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We point out that the effective channel for the interfacial thermal conductance, the inverse of Kapitza resistance,
of metal-insulator/semiconductor interfaces is governed by the electron-phonon interaction mediated by the
surface states allowed in a thin region near the interface. Our detailed calculations demonstrate that the interfacial
thermal conductance across Pb/Pt/Al/Au-diamond interfaces are only slightly different among these metals, and
reproduce well the experimental results of the interfacial thermal conductance across metal-diamond interfaces
observed by Stoner et al. [Phys. Rev. Lett. 68, 1563 (1992)] and most recently by Hohensee et al. [Nat. Commun.
6, 6578 (2015)].
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I. INTRODUCTION

Kapitza resistance, which occurs when heat flows across
two different materials, was first observed by the measurement
of the temperature jump at solid-liquid helium interfaces
[1,2]. Interfacial thermal conductance (ITC), the inverse of
Kapitza resistance, between solid-solid interfaces has been
the most intensive research topic in the thermal transport
community over the past two decades for thermal management
of nanoelectronics and for engineering nanostructured mate-
rials for thermoelectrics and for superior thermal insulators
[3–7]. Overheating caused by heat accumulation due to the
presence of Kapitza resistance is a major obstacle to improving
the performance and the reliability of nanoelectronic and
optoelectronic devices. It is of great importance to understand
the underlying mechanisms of Kapitza resistance or ITC across
solid-solid interfaces.

Compared to nonmetal interfaces, the heat conduction
mechanism across metal-insulator/semiconductor interfaces
is much more complicated since it involves energy conversion
and coupling among different energy carriers where electrons
are the major heat carriers in metals and phonons are the major
heat carriers in the insulator/semiconductor. The applicability
of various proposed mechanisms has been debated for decades
[5].

Swartz and Pohl [5] proposed diffusive phonon scattering at
interfaces as an extension of the acoustic mismatch theory for
solid-liquid interfaces proposed by Khalatonikov [8], which
takes into account the elastic scattering of phonons by the
roughness of interfaces. However, the predicted ITC values
based on this theory are quite different from the measured
values at room temperature. Stoner et al. [9] measured
ITC across a large series of metal (Pb/Ti/Al/Au)-insulator
(diamond/sapphire/BaF2) interfaces using a picosecond laser-
based pump-and-probe technique. They found that ITC across
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the Pb-diamond interface was significantly larger than the
radiation limit of phonon transmission, which considers the
maximum possibility of phonon transmission. To overcome
the underestimation of ITC, multiphonon scattering due to
anharmonicity was then proposed, which provides an addi-
tional energy transfer channel across an interface. However,
one would expect ITC to be reduced in the presence of
pressure if anharmonicity is important, as the anharmonicity of
diamond would be suppressed by pressure [10]. This predic-
tion contradicts with a recent experimental exploration where
pressure-dependent ITC across a metal-diamond interface was
measured by Hohensee et al. [11].

On the other hand, due to the existence of electrons in the
metal side, the role of the electron-phonon (e-p) interaction
between the electrons in metals and phonons in nonmetals has
been considered, which was first introduced for metal-helium
interfaces and then extended to metal-insulator/semiconductor
interfaces. The theoretical framework of the e-p interaction
of the metal-helium interface was proposed by Little [12]
and Andreev [13] in the 1960s and experimentally proved by
Wagner et al. [14] through the observation of ITC dependence
on the applied magnetic field.

Energy coupling between electrons and phonons in bulk
materials was modeled by Kaganov [15] and Allen [16]
several decades ago. For the e-p interaction of metal-
insulator/semiconductor interfaces, there are several different
models which show different mechanisms of interactions. In
the 1990s, Huberman and Overhauser [17] calculated the ITC
across a Pb-diamond interface by taking into account the
coupling between the free electrons in Pb and joint vibrational
modes near the interface. In their work, they assumed that
the phonon modes of an insulator can extend into the metal
side with an attenuation rate. Sergeev [18] has proposed a
model to incorporate the inelastic electron-boundary scattering
in a similar way as the inelastic electron-impurity scattering.
This model usually overestimates the ITC since all the atoms
on the insulator/semiconductor side are treated as impurities.
Mahan [19] has proposed a mechanism for the e-p interaction
by introducing image charges, which is likely inapplicable
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FIG. 1. (a) Band alignment of a metal-diamond interface along the z direction. The SS only exists in a thin interfacial region, as shown.
(b) Schematic of phonon emission due to the SS-phonon interaction. (q||,qz) denotes the wave vector of the phonon, where q|| is in the x − y

plane and qz is in the z direction. (k||,κ) and (k′
‖,κ

′) are the wave vectors of the initial and final electron states of SS, respectively. (k||,kz) and
(k′

‖,k
′
z) are the related wave vectors of electrons in metal.

to nonpolar materials, such as diamond. Giri et al. [20]
considered the electronic transmission probability, which is a
fitting parameter, to calculate ITC. One important observation
is that most of the above theories, except Mahan’s, predict
a very strong dependence of ITC on the electronic structure,
which is in contradiction with experimental results [9,11,21].
For example, the calculated ITC across the Pb-diamond
interface is two orders of magnitude larger than that across
a Bi-diamond interface, whereas very similar measured values
have been obtained [21]. Most recently, Hohensee et al. [11]
have measured the ITC across interfaces between various
metals (Pb/Pt/Al/Au) and diamond at high pressures of up
to 50 GPa. They found that ITC converges to similar values at
high pressures among Pb/Pt/Al/Au.

The discrepancy between theoretical prediction and ex-
perimental observation of ITC across a metal-insulator/
semiconductor interface due to an e-p interaction between the
electrons in metals and phonons in an insulator/semiconductor
is still an outstanding question. Most theories assumed that
free electrons from the metal side are incident on the interface
and are then reflected back while interacting with phonons at
an interface [17,18,20]. This assumption could be wrong in
realistic materials.

In this paper, we propose a mechanism that determines
the e-p interaction across metal-insulator/semiconductor inter-
faces near room temperature, which is mediated by the surface
states (SS) [22]. The SS are localized electron states in the insu-
lator/semiconductor induced by electrons from the metal side,
whose wave functions decay exponentially from the interface
[23,24] with a decay length of around several angstroms. This
heat conduction channel, due to the interaction of SS electrons
with phonons in the insulator/semiconductor side, which is
denoted as a SS-phonon interaction in this paper, should
be considered in parallel with phonon transmission-mediated
thermal conductance [25,26]. When this channel dominates,
we find that ITC across Pb/Pt/Al/Au-diamond interfaces varies
only slightly among different metals with a large difference in
electronic structures, which agree well with the experimental

results [9,11,21]. This theory also gives a sound explanation
for the recently measured ITC under high pressures [11].

This paper is organized as follows. We present the model to
calculate ITC due to the SS-phonon interaction in Sec. II. This
model is then used to calculate the ITC across Pb/Pt/Al/Au-
diamond interfaces in comparison with experimental data from
the literature in Sec. III. Finally, Sec. IV concludes this paper.

II. MODEL

The SS exist in a very thin region near the inter-
face that should play a crucial role in the energy ex-
change between the electrons in the metals and phonons in
the insulator/semiconductor. To simplify the modeling, we
chose diamond as an example in this study. Our model can
be easily extended to other materials when SS are important.

Figure 1(a) shows the band alignment of a metal-diamond
interface where EF is the Fermi energy, �M is the work
function of metal, Eg is the band gap with E0 as its center, χ is
the electron affinity, �B is the Schottky barrier height, Evac is
the vacuum energy level, and Ec and Ev are the conduction and
valence band edges, respectively. The band bending near the
surface originates from the charge transfer between the metal
and diamond where a p-type diamond with boron doping is
chosen as an example. EF is usually pinned at the surface to
the SS [27].

The temperature of the electrons in SS could be different
from the temperature of electrons near the surface in the metal
due to the existence of interfacial electronic thermal resistance.
In order to simplify the investigation, we neglect here the
difference between these two temperatures since the electronic
thermal resistance is believed to be smaller than the resistance
due to the SS-phonon interaction. The net heat flux from SS
electrons to phonons in the insulator/semiconductor due to the
SS-phonon interaction is given by �Q̇NM , where Te and Tp

are the electron and phonon temperatures, respectively [2,17].
Then the ITC (hK) due to the SS-phonon interaction is defined
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FIG. 2. Calculated ITC across Pb/Pt/Al/Au-diamond interfaces for (a) free phonon modes and (b) localized phonon modes as a function
of EF − E0 for two different values of D1K when Tp = 293 K. The realistic EF − E0 listed in Table I are marked with vertical lines and the
corresponding ITC are shown in Table II.

by

hK = �Q̇NM/�T, �T = Te − Tp � Te,Tp. (1)

�Q̇NM defined in Eq. (1) can be calculated by [19,28]

�Q̇NM = 2π

�

∑
λ,k‖,κ,κ ′,q‖,qz

�ωλ,q‖,qz
|Mλ(q‖,qz)|2

× |I (k′
‖,k‖,κ ′,κ,qz)|2W, (2)

where � is the Planck constant, �ωλ,q||,qz
is the

phonon energy with polarization index λ in the insula-
tor/semiconductor, Mλ(q||,qz) are the scattering matrix ele-
ments, and I (k′

‖,k‖,κ ′,κ,qz) is the form factor. The transition
probability W is given by

W = δ
(
εk||,κ − εk||+q||,κ ′ − �ωλ,q||,qz

)[
fk||,kz

(1 − fk||+q||,κ ′ )

× (
nλ,q||,qz

+ 1
) − fk||+q||,κ ′

(
1 − fk||,kz

)
nλ,q||,qz

]

− δ
(
εk||,kz

− εk||+q||,κ ′ + �ωλ,q||,qz

)[
fk||,kz

(1 − fk||+q||,κ ′ )

× nλ,q||,qz
− fk||+q||,κ ′

(
1 − fk||,kz

)(
nλ,q||,qz

+ 1
)]

. (3)

Here, fk||,κ (Te) = {exp[(εk||,κ − EF)/(kBTe)] + 1}−1 is the
Fermi-Dirac distribution function, where εk||,κ is the electron
energy and kB is the Boltzmann constant, and nλ,q||,qz

(Tp) =
{exp[(�ωλ,q||,qz

)/(kBTp)] − 1}−1 is the Bose-Einstein distribu-
tion function.

The second quantized form of the SS-phonon interaction
Hamiltonian is written as

H =
∑

λ,k||,κ,κ ′,q||,qz

Mλ(q||,qz)I (k′
‖,k||,κ ′,κ,qz)c

†
k||+q||,κ ′ck||,κ

× [
aλ,q||,qz

+ a
†
λ,−q||,−qz

]
, (4)

where c† (a†) and c (a) are the creation and annihilation
operators of electrons (phonons), respectively. In Fig. 1(b),
we show the phonon emission process when the electron is
scattered from state (k||,κ) to state (k′

‖,κ
′). We consider the

phonon modes in the insulator/semiconductor side because SS
mainly exist in a thin region in the insulator/semiconductor.

Several methods have been proposed to calculate SS,
such as electron wave function matching, Green’s function

matching [24], and the self-consistent pseudopotential method
[22]. We use the simplest one-dimensional electron wave
function matching method by considering a periodic potential
V0 cos(gz)(V0 < 0) along the z direction when electrons are
assumed to be free in the x-y plane [24]. g = 2π/(a/2)
is the reciprocal lattice vector of diamond along the (001)
direction with a lattice constant b = a/2. Then the electron
wave function in the band gap of the insulator/semiconductor
is ψk||,κ (r) = S−1/2Beik|| ·ρϕ(κ,z) for z � 0, where S is the
area of the interface and B is a normalization factor. ϕ(κ,z) =
e−κz cos(gz/2 + φ/2), where φ is a phase shift. The positional
coordinate is r = (ρ, z). For a given κ , there are two energy

states, εk||,κ ≈ E0 + �
2k2

||
2m

± |ξ |, where E0 is the center of

the gap and |ξ | =
√

V 2
0 − �

4κ2g2

2m
. We focus our study on

the localized SS electrons which require −|V0| < ξ < |V0|.
The electron wave function in the metal is written as
ψM

k||,kz
(r) = S−1/2Aeik|| ·ρ sin(kzz + η) for z � 0, where A is the

normalization factor, and η is a phase shift. For a given kF, we

have kz =
√

k2
F − k2

|| and k′
z =

√
k2

F − |k|| + q|||2.

The form factor for free phonon modes is then written
as I (k′

‖,k||,κ ′,κ,qz) = BB ′∗ ∫ ∞
0 dzϕ∗(κ ′,z)eiqzzϕ(κ,z). Here,

only the electrons at the insulator/semiconductor side (z > 0)
contribute to the ITC and the contribution from the metal side
is negligible. The reason is that the e-p interaction for z < 0
is merely the conventional e-p interaction in the metal which
does not directly contribute to ITC [29]. One can easily modify
eiqzz in the phonon wave function to sin(qzz) to consider the
localized phonon modes [19]. The detailed expressions of the
form factors for both cases are shown in the Appendix.

TABLE I. Fermi wave vectors, Schottky barrier heights, and
corresponding EF − E0 used in the calculations.

Parameters Pb Pt Al Au

kF(Å
−1

) 1.58 [33] 1.6 [34] 1.75 [33] 1.21 [33]
�B (eV) 2.03 [35] 1.56 [35] 2.0 [35] 1.71 [35]
EF − E0 (eV) −0.71 −1.18 −0.74 −1.03
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TABLE II. Calculated ITC across Pb/Pt/Al/Au-diamond interfaces at room temperature for free and localized phonon modes when
D1K = 3.09 × 109 eV/cm. ITC from DMM and phonon radiation limit, and experimental measured values are listed for comparison. The unit
is [MW/(m2 K)].

ITC Pb Au Pt Al

SS-free phonon 43.3 39.7 41 44.4
SS-localized phonon 64.5 58.3 61.2 65.9
DMM 2 [9] 12 [9] 35 [26] 130 [26]
Radiation limits 2.5 [9] 24 [9] 47 [11] 207 [11]
Experimental data 31 [9], 60 [11] 40 [9], 62 [11] 143 [11] 46 [9], 153 [11], 23–180 [38]

III. RESULTS AND DISCUSSIONS

We now turn to the calculation of ITC due to the interaction
of SS electrons with phonons across metal-diamond interfaces.
We choose |V0| = Eg/2 = 2.74 eV for diamond [30]. We
calculate the SS-phonon interaction due to both acoustic
and optical modes by employing the deformation potentials.
For longitudinal-acoustic (LA) modes, the squared scattering
matrix elements are |MLA(q||,qz)|2 = �D2q/(2V ρ0vl) [31],
where D is the deformation potential constant of the acoustic
phonons, ρ0 is the mass density, vl is the longitudinal sound
velocity, and V is the volume. The transverse-acoustic phonon
modes are considered similarly by using the transverse sound
velocity vt . The optical-phonon scattering with a polar inter-
action is irrelevant since diamond is a nonpolar material. The
squared scattering matrix elements of electron-longitudinal
optical (OP) phonon scattering with a deformation potential
are |MOP(q||,qz)|2 = �(D1K)2/(2V ρ0ωOP) [30], where D1K

is the optical deformation potential constant, and ωOP is the op-
tical phonon frequency. The contributions from the two trans-
verse optical phonon modes are considered similarly. These
parameters of diamond are used: a = 3.567 Å, vl = 1.82 ×
104 m/s, vt = 1.23 × 104 m/s, ρ0 = 3.515 g/cm3, and D =
8.7 eV [32].

Figure 2 shows the calculated ITC across Pb/Pt/Al/Au-
diamond interfaces as a function of EF − E0 when Tp =
273 K. ITC considering both free and localized phonon modes
are shown in Figs. 2(a) and 2(b), respectively. Two different
optical deformation potentials are considered. One is D1K =
2.1 × 109 eV/cm, which comes from transport property mea-

surements [36], and the other is D1K = 3.09 × 109 eV/cm,
which comes from Raman experiments [37]. The Fermi wave
vectors of metals used in the calculation are shown in Table I.
We find that ITC for all four interfaces varies with EF − E0

because the SS and the form factor are energy dependent,
which will be shown later.

For most metal-insulator/semiconductor interfaces, EF is
pinned at the surface to the SS in the band gap [23]. Such a
pinning effect is characterized by the Schottky barrier height
which enables us to approximately deduce the realistic EF −
E0 by �B − Eg/2, as shown in Fig. 1(a). The �B values of
the four interfaces and the corresponding EF − E0 are listed
in Table I. We mark these EF − E0 values with vertical lines
in Figs. 2(a) and 2(b). With the obtained EF − E0, we find
that ITC for Pb/Pt/Al/Au-diamond interfaces varies from 39.7
to 44.4 MW/(m2 K) for free phonon modes and from 58.3 to
65.9 MW/(m2 K) for localized phonon modes, as shown in
Table II. The ITC with localized phonon modes is about 50%
larger than that with free phonon modes. For both cases, the
differences between the different metals are found to be slight
because of the similar Fermi wave vectors and Fermi energies
in the gap. This finding explains well why the ITC approaches
similar values at high pressures [11].

We further compare ITC due to SS-phonon interactions with
a parallel channel of phonon transmission-induced ITC which
is calculated by the diffuse mismatch model (DMM) and by the
phonon radiation limit in Table II. The experimental data are
also shown. For Pb/Au-diamond interfaces, our calculated ITC
is much larger than that from DMM and is in good agreement

FIG. 3. Temperature dependence of ITC across Pb/Pt/Al/Au-diamond interfaces with D1K = 3.09 × 109 eV/cm. (a) When Tp = 293 K,
hK increases with Te because of more participating electron states at higher temperatures. (b) hK dependence on Tp for small �T . The increased
phonon population at higher Tp leads to more energy transfer.
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FIG. 4. (a) Spatial variations of normalized modular square of the SS for different energy ξ . |ψk||,κ (r)|2 decays more significantly when
the energy is at the middle of the band gap than that with the energy near the band edge. (b) Modular square of form factor |I (0,0,κ ′,κ,0)|2 as
a function of ξ and ξ ′. Changes in |I (0,0,κ ′,κ,0)|2 are significant when |ξ ′| ∼ |V0| and |ξ | ∼ |V0| while they are slight when |ξ ′| � |V0| and
|ξ | � |V0|.

with experimental data. This comparison indicates that a SS-
phonon interaction dominates the ITC of these two interfaces
and the contribution from phonon transmission is negligible.
For Pt-diamond interfaces, our calculated ITC is comparable to
that from DMM and the phonon radiation limit and they must
be considered in parallel. The summation of the ITC from
the two channels varies from 76 to 96.2 MW/(m2 K), which
is 50%–65% of the experimental data. For the Al-diamond
interface, our calculated ITC is 30%–50% of that from DMM.
The summation of the ITC from the two channels varies from
174.4 to 195.9 MW/(m2 K), which is close to the measured
data from Ref. [11] and the maximum value in Ref. [38].
This finding implies that both the SS-phonon interaction and
phonon transmission should be considered in parallel [25,26]
for Pt/Al-diamond interfaces.

Figure 3 shows the temperature dependence of ITC
across Pb/Pt/Al/Au-diamond interfaces when D1K = 3.09 ×
109 eV/cm and EF − E0 in Table I are used. Figure 3(a) shows
the dependence of ITC on Te when Tp = 293 K. We find that
hK increases with Te for all metals since more SS electrons
participate in the e-p interaction at higher temperatures. This
is quite different from the e-p coupling constant in bulk
metals, which remains almost constant at room temperature
[19]. Figure 3(b) shows the dependence of hK on Tp. We
find that hK increases with Tp for all interfaces, because the
increased phonon population at higher Tp leads to a stronger
e-p interaction and provides more energy transfer channels.

In order to better understand the dependence of ITC on
Fermi energy and temperature, as shown in Figs. 2 and 3,
we show the energy dependence of |ψk||,κ (r)|2 in Fig. 4(a)
and the energy dependence of normalized |I (k′

‖,k||,κ ′,κ,qz)|2
in Fig. 4(b). Figure 4(a) shows that |ψk||,κ (r)|2 decays
significantly when ξ = 0, where κ reaches its maximum,
2m|V0|/(�2g). When |ξ | increases, the corresponding κ

decreases and finally vanishes when |ξ | = |V0|. Remember
that ±|ξ | results in the same κ , therefore the ξ > 0 case
has a similar trend, which is not shown in this figure. The ITC
highly depends on the square of the modules of the form factor
as shown in Eq. (2). Figure 4(b) shows |I (k′

‖,k||,κ ′,κ,qz)|2
as a function of the energies of initial state (ξ ) and final

state (ξ ′) for a long phonon wavelength limit, qz → 0, when
kz = k′

z = kF. We find that |I (0,0,κ ′,κ,0)|2 in the band gap
changes slightly when the energy is deep inside the band gap,
|ξ ′| � |V0| and |ξ | � |V0|. A significant increase of the form
factor only occurs when |ξ ′| ∼ |V0| and |ξ | ∼ |V0|. The metals
we considered here have similar Fermi energies, which are
about 1 eV below the gap center, as shown in Table I. Therefore,
the form factor with a Fermi energy ξ ∼ ξ ′ ∼ −1 eV should
dominate the ITC.

IV. SUMMARY

In summary, we have calculated the ITC across
metal-insulator/semiconductor interfaces by considering the
electron-phonon interaction between surface state electrons
and phonons in the insulator/semiconductor. The calculated
ITC across Pb/Pt/Al/Au-diamond interfaces is very close
among these metals, even though the electronic structures of
these metals are quite different. The main reason is the pinning
of the Fermi energy in the band gap. This finding explains well
the experimental results obtained by Stoner et al. [9] and by
Hohensee et al. [11].
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APPENDIX: EXPRESSIONS OF FORM FACTORS

For free phonon modes, the square of the modules of
the form factor can be expressed as |I (k′

‖,k||,κ ′,κ,qz)|2 =
|B|2|B ′|2�/16. In the calculation, the normalization factor
B should be determined by matching the electron wave
functions at z = 0. For a semi-infinite metal, we have
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A → √
2/LM and |B| → A|sin η/ cos(φ/2)|. |B| is determined by η and φ, which can be calculated by solving [22]

eiφ = cos φ + i sin φ = (
ξ + i

√
V 2

0 − ξ 2
)
/V0, (A1a)

tan η = −2kz

g tan
(

φ

2

) + 2κ
. (A1b)

Here, φ = 2nπ + tan−1(
√

V 2
0 − ξ 2/ξ ) for ξ � 0 and φ = (2n + 1)π + tan−1(

√
V 2

0 − ξ 2/ξ ) for ξ > 0, where n is an arbitrary

integer. |B ′| and φ′ can be calculated similarly by changing ξ to ξ ′.
We note κ̃ = κ + κ ′, γ1 = q2

z + κ̃2 − g2, γ2 = gκ̃ , γ3 = q4
z + κ̃4 − g2κ̃2 − g2q2

z + 2q2
z κ̃

2, and γ4 = 2gκ̃3 + 2gq2
z κ̃ . � =

�1 + �2 + �3 + �4 can be expressed in terms of

�1 = 1

(qz + g)2 + κ̃2
+ 1

(qz − g)2 + κ̃2
+ 2

q2
z + κ̃2

, (A2a)

�2 = 2γ1 cos(φ + φ′) − 4γ2 sin(φ + φ′)
γ 2

1 + 4γ 2
2

, (A2b)

�3 = 2 cos(φ − φ′)
q2

z + κ̃2
, (A2c)

�4 = 4

[
γ3

(
q2

z + κ̃2
) + γ2γ4

]
(cos φ + cos φ′) − [

γ4
(
q2

z + κ̃2
) − γ2γ3

]
(sin φ + sin φ′)

γ 2
3 + γ 2

4

. (A2d)

For localized phonon modes, |M(q||,qz)|2|I (k′
‖,k||,κ ′,κ,qz)|2 in Eq. (2) can be rewritten in two parts:

|M(q||,qz)|2
Q2

{
q2

|||Im[I (k′
‖,k||,κ ′,κ,qz)]|2 + q2

z |Re[I (k′
‖,k||,κ ′,κ,qz)]|2

}
, (A3)

where

|Im[I (k′
‖,k||,κ ′,κ,qz)]|2 = |B|2|B ′|2�||/16, (A4a)

|Re[I (k′
‖,k||,κ ′,κ,qz)]|2 = |B|2|B ′|2�z/16. (A4b)

�|| = q2
z (�||,1 + �||,2 + �||,3 + +�||,4) can be expressed in terms of

�||,1 = 2 cos(φ + φ′)
(
γ 2

1 − 4γ 2
2

) − 8γ1γ2 sin(φ + φ′)
(
γ 2

1 + 4γ 2
2

)2 , (A5a)

�||,2 = 2[cos(φ − φ′) + 1](
q2

z + κ̃2
)2 , (A5b)

�||,3 = 2(
γ 2

1 + 4γ 2
2

) , (A5c)

�||,4 = 8 cos
(

φ−φ′
2

)[
γ1 cos

(
φ+φ′

2

) − 2γ2 sin
(

φ+φ′
2

)]
(
γ 2

1 + 4γ 2
2

)(
q2

z + κ̃2
) , (A5d)

and �z = �z,1 + �z,2 + �z,3 + �z,4 can be expressed in terms of

�z,1 = 2 cos(φ + φ′)
[(

γ 2
1 − 4γ 2

2

)
(κ̃2 − g2) + 8γ1γ

2
2

]
(
γ 2

1 + 4γ 2
2

)2 + sin(φ + φ′)4γ2
[
γ 2

1 − 4γ 2
2 − 4γ1γ2(κ̃2 − g2)

]
(
γ 2

1 + 4γ 2
2

)2 , (A6a)

�z,2 = 2κ̃2[cos(φ − φ′) + 1](
q2

z + κ̃2
)2 , (A6b)

�z,3 = 2(g2 + κ̃2)(
γ 2

1 + 4γ 2
2

) , (A6c)

�z,4 = 8 cos
(

φ−φ′
2

)
κ̃
[
(2γ2g + γ1κ̃) cos

(
φ+φ′

2

) + (γ1g − 2γ2κ̃) sin
(

φ+φ′
2

)]
(
γ 2

1 + 4γ 2
2

)(
q2

z + κ̃2
) . (A6d)
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