of the incident light, being much smaller than ω0,
should still not be very close to the threshold frequency.

Another approach to the “delivery” of the light energy to the
tip was proposed in Ref. [21]. Namely, one can coat a conical
tip of a glass fiber by a silver layer, the geometry similar to the
one shown in the inset in Fig. 9. The wavelength of a plasmon
in a silver layer increases away from the tip, and at a certain
distance matches the wavelength of the waveguided light
propagating towards the tip. At this point the light transforms
into the plasmon and heads towards the tip. Experimental
realization of a coupling based on this idea was reported in
a number of papers; see Ref. [37] and references therein.

(iv) Naturally, the structure of the plasmon field at small
distances from the tip is not captured in polar coordinates.
Meanwhile, this structure is quite nontrivial. To illustrate this,
consider the ratio Ex(0)/Ex,tip of the fields at the origin and at
the tip for a symmetric plasmon. This ratio can be found from
Eq. (19). The origin, x = 0, corresponds to η = π/2, while
the tip corresponds to x = a cos η0. Then Eq. (19) yields

Ex(0)

Ex,tip
= sin η0 sinh

[
π
2 m(ω)

]
sinh[(π − η0)m(ω)]

. (47)

As the frequency grows from the threshold value ωs(0) =
ω0(η0/π )1/2 to the surface plasmon frequency ω0/

√
2, the

“wave number,” m, changes from m = 0 to m = ∞. Then
the ratio Eq. (47) falls off from π sin η0/[2(π − η0)] mono-
tonically. At frequencies close to ω0/

√
2 the ratio Eq. (47)

approaches zero, since the plasmon field is strongly localized
near the metal surface. Such a strong change of the field
is revealed by the exact solution in elliptic coordinates
demonstrated in the present paper.

(v) In this paper we assumed that the plasmon field does
not depend on z. For a general z dependence, � ∝ exp(iκz),
the Laplace equation takes the form

∂2�

∂ξ 2
+ ∂2�

∂η2
+ κ2a2(cosh2 ξ − cos2 η)� = 0. (48)

Separation of variables leads to the following equation for the
potential’s η dependence,

∂2�

∂η2
− (m2 + κ2a2 cos2 η)� = 0. (49)

Our results apply for the wave numbers that exceed some
minimum value, m � mmin. This minimum value can be
estimated from the observation that κ cannot be less than
H−1, where H is the “height” of the hyperbola; see Fig. 1.
This determines mmin ∼ κa ∼ a/H 
 1.

(vi) A finite scattering rate of conduction electrons, γ , sets
the maximum distance from the origin, ρmax, where our results
apply. The solutions obtained and discussed above decay
beyond ρmax. This distance can be estimated by noting that a
finite γ is taken into account by replacing ω2 → ω(ω + i/γ )
in the dielectric function, Eq. (2). As a result, it leads to a finite
imaginary part of m: Im m ≈ γ (∂ω/∂m)−1, where ∂ω/∂m is
the slope of the plasmon dispersion. The plasmons attenuate
at distances where ξ Im m ∼ 1. Since at large distances ξ

depends logarithmically on ρ, see Eq. (16), we conclude that
the maximum distance is ρmax ∼ a exp [1/Imm].

(vii) Finally, throughout the paper, we have disregarded the
spatial dispersion of the dielectric permittivity, ε(ω,k) ≈ ε(ω).
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Such approximation is valid as long as the characteristic wave
vectors k are small: k 
 ω0/v, where v is the electron Fermi
velocity [47,48]. Using the value of the plasma frequency for
gold [49] ω0 = 1.38 × 1016 s−1, and its Fermi velocity [50]
v = 1.39 × 108 cm/s, we obtain the value of the wave vector
for which spatial dispersion must be taken into account,
k0 ∼ 108 cm−1. On the other hand, the smallest wave vector in
our wedge geometry is determined by the radius of curvature
of the hyperbolas near their sharp points, k ∼ 2π/a. We,

therefore, conclude that for a � 1 nm, neglecting spatial
dispersion should be a good approximation.
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