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Within a Kubo formalism, we study dc transport and ac optical properties of 3D Dirac and Weyl semimetals.
Emphasis is placed on the approach to charge neutrality and on the differences between Dirac and Weyl materials.
At charge neutrality, the zero-temperature limit of the dc conductivity is not universal and also depends on the
residual scattering model employed. However, the Lorenz number L retains its usual value L0. With increasing
temperature, the Wiedemann-Franz law is violated. At high temperatures, L exhibits a new plateau at a value
dependent on the details of the scattering rate. Such details can also appear in the optical conductivity, both in
the Drude response and interband background. In the clean limit, the interband background is linear in photon
energy and always extrapolates to the origin. This background can be shifted to the right through the introduction
of a massless gap. In this case, the extrapolation can cut the axis at a finite photon energy as is observed in some
experiments. It is also of interest to differentiate between the two types of Weyl semimetals: those with broken
time-reversal symmetry and those with broken spatial-inversion symmetry. We show that, while the former will
follow the same behavior as the 3D Dirac semimetals, for the zero magnetic field properties discussed here, the
latter type will show a double step in the optical conductivity at finite doping and a single absorption edge at
charge neutrality. The Drude conductivity is always finite in this case, even at charge neutrality.
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I. INTRODUCTION

The last ten years have seen a remarkably rapid develop-
ment of an entirely new direction in condensed matter physics,
that of so-called Dirac materials and the related area of topo-
logical insulators. The origins of this novel field reach back
to 1947 when Wallace provided the low-energy dispersion of
two-dimensional (2D) graphene [1]. Decades later, it was the
seminal work of Semenoff [2] and others which recognized that
the 2D honeycomb lattice could provide a solid state analog for
2D massless Dirac fermions. This provided the possibility for
a condensed matter manifestation of phenomena previously
discussed in the context of high-energy physics [3,4]. The
subsequent isolation of graphene [5,6] and explosion of
experimental results [3,4] verifying its exotic phenomena,
have proved one of the most exciting developments of the
last decade. Such success has emboldened scientists to seek
further variations on the theme of Dirac materials. Initial
investigations focused on 2D systems, proposing adaptations
such as strain, buckling, etc., and expanding to bilayers and
other configurations.

A parallel development, also based on the honeycomb lat-
tice, was the suggestion by Kane and Mele of a 2D topological
insulator (TI) phase [7,8] induced by a spin-orbit energy gap,
which could give rise to a quantum spin Hall effect. Insulating
in the bulk, these materials harbour conducting edge states.
Other researchers furthered these ideas to examine the effect
of spin-orbit coupling in three-dimensional (3D) materials to
produce 3D TIs [9–11]. These also house insulating bulk
states but with Dirac-like surface states [9–11]. This led to
the discovery of a host of materials providing evidence for
these new phases of matter. Key to this development has
been the power of density functional theory (DFT) to provide
predictions of materials that would manifest TI and Dirac states

of matter (see, for example, Refs. [12–16]). The success of
these methods, coupled with the experimental realization of
these materials and confirmation of the Dirac physics, has
given rise to an overwhelming amount of research in a very
short time.

With the success of the graphene field and the 3D TI
development with its attendant 2D Dirac surface state, it
became natural to contemplate the possibility of a 3D analog
to the 2D Dirac system. This implies a dispersion, which
is linear at low energy in all three k-space directions with
particle and hole states above and below a node. The term
3D Dirac semimetal (DSM) is now being used to describe
such a state and, near the Dirac point, it is characterized
by a 4 × 4 Hamiltonian [17,18]. For the DSM, there exists
a twofold degeneracy in the conduction and valence bands.
This degeneracy can be lifted in a crystal which is noncen-
trosymmetric (spatial-inversion symmetry breaking) or has
time-reversal symmetry breaking facilitated by magnetism,
for example [19,20]. In the former, the degenerate Dirac cone
is split into two cones that are shifted in energy relative to
each other. In the latter case, the two cones are shifted in k

space. The two nondegenerate cones are referred to as Weyl
cones with Weyl points due to their low-energy behavior
mapping to a 2 × 2 Weyl Hamiltonian instead of a Dirac
Hamiltonian. As they result from the splitting of a Dirac cone,
Weyl cones always come in pairs of nondegenerate cones of
opposite chirality [21]. This type of material is termed a Weyl
semimetal (WSM). While the bulk WSM has a low-energy
linear dispersion about the Weyl point, the surface of the
WSM is predicted to have Fermi arcs whose tips are linked,
through projection, to the two bulk Weyl points of opposite
chirality. These materials are expected to demonstrate exotic
properties such as large negative magnetoresistance in the
presence of parallel electric and magnetic fields due to the
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chiral anomaly [22,23]. Hence there has been considerable
excitement and intense research to find real materials which
demonstrate the behavior of 3D WSMs and also 3D DSMs.

Over this last year, experimental realizations of 3D DSMs
have been announced in Cd3As2 [24–27] and Na3Bi [28,29],
with other related possibilities discussed in quasicrystals [30],
HgCdTe [31] and other systems [32]. WSMs have now been
reported in TaAs [33–37] and NbAs [38] for WSMs with
broken spatial-inversion symmetry and YbMnBi2 for a WSM
with broken time-reversal symmetry [39]. Other candidate
systems for WSMs might be TI heterostructures [40], py-
rochlore irridates [21], HgCr2Se4 [41], etc. Indeed, angle-
resolved photoemission spectroscopy (ARPES) experiments
are confirming the presence of the linear dispersions and the
existence of Fermi arcs. There is also work on the cyclotron
orbits that result from these surface state arcs [42,43], which
have spin texture [44]. Very recently, a flurry of activity has
occurred surrounding the negative magnetoresistance expected
and observed due to the chiral anomaly [45–54]. Clearly, these
are exciting developments and the field is on the edge of
a huge outpouring of new developments in both theory and
experiment. In this context, we consider predictions for dc
transport measurements and finite frequency conductivity in
zero magnetic field with application to both DSMs and WSMs.

In the realm of dc and ac magnetoelectrical transport,
several theoretical works have already appeared, covering a
range of topics from weak to strong disorder, different types
of impurity scattering including charge impurity scattering,
electron screening, and so forth. For further information, the
reader is directed to Refs. [20,23,55–64]. Here, we only study
the case of zero magnetic field and follow the lead of Lundgren
et al.[17] by examining three models for different types of
impurity scattering to determine their effect on longitudinal
electrical transport properties, considering a single DSM or
WSM cone. Specifically, we consider: a constant scattering
rate, the weak scattering (Born) limit, and the case of charge
impurities. We calculate the dc and ac conductivities, the
thermal conductivity, the Seebeck coefficient, and the Lorenz
number of the Wiedemann-Franz law. We contrast the results
obtained from the Kubo formula with those of the Boltzmann
equation. Most of the literature has taken the Boltzmann
approach; we find that the Kubo formulation provides an extra
term beyond the Boltzmann result which becomes significant
in the limit of μ → 0 for μ < (�,T ), where μ is the chemical
potential measured from the nodal point, T is the temperature,
and � is the impurity scattering rate. We find specific signatures
of this extra term in these properties and are able to provide
analytical results for several limits.

The dynamical conductivity is of particular interest given
that a small amount of preliminary theoretical work has
been done [40,56,65–67] emphasizing the linear in photon
frequency interband background and the modification in a
magnetic field. Likewise, experiments on various materials
have been observing this linear conductivity in quasicrys-
tals [30], ZrTe5 [68], Kane fermions in Hg-Cd-Te [31], the
pyrochlore irridate Eu2Ir2O7 [69], and WSM TaAs [70]. This
gives impetus to provide a more detailed description of the
optical conductivity for DSMs and WSMs. A feature in some
of the data is a nonzero positive-frequency intercept in the
linear conductivity which is difficult to explain in the simple

theory. Consequently, we consider the case of a massless
gapped DSM to illustrate a way of obtaining this feature in
the conductivity. Such a model was proposed by Benfatto
et al. [71,72] for graphene to explain some anomalous optical
data in the literature [73]. More recently, this model has
been proposed in 3D for a system with a Hubbard U Mott
gap [74]. We find such a model more effective at explaining
the data in 3D DSMs. As a final contribution to the WSM
literature, we provide the optical conductivity that would be
expected for a WSM which is formed through the breaking of
spatial-inversion symmetry. In this case, there will be two steps
in the linear interband conductivity, which is distinct from the
conductivity of a WSM with time-reversal symmetry breaking,
and therefore would provide a clear signature of which type of
WSM one has, i.e., the type with the cones separated in energy
versus that with a separation in momentum.

The structure of our paper is as follows. In Sec. II A,
we discuss the dc results for the electrical conductivity,
examining the effects of three models for impurity scattering
and contrasting the Kubo formula [75] result with that from the
Boltzmann approach [17,76–80]. Temperature dependence is
also included. Subsection B discusses the Lorenz number and
the Wiedemann-Franz law, along with the Seebeck coefficient
S. The detailed results for S and the thermal conductivity
κ are given in Appendix B, while Appendix A provides the
Kubo approach to the optical conductivity at any frequency.
In Sec. III, we treat the ac conductivity for various impurity
models, including a look at the optical spectral weight variation
with temperature. This section pertains to 3D DSMs and 3D
WSMs with time-reversal symmetry breaking. In Sec. IV, we
examine the differences in the optical conductivity that would
occur for the WSM with broken-spatial inversion symmetry
where clear signatures of this state would occur. Finally,
continuing on the theme of optical conductivity, the effect
of a massless gap on the conductivity of a DSM/WSM is
presented in Sec. V, motivated by the experiments which
display deviations from the simple theory. Both the dc and
ac conductivity are discussed for a constant scattering rate.
Our final conclusions are found in Sec. VI.

II. DC TRANSPORT

In the following, we shall discuss results for a single Dirac
cone in 3D described by a low-energy Hamiltonian of the form

Ĥ = �vF σ · k, (1)

where k = (kx,ky,kz) is the 3D wave vector, σ = (σx,σy,σz)
is the 3D vector of Pauli matrices and vF is the Fermi velocity.
This Hamiltonian gives the energy dispersion εk = ±�vF |k|.
To include more valleys through a valley degeneracy gv or
a spin degeneracy gs , a multiplicative degeneracy factor of
g = gsgv is all that is needed for modifying the results. For
the properties calculated in this paper, this will apply for
both DSMs and WSMs with time-reversal symmetry breaking.
Modification to these results for WSMs with spatial-inversion
symmetry breaking will be discussed later as a superposition
of the DSM results (see Sec. IV).
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A. Conductivity

In the one-loop approximation, the real part of the dc
conductivity obtained from the Kubo formula [Eq. (A12)] is

σdc = e2

6π2�3vF

∫ ∞

−∞
dω

(
−∂f (ω)

∂ω

)
ω2 + 3�(ω)2

2�(ω)
, (2)

where f (ω) = [exp([ω − μ]/T ) + 1]−1 is the Fermi function
(with the Boltzmann constant kB = 1). This expression applies
to any energy-dependent impurity scattering rate model �(ω).
For simplicity, we have neglected the corresponding real part
of the self-energy, which is related to its imaginary part [�(ω)]
through Kramers-Kronig transformation. At zero temperature,
the conductivity reduces to

σdc = σ0
μ2 + 3�(μ)2

�(μ)
, (3)

where σ0 ≡ e2/(12π2
�

3vF ) and μ is the chemical potential
which describes charge doping away from the neutrality point.
The first term in Eq. (3) is recognized as the result one would
find via the Boltzmann equation approach. It is proportional to
the electronic density of states N (ω) at the Fermi energy (∝ μ2

in 3D) and to 1/�(μ), the scattering time at ω = μ. We stress
that this term has the form of the single contribution to σdc

obtained in the work of Lundgren et al. (Ref. [17]) based on a
Boltzmann equation approach to which we wish to compare.
Later when we consider other dc transport coefficients, we will
again compare specifically with the results of Ref. [17], which
we will refer to as the Boltzmann term. Returning to Eq. (3),
the second term goes like the scattering rate itself rather than
its inverse and is not part of the work of Ref. [17]. If this
second term is neglected and the scattering rate is interpreted
as a transport scattering rate, the remaining term is identical
in both the Kubo and Boltzmann approaches. Here, we will
consider three possible impurity models. First, we take �(ω)
to be independent of energy (i.e., �(ω) = �0 = constant). The
second case is the weak-scattering model [17], which can be
treated in first-order perturbation theory and gives a scattering
rate proportional to the density of states. That is, �(ω) = �1ω

2,
with constant �1 in units of one over energy. Finally, we
consider the long-range Coulomb impurity model described in
the work of Burkov et al.[55] and used by Lundgren et al.[17]
to describe transport in Dirac materials within the Boltzmann
equation formulation. In this case, it is envisaged that the
number of charge impurities is equal to the doping (n) away
from the Dirac point. Consequently, �(ω) is proportional to
n ∝ μ3 giving �(ω) = �2μ

3/ω2, where �2 is a dimensionless
constant.

The constant scattering rate model is phenomenological
in nature and makes no assumption about the microscopic
origin of the impurity scattering involved. It is important and
is extensively used in discussions of transport and optical
properties as it often captures much of the essential underlying
physics. Nonetheless, as our work will show, the observation of
deviations from this model can provide valuable information
on the type of the impurity centers involved.

The long-range Coulomb impurity model was elaborated
upon in the work of Burkov et al.[55]. The idea is that
each impurity center is charged with charge transferred to
the semimetal. In this case, which can actually be realized
in some semimetals, the number of impurity centers and the

doping are the same. This model was further employed in the
Boltzmann equation approach to the transport properties of
Dirac-Weyl semimetals described in the work of Ref. [17] with
which we will want to compare. While this specific model is
important in its own right, here it also serves to illustrate how it
can provide differences from the very simplified constant rate
phenomenological model as well as from weak scattering in the
Born approximation. In this last case, there is no compelling
microscopic reason for relating the number of impurities to
the number of dopants. Studying both models independently
covers a sufficient range of possible impurity models to give
the reader a good idea of how such details can affect transport
and optical properties.

For a constant scattering rate, the second term of Eq. (3)
(proportional to �0) dominates the approach to charge neutral-
ity which corresponds to μ → 0. This is shown in Fig. 1(a).
The solid black line gives the conductivity in units of σ0�0 as a
function of μ/�0. This result is to be compared with the open
blue circles which give σdc as a function of μ when only the
first term in Eq. (3) is used (Boltzmann limit). For μ → 0,
σdc/(σ0�0) takes a value of 3 while using the Boltzmann
equation alone would give zero. Note that the dc conductivity
at the Dirac point is not universal as it would be in graphene
but is directly proportional to �0. For finite scattering, it is
always finite while the Boltzmann approach gives zero.

Weak scattering is considered in Fig. 1(b). In contrast to
�(ω) = �0, as the Dirac point is approached in the limit μ →
0, it is the Boltzmann term of Eq. (3) that dominates and
gives the charge neutral value of the conductivity (σ0/�1).
Comparing the solid black curve (which contains both terms)
with the open blue circles of the Boltzmann alone, we see that
it is the second term of Eq. (3), which controls the deviation
away from μ = 0 and gives a μ2 correction to the μ = 0 value.
The dashed red curve gives the μ dependence of the scattering
rate in the normalized units indicated on the right vertical
axis. For the constant scattering rate model, the approach to
the Dirac point falls in the region where �(μ)/μ > 1 (blue
shaded region), while for the weak scattering case, it occurs
when �(μ)/μ < 1 (green shaded region). This is consistent
with our finding that the Boltzmann approach gives the correct
limit at the Dirac point in the latter model but not in the
former. The Boltzmann description is expected to apply when
�(μ) < μ and not when �(μ) > μ.

A different pattern emerges when long-range impurities
are considered [shown in Fig. 1(c)]. In that case, the condition
�(μ) < μ always applies as we expect �2 � 1. In this model,
the conductivity (solid black line) is linear in μ and the dc
value at μ = 0 is indeed zero. Also, the second term in Eq. (3)
is never important; it simply changes the slope of the black
line by a small amount.

To summarize at this point, it is clear from these considera-
tions that the Kubo formula approach to the dc conductivity can
give significant corrections to the usual Boltzmann method.
Also, the different scattering models can drastically affect the
approach to the Dirac point (both the value of σdc at μ = 0 and
the power law in μ with which the asymptotic value is reached
for μ → 0). For the long-range Coulomb model, the impurity
scattering rate is constrained by identifying the number of
scattering centres with the number of holes described by a
negative value of μ. In the other models, no such constraint
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FIG. 1. Normalized universal dc conductivity as a function of
normalized μ for three scattering models: (a) constant scattering rate,
(b) weak-scattering model, and (c) long-range Coulomb impurities.
The full results (solid black) are contrasted with those obtained
through the Boltzmann approach (blue open circles). The �(μ) > μ

region is shaded blue while μ > �(μ) is colored green. The scattering
rate as a function of μ (dashed red) is identified on the right y axis.
The normalized curves are universal through our choice of scaling of
the two axes.

is imposed; therefore, from here on, we will present results
mainly for the first two models, which we denote model I
(�(ω) = �0) and model II (�(ω) = �1ω

2).
Returning to Eq. (2), the finite temperature conductivity is

given by

σdc = σ0

∫ ∞

−∞
dω

1

4T cosh2
(

ω−μ

2T

)[
ω2

�(ω)
+ 3�(ω)

]
. (4)

This gives [see Eqs. (B5), (B9), and (B12)]

σdc = σ0

[
3�0 + 1

�0

(
μ2 + 1

3
π2T 2

)]
(5)

and

σdc = σ0

[
3�1

(
μ2 + 1

3
π2T 2

)
+ 1

�1

]
(6)

for models I and II, respectively. These properly reduce to the
results of Fig. 1 when T = 0. For finite μ and T , the correction
to the Dirac limit (charge neutrality) goes like μ2 and T 2,
respectively. It is of interest to compare these results with the
equivalent case of graphene. Graphene is the 2D version of a
3D Dirac Hamiltonian. Results for the constant scattering rate
�(ω) = �0 have been given by Carbotte et al. [75]. They find

σ 2D
dc = 4e2

πh

[
1 + 3

4

(
μ

�0

)2]
(7)

for T = 0 and finite μ, and

σ 2D
dc = 4e2

πh

[
1 + π2

9

(
T

�0

)2]
(8)

for μ = 0 and finite T . In contrast to the 3D system, the limit
T → 0 or μ → 0 leads to a universal minimum conductivity
which is independent of the scattering rate and equal to
4e2/(πh). For the constant scattering rate in 3D, we get
σdc(T → 0) = 3σ0�0 where �0 does not drop out. However,
σdc(T → 0)/�0 is universal for a given vF , independent of the
scattering rate.

Results for the temperature dependence of the conductivity
are presented in Fig. 2. Models I and II are shown in frames (a)
and (b), respectively. Again, scalings have been introduced on
both axis so that a single curve labeled by μ0/�0 [frame (a)] or
μ0�1 [frame (b)] applies to any value of �0 or �1, respectively.
In frame (a), the dotted green curve is for μ0 = 0. Solid black
is for μ0/�0 = 0.5, dashed red corresponds to μ0/�0 = 1,
and dash-dotted blue is for μ0/�0 = 1.5. We also present
the open-circle curves for when only the Boltzmann term in
Eq. (5) is used (i.e., the last term which is ∝ 1/�0). The
colors are set to match the same μ0/�0 values as the full
result. The Boltzmann curves are displaced downward by a
constant value of 3. Note that the conductivity can decrease
with increasing T , reach a minimum, and after this, start to
rise as T 2. The occurrence of a minimum is entirely due to
the temperature dependence of the chemical potential μ(T ),
which reflects the energy dependence of the underlying density
of states in a DSM which goes like ω2. This is illustrated in
Fig. 3, which shows how μ(T ) is reduced from its T = 0 value
of μ0 as the temperature rises. This behavior is determined by
the conservation of particle number

n =
∫ ∞

0
N (ω)[f (ω) − f (ω + 2μ)]dω, (9)

where

N (ω) = ω2

2π2�3v3
F

, (10)
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and can be captured by the simple analytic expression
(dashed/dotted red curve in Fig. 3)

μ(T ) =
{

μ0 − π2

3
T 2

μ0
, T � μ0

μ3
0

π2T 2 , T � μ0

. (11)

This ensures that the number of dopant charges remains
constant. If the density of states were constant, there would
be no such shift in μ. There is particle-hole symmetry for
the thermal factor which reduces the occupation below μ in
the same proportion as it increases it above μ. To conserve
particles, it is the product of the density of states times the
thermal factor which enters. This is increased more above μ

than it is decreased below (see Fig. 3). If we leave this effect
out, and take μ(T ) = μ0 for the dash-dotted blue curve of
Fig. 2(a), we get the dotted blue curve which shows no dip
as a function of T but instead, increases monotonically. The
situation is similar for weak scattering shown in frame (b). It
is important to note that in this model, the Boltzmann-only
solution (black open circles) is constant for all T and μ and is
drastically different than the full result.

B. Wiedemann-Franz law

We now turn to a discussion of the thermal conductivity (κ),
thermopower (S, or Seebeck coefficient) and Lorenz number
[L = κ/(T σdc)]. The necessary Kubo formulas for S and κ

are given in Appendix B. After some straightforward algebra,
we arrive at the formula for the Lorenz number. For model I
(�(ω) = �0), we find [Eq. (B10)]

L = L0

[
3
(
15�2

0 + 5μ2 + 7π2T 2
)

5
(
9�2

0 + 3μ2 + π2T 2
)

− 12μ2π2T 2(
9�2

0 + 3μ2 + π2T 2
)2

]
, (12)

where L0 = π2/(3e2). For model II (�(ω) = �1ω
2), from

Eq. (B15),

L = L0

{
5 + 3�2

1(5μ2 + 7π2T 2)

5
[
1 + �2

1(3μ2 + π2T 2)
]

− 12π2�4
1μ

2T 2[
1 + �2

1(3μ2 + π2T 2)
]2

}
. (13)

In both cases, the second term in the bracket of the expression
is S2/L0 (see Appendix B). We have verified that when
the terms proportional to �0 and �1 in Eqs. (12) and (13),
respectively, are dropped, these equations reduce to the results
found in Ref. [17], which were based on a Boltzmann equation
approach.

Results for the thermopower are given in Figs. 4(a) and
4(b) for models I and II, respectively. In both cases, we
show a family of curves labeled by three values of μ0/�0 or
μ0�1 and the temperature dependence of μ is included in the
calculation. For comparison, we also show the results when
μ is kept temperature independent (dotted curves). Clearly,
the temperature dependence of μ is essential to obtaining
quantitative results. This has a strong effect on the position
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FIG. 4. Seebeck coefficient as a function of T for the (a) constant-
and (b) weak-scattering models. An increase in intensity is seen as μ0

increases. The importance of including the temperature dependence
of μ (which was done for the solid, dashed and dot-dashed curves) is
emphasized by the large differences in the constant μ curves (dotted).

and sharpness of the peaks and particularly on the rapidness
with which it decays for increasing T .

In Fig. 5, we present results for the Wiedemann-Franz law.
The Lorenz number, normalized to L0 is plotted as a function
of T in our usual units, chosen to make the family of curves
labeled by μ0 independent of �0 or �1. Frame (a) displays the
results for a constant scattering rate and frame (b), for weak
scattering. In all cases, regardless of the value of μ0 or the
type of scattering, L starts at L0 when T = 0 and rises to
a value of 4.2L0 as T increases. It is important to note that
the temperature dependence of μ also plays an important role
in determining the rise to 4.2L0. This is seen in Fig. 5 by
comparing the full result to the case when μ(T ) = μ0 (dotted
curves). Differences can be large.

The results in Fig. 5 can be understood by examining
Eqs. (12) and (13). Firstly, at T = 0, the thermopower cor-
rection to the Wiedemann-Franz law (second term) vanishes
and we get

L = L0

(
3�2

0 + μ2

3�2
0 + μ2

)
= L0, (14)

µ
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µ
0
/Γ0=1
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0
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µ
0
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µ
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Γ
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0
Γ

1
=10

(a)

(b)

FIG. 5. Lorenz number as a function of T for the (a) constant- and
(b) weak-scattering models. In all cases, T = 0 returns the familiar
value L0 = π 2/(3e2). The large-T limit is L = 4.2L0. The rise to
this limiting value shifts to higher T for larger μ0. Again, neglecting
the T -dependence of μ has a qualitative effect on the results (dotted
curves).

for �(ω) = �0, and

L = L0

(
3�2

1μ
2 + 1

3�2
1μ

2 + 1

)
= L0, (15)

for �(ω) = �1ω
2. These reduce to L0 regardless of the

scattering parameter or chemical potential. Further, when T

becomes the dominant scale, the second terms of Eqs. (12)
and (13) can be dropped as they go like 1/T 2 and we are left
with

L = 21

5
L0 = 4.2L0 (16)

in both models.
It is also interesting to note that the numerators of the

second terms of Eqs. (12) and (13) have different origins.
For model I [Eq. (12)], it comes entirely from the Boltzmann
contribution. For model II [Eq. (13)], it arises due to the
correction piece proportional to �1 rather than the 1/�1 term
of Boltzmann theory. The first term in the Lorenz ratio, of
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FIG. 6. Lorenz number as a function of T calculated from
the Boltzmann equation. Three models are considered: constant-
scattering, weak-scattering, and long-range Coulomb impurities. As
expected, the T = 0 limit is L0 = π 2/(3e2). The large-T limit is
different for all three models; it is L = 4.2L0, L0, and 9.49L0,
respectively.

course, has contributions from both as does the dc conductivity
denominator of the second terms in Eqs. (12) and (13). If
we retain only the Boltzmann contribution, we obtain Fig. 6.
Now, Eq. (13) gives L = L0 for all T (dashed red). It is
clearly the non-Boltzmann piece that provides the temperature
dependence of L for weak scattering. For constant impurity
scattering, the rise to 4.2L0 is seen even in the Boltzmann
approach (solid black). Returning to the long-range Coulomb
impurity model, we find that the pure Boltzmann approach
gives

L = L0

[
1 + 42

5 π2(T/μ)2 + 31
7 π4(T/μ)4

1 + 2π2(T/μ)2 + 7
15π4(T/μ)4

− 3

π2

(
4μ

T
B

)2
]
,

(17)

where

B =
1
3π2(T/μ)2 + 7

15π4(T/μ)4

1 + 2π2(T/μ)2 + 7
15π4(T/μ)4

. (18)

The T -dominated limit of Eq. (17) is particularly interesting.
It gives

L = 9.49L0. (19)

This yields a different plateau in the Lorenz ratio. Numerical
results are shown in Fig. 6 (dash-dotted blue). Clearly, in the
Boltzmann approach, the three scattering models give three
different saturated values at high T .

III. AC CONDUCTIVITY

The general formula for the absorptive part of the dynamical
conductivity is given in Appendix A. In particular, the intra-
and interband contributions for any scattering model are given
by Eqs. (A8) and (A9), respectively. For a constant �(ω) = �0,

we find

σ IB
xx (	) = e2

3π2�3vF

∫ ∞

−∞
dω

f (ω) − f (ω + 	)

	

× �0
(
ω2 + (ω + 	)2 + 2�2

0

)
4�2

0 + (2ω + 	)2
(20)

and

σ D
xx(	) = e2

6π2�3vF

∫ ∞

−∞
dω

f (ω) − f (ω + 	)

	

× �0
(
ω2 + (ω + 	)2 + 2�2

0

)
4�2

0 + 	2
(21)

for the inter- and intraband components, respectively. In the
clean limit (�0 → 0), these simplify greatly and analytic
results can be obtained:

σ IB
xx (	) = e2

24π�3vF

[
f

( − 	
2

) − f
(

	
2

)
	

]
	2

= e2

24π�3vF

	
sinh(β	/2)

cosh(βμ) + cosh(β	/2)
, (22)

where β = 1/T , and

σ D
xx(	) = e2

6π�3vF

δ(	)
∫ ∞

−∞

(
−∂f (ω)

∂ω

)
ω2

= e2

6π�3vF

δ(	)

(
μ(T )2 + π2

3
T 2

)
. (23)

It is important to connect these results for σ IB
xx (	) and σ D

xx(	)
obtained in the clean limit with our previous results for the
dc conductivity of Eq. (5). In deriving the interband and in-
traband contributions to the dynamical conductivity [Eqs. (22)
and (23), respectively], we have kept only the leading term as
�0 → 0, which goes like 1/�0. Effectively, we have dropped
the first term in Eq. (5), which is 3�0σ0 and is only important
if both μ and T are zero. Therefore only the Boltzmann terms
are retained. Clearly, as 	 → 0, the interband contribution
σ IB

xx (	 → 0) = 0 and the intraband component σ D
xx(	 → 0) =

(σ0/�0)(μ2 + π2T 2/3) which agrees with Eq. (5). Here, we
have replaced the Dirac δ function in Eq. (23) by a Lorentzian
of width 2�0 and taken the dc limit 	 → 0 before considering
the clean limit �0 → 0 and retaining only the leading term
∝ 1/�0.

The optical spectral weight under the Drude is defined as∫ ∞

0+
σ D

xx(	)d	 ≡ WD(T ,μ)

= e2

12π�3vF

(
μ(T )2 + π2

3
T 2

)
(24)

and depends on both the chemical potential and temperature.
In general, the chemical potential has a T dependence. At low
temperature, it is given by the approximate expression [see
Eq. (11)]

μ(T ) = μ0

[
1 − π2

3

(
T

μ0

)2]
, (25)
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where μ0 is its zero-temperature value. Therefore, in this limit,

WD(T ,μ) = e2

12π�3vF

(
μ2

0 − π2

3
T 2 + π4

9

T 4

μ2
0

)
, (26)

so that WD(T ,μ) will first decrease as T increases. For large
T ,

μ(T ) = μ3
0

π2T 2
(27)

and

WD(T ,μ) = e2

12π�3vF

(
μ6

0

π4T 4
+ π2

3
T 2

)
. (28)

Therefore, in the large T limit, WD(T ,μ) will increase as T 2.
The corresponding effect has been noted in experiments on
graphene [81] where an optical pumping terahertz technique
was used and the optical spectral weight of the Drude was
obtained over a large T interval. They saw the initial decrease
of spectral weight as T is increased out of T = 0. The expected
trend towards linearity in T for 2D, which is predicted by
theory [82], was observed. There is also preliminary data that
bares on this issue in DSMs. Examples include the optical work
by Sushkov et al.[69] in the pyrochlore iridates Eu2Ir2O7, Chen
et al.[68] in ZrTe5 and Xu et al.[70] in TaAs.

In Fig. 7, we show results for the interband contribution
to the conductivity given by Eq. (22) at various temperatures.
Frame (a) displays μ0 = 0, while frame (b) contains results
for μ0 = 1 meV. In frame (a), solid black corresponds to T =
0.01 meV, dashed red to T = 0.1 meV, dash-double-dotted
purple to T = 0.25 meV, dash-dotted blue to T = 1 meV and
double-dash-dotted green to T = 1.5 meV. At low temperature
(black curve), we retain the expected linear behavior since
tanh(β	/2) → 1 for β → ∞ in Eq. (22). As T increases, the
low 	 region of the curve is rapidly depleted due to the transfer
of spectral weight from the interband to the intraband. This is
a manifestation of the reduction of interband transitions due
to Pauli blocking in the conduction band and the reduction in
the probability of occupation in the valence band. In addition,
the linear behavior is only recovered at values of 	 an order of
magnitude greater than T (see the dash-double-dotted purple
curve). For the two higher T values shown, linearity is not
observed as it occurs for 	 much greater than shown here. A
similar scenario is seen in frame (b) where μ0 = 1 meV. Again,
several T values are shown: 0.01, 0.1, 1, and 1.5 meV which
are colored the same as in the upper frame. For low T , the
solid black curve displays a clear cutoff at 	 = 2μ as expected
from Eq. (22) where the quotient of hyperbolic trigonometric
functions reduces to the Heaviside step function �(	 − 2μ).
This sharp rise is quickly smeared as T increases. Even for
T = 1 meV (dash-dotted blue), the cutoff is indiscernible.
The inset of Fig. 7(b) shows the clean limit as a function of
	/T for various values of μ/T . Clearly, the sharpness of the
step up increases as μ/T becomes larger. Finally, we note
that the dotted lines in frame (b) correspond to μ being held
temperature independent. The colors are set to match those of
the corresponding T values. This does not change the main
qualitative features.

It is clear from our discussion that the optical spectral
weight under the Drude and in the interband transitions are

μ0=0 meV

σ xx
(e

2 /[
3 v F

] m
eV

)
IB

Γ(ω)=Γ0→0

σ xx
(e

2 /[
3 v F

] m
eV

)
IB

μ0=1 meV
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T=1.5 meV
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Ω/T
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/T

 (e
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])

IB

0 806040200
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μ/T=15
μ/T=25
μ/T=40

(a)

(b)

FIG. 7. Interband conductivity for �(ω) = �0 → 0. (a) For μ0 =
0, varying T yields a reduction in the low-frequency response before
it returns to the T = 0 value at large 	. (b) When μ0 is finite, a step
is seen in σ IB

xx at 	 = 2μ, after which, the μ0 = 0 results are retained.
This step becomes increasingly washed-out as T increases. (Inset)
σ IB

xx /T for large values of μ/T . The step at 	 = 2μ becomes sharper
as μ increases relative to T . A linear high-	 response is clear.

both changed with variations in temperature. For graphene, it
was demonstrated by Gusynin et al.[82] that the total spectral
weight up to an energy  � T is conserved. We find that this
is also the case for a 3D DSM as demonstrated in Fig. 8. In
frame (a), the interband conductivity as a function of photon
frequency is shown for μ0 = 0.5 meV and T = 0.01 meV
(solid black), 0.1 (dashed red), and 0.25 (dash-dotted blue).
Frame (b) presents the optical spectral weight I (T ) up to
 = 2 meV where

I (T ) =
∫ 

0+
σxx(	,T )d	. (29)

The solid black curve gives the Drude contribution while the
dashed green and dash-dotted purple curves give the interband
and total weights, respectively. At low temperature, the total
spectral weight up to  = 2 meV is completely T independent.
Deviations from a constant set in at T ≈ 0.15 meV. This does
not imply that the conservation law on optical spectral weight
holds only at small T . It means that conservation for larger
T requires a higher . This is graphically seen in Fig. 8(a).
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FIG. 8. (a) σ IB
xx for �(ω) = �0 → 0. Above 2μ, as T increases,

the low-frequency response is reduced from its T = 0 value. This
yields a loss in spectral weight for a low cutoff  (inset). (b) Drude,
interband and total optical spectral weight for  = 2 meV and the
same parameters as (a). For low T , conservation of spectral weight is
observed for sufficiently large .

Consider the dotted vertical line at 	 = 2 meV [equal to the 

cutoff used in frame (b)]. For the dash-dotted blue curve, which
gives the interband conductivity at T = 0.25 meV [dotted blue
vertical line in frame (b)], the cutoff at 2 meV does not fall
above the point at which the conductivity has returns to its T =
0 value. More optical spectral weight is lost above this energy
as illustrated in the inset by the shaded region. Thus, to see
the sum rule obeyed at this temperature would require a large
. At T = 0.1 meV, this cutoff is clearly adequate and indeed
the sum rule is seen in the lower frame (dotted red vertical
line). In conclusion, if we take a sufficiently large cutoff (more
than an order of magnitude) compared with the temperature of
interest, we obtain conservation of optical spectral weight as
also found in graphene.

Next, we consider T = 0 but a finite scattering rate �(ω).
Only the case of �(ω) = �0 is sufficiently simple to provide a
useful analytic result. In this instance, the inter- and intraband
conductivities are given by

σ IB
xx (	) = e2

3π2�3vF

∫ μ

μ−	

dω
�0

	

ω2 + (ω + 	)2 + 2�2
0

4�2
0 + (2ω + 	)2

(30)

and

σ D
xx(	) = e2

6π2�3vF

∫ μ

μ−	

dω
�0

	

ω2 + (ω + 	)2 + 2�2
0

4�2
0 + 	2

,

(31)

respectively. These give

σ IB
xx (	) = e2

6π2�3vF

�0

{
1 + 	

4�0

[
arctan

(
2μ + 	

2�0

)

− arctan

(
2μ − 	

2�0

)]}
(32)

and

σ D
xx(	) = e2

12π2�3vF

�0

1 + [	/(2�0)]2

×
[

1 +
(

μ

�0

)2

+ 4

3

(
	

2�0

)2]
. (33)

Adding Eqs. (32) and (33) in the limit 	 → 0, returns the total
dc conductivity of Eq. (5) when T = 0. Results applicable
to the approach to the Dirac point (small μ) are shown in
Fig. 9(a), while large μ is considered in the inset. In the
main frame, the solid black curve gives μ = 0, the dashed-red
shows μ/�0 = 2 and dash-dotted blue displays μ/�0 = 3. In
all three cases, the associated color-coordinated dotted curves
give the Drude contribution. These are strikingly different from
the ordinary Drude result of metal theory which are described
by the simple Lorentzian form 2�0/[(2�0)2 + 	2], where 2�0

is the transport scattering rate. This difference is expected
from Eq. (33) where the square brackets contain additional
terms proportional to μ2 and 	2 as well as the constant which
multiples the Lorentzian. These modifications imply that the
Drude conductivity does not decay like 	−2 at large 	 but
rather saturates at a constant value of

σ∞
D = e2

9π2�3vF

�0. (34)

For large μ/�0, the inset shows an increase in spectral weight
under the Drude which becomes better defined about 	 = 0.
This is followed by a region of low conductivity before a rapid
rise occurs at 	 = 2μ associated with interband transitions.
This step sharpens with increasing μ/�0, as is clearly seen in
the inset for Fig. 9(a), which has results for μ/�0 = 5 (solid
black) to μ/�0 = 30 (dotted purple) in increments of 5.

It is interesting to closely examine the dc limit and relate
this value to our results given in Eq. (5). Referring back to
Eqs. (A10)–(A12), it can be seen that, in Eq. (5), the second
term (∝ 1/�0), is a Boltzmann-type term that appears only
in the Drude conductivity and is zero at T = 0 and μ = 0.
The first term of Eq. (5) is the correction provided by the
Kubo formula and is ∝ (�0 + 2�0) where the first �0 comes
from the Drude piece and 2�0 comes from the interband
piece. Consequently, upon examining the solid black curve
of Fig. 9(a) in the limit 	 → 0, one sees that it is three
times the corresponding Drude value (dotted black). When
μ 	= 0, the Boltzmann term makes an additional contribution
of 1/(12π2)(μ/�0)2 in the units used here.

For the weak-scattering model where �(ω) = �1ω
2, similar

results are presented in Fig. 9(b). These were obtained
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FIG. 9. Optical conductivity for (a) �(ω) = �0 and (b) �(ω) =
�1ω

2. (a) As μ increases, a larger Drude response is seen centered
about 	 = 0 (dotted curves). At higher frequency, a linear interband
background emerges. (Inset) Large-μ limit. A stronger Drude is
observed, before a depletion of conductivity prior to a step at
	 = 2μ into a linear background. (b) In contrast to (a), the interband
background and high-	 Drude is quadratic due to the energy
dependence of �(ω).

numerically from the more complicated equations which
take full account of the energy dependence of the impurity
scattering [Eqs. (A8) and (A9)]. The format is the same as
Fig. 9(a). In the main frame, we show results for the real
part of the dynamical conductivity which are normalized to
be independent of �1. Three values of μ�1 are plotted: 0
(solid black), 0.5 (dashed red) and 1 (dash-dotted blue). Again,
the Drude contribution is given by the color-coordinated
dotted lines. For μ = 0, no Drude peak is seen at 	 = 0 but
there is still an intraband contribution (dotted black) which
starts from zero at 	 = 0 and rises with increasing 	. This
behavior is traced to the vanishing of the scattering rate at
ω = 0 and its quadratic growth in ω (�(ω) = �1ω

2). For
finite μ, there is a Drude peak centered at 	 = 0 but the
intraband conductivity eventually flattens out before it begins
to increase in a quasilinear fashion. The total conductivity
shows a Drude-like peak as 	 → 0, which is followed by a
region that is nearly linear in 	.
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FIG. 10. Optical conductivity for (a) �(ω) = �1ω
2 and (b)

�2μ
3/ω2. In both cases, the slope and height of the interband

background is dependent on the scattering rate amplitude.

It is important to note that in frame (a), μ/�0 is used
while the scaling in (b) is μ�1. In terms of the scattering
rate at the chemical potential, μ/�0 = μ/�(μ) while μ�1 =
�(μ)/μ. Thus, in the upper frame, the Boltzmann regime of
μ � �(μ) corresponds to large values of μ/�0 while in the
lower frame, it is associated with small values of μ�1. This is
shown in the inset of Fig. 9(b) for four values of μ�1: 0.001
(solid black), 0.005 (dashed red), 0.1 (dash-dotted blue), and
0.15 (double-dash-dotted green). The x axis is 	�1; thus,
the expected jump at 	 = 2μ corresponds to 2μ�1 on this
axis. Therefore the solid black curve jumps at 0.02, while the
double-dash-dotted green curve steps up at 0.3. The jump is
sharper for μ�1 = 0.001 than 0.15 as the scattering rate has
increased from �(μ)/μ = 0.01 to 0.15.

Figure 10 emphasizes another important point about the
behavior of the conductivity when the Drude and interband
regions are clearly separated with a region of low conductivity
between them. Frame (a) shows the short-range impurity
scattering model, while long-range Coulomb scattering is
used in (b). In both frames, μ is set at 0.5 meV and
we, thus, expect a jump at 	 = 1 meV except for the
solid black curve in frame (a) which has no charge doping
(μ = 0) and is for comparison. We take �1 = 0.1 meV−1

[frame (a)] and �2 = 0.1 [frame (b)] for the solid black and
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dashed red curves. The dash-dotted blue curve corresponds
to �1 = 0.01 meV−1 [frame (a)] and �2 = 0.01 [frame (b)].
In both models, the jump at 	 = 2μ = 1 meV is sharpest in
the dash-dotted blue curve which is purer. More prominent
structures are seen in the gap of the long-range Coulomb
conductivity as compared to model II. This is expected since
the optical conductivity involves a product of the density of
states factor ω2 and the scattering rate �(ω + 	), which is
very different in these two cases. More precisely, the factor
�(ω)(ω + 	)2 + �(ω + 	)ω2, is equal to �1(ω2(ω + 	)2 +
(ω + 	)2ω2) for �(ω) = �1ω

2. For �(ω) = �2μ
3/ω2, it is the

more complicated �2μ
3[(ω + 	)2/ω2 + ω2/(ω + 	)2] which

introduces significant structure in the Fig. 10(b). We see in the
color-coordinated dotted curves for the Drude contribution
alone that impurity structures are present in the intraband
absorption processes as well. These are traced to the energy
dependence of the scattering rate. Finally, in the region of
photon energy shown, when the scattering rate increases with
ω [�(ω) = �1ω

2], the cleaner sample has a conductivity that
is above the dirtier system in the quasilinear region while it is
the opposite when the scattering rate decreases with increasing
ω (�(ω) = �2μ

3/ω2).

IV. WEYL SEMIMETALS

So far, we have restricted our attention to a single Dirac
cone. This effectively describes DSMs which are inversion-
and time-reversal-symmetric. Here, a simple degeneracy factor
can be included in the formulas to account for the number
of cones (for example, spin and valley degeneracy). If either
symmetry is broken, a WSM is obtained [21]. This leads to
a pair of Weyl nodes, which have opposite chirality (χ = ±)
and are described by the low-energy Hamiltonian [83,84]

Ĥ = χ (�vF σ · (q − χ Q) + IQ0), (35)

where σ is a 3D vector of Pauli matrices and I is the identity
matrix. When Q = 0 and Q0 = 0, this is simply the single-
cone Hamiltonian for DSMs which has been used throughout
this paper. A finite Q corresponds to broken time-reversal
symmetry while a nonzero Q0 results from broken inversion
symmetry. For Q 	= 0 and Q0 = 0, the two Weyl nodes have
the same energy but are separated in momentum space (see
upper-left inset of Fig. 11); while, for finite Q0 and zero Q,
the two nodes sit at the same momentum with one shifted
up in energy by Q0 and the other down by the same amount
(lower-right inset of Fig. 11).

We can generalize our results to systems described by
Eq. (35) by defining k = χq − Q, which effectively elimi-
nates Q. The conductivity of a single Weyl node of chirality χ

is then given by Eq. (A4) with the substitution μ → μ − χQ0

in the Fermi functions. Therefore all the results presented thus
far for a single Dirac cone account for broken inversion and
time-reversal symmetry by summing up the single-node results
with μ → μ − Q0 and μ → μ + Q0. It is immediately clear
that the optical and dc transport properties are unaffected by
broken time-reversal symmetry in zero external magnetic field.
It should be noted that a shift by a finite Q could in principle
modify the impurity scattering itself, an effect that we have not
accounted for in this work. For noncentrosymmetric WSMs
(finite Q0), two steps will be seen in the optical conductivity,

2|μ-Q0| 2|μ| 2|μ+Q0|

Zero Magnetic Field

σxx
IB

Ω0

FIG. 11. Schematic plot of the interband conductivity for a
time-reversal symmetry breaking WSM (dashed-red) and an inversion
symmetry breaking WSM (solid black). Schematic plots of the two
band structures are given as insets.

one at 	 = |2μ − 2Q0| and the other at |2μ + 2Q0|. For
T = 0, � = 0,

σ IB
xx (	) = e2

24π�3vF

	[�(	 − 2|μ+|) + �(	 − 2|μ−|)]
(36)

and

σ D
xx(	) = e2

6π�3vF

δ(	)[μ2
+ + μ2

−], (37)

give the interband and intraband contributions to the optical
conductivity, respectively, where μ± ≡ μ ± Q0. This is writ-
ten here for only one pair of Weyl nodes. To include more, one
multiplies this result by the number of Weyl pairs. A schematic
plot of the interband conductivity is given in Fig. 11.

A number of remarkable features result for the case of the
noncentrosymmetric WSM. First, the Drude conductivity is
always finite. Even at μ = 0 (charge neutrality) the Drude
weight is given by 2σ0Q

2
0. Secondly, for finite μ, the linear

frequency background at higher energy (above the second step
in absorption) should have a slope of twice that of the linear
background arising out of the first step. Finally, at μ = 0,
the 3D DSM and the WSM with finite Q will display a
single linear background all the way to low frequency passing
through the origin. For the noncentrosymmetric case with
μ = 0, the conductivity will show zero interband absorption
below 	 = 2|Q0| and a single step at 	 = 2|Q0| to a linear
background. Clearly, the signature of the noncentrosymmetric
WSM will be quite different from the others. While different in
the details, a similar type of behavior has been discussed for the
dynamical conductivity of AA-stacked bilayer graphene [85],
which shows energy-shifted Dirac cones.
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In the model Hamiltonian of Eq. (35), time-reversal sym-
metry is broken but no external magnetic field is involved. The
application of a magnetic field (B) not directly perpendicular
to the electric field can pump charge from one Weyl node to
the other, an effect known as the chiral anomaly, which we do
not consider here. The effect of such charge pumping on the
optical conductivity of a WSM has been presented in Ref. [67],
where a two-step conductivity is also predicted for finite B.
Our results in Fig. 11, pertain to B = 0.

Other transport properties discussed in this manuscript
should also display differences between the noncentrosym-
metric WSM and the time-reversal symmetry breaking WSM
in a like manner to Fig. 11 and Eqs. (36) and (37). That is,
the noncentrosymmetric WSM will be a superposition of two
versions of the DSM results from previous sections, one for
μ+ and one for μ−. Specifically, consider the dc limit of the
conductivity given in Eq. (3) at T = 0. Its generalization to
finite Q0 for the constant scattering rate (model I) is

σdc = σ0

(
μ2

+
�0

+ μ2
−

�0
+ 6�0

)
. (38)

At charge neutrality, μ± = ±Q0, and

σdc = 2σ0

(
Q2

0

�0
+ 3�0

)
, (39)

which is now dominated by the Q0 term in the clean limit
(�0 → 0). The ratio of the dc conductivity for time-reversal
symmetry breaking (Q0 	= 0) to its Q0 = 0 value is

σdc(Q0 	= 0)

σdc(Q0 = 0)
= 1 + 1

3

(
Q0

�0

)2

, (40)

which increases as the square of Q0/�0. Previously, we saw
that the chemical potential drops out of the Lorenz number
[see Eq. (14)] so L will remain unchanged by a shifting of
the Dirac cones by ±Q0 in energy. At finite temperature, a
correction can arise. As another example, the thermopower
[Eq. (B11)] will not change at charge neutrality as the particle
and hole contributions will cancel.

V. INCLUDING A MASSLESS GAP

The optical conductivity data of Chen et al.[68] on the
semimetal ZrTe5 shows that the dynamical conductivity is
nearly linear in photon energy over a range of 150 meV.
In addition, it extrapolates to a small but finite intercept on
the Reσxx(	) axis at T = 8 K. This was taken as a sign
of Dirac semimetallic behavior. A similar result was found
in pyrochlore Eu2Ir2O7 by Sushkov et al.[69]; although, in
this case, the range over which the conductivity displays
linearity is only ∼10 meV. Here, the linear data extrapolates
to ∼0 as the photon energy tends to zero. In the work
of Timusk et al.[30], data on the optical conductivity of
several quasicrystals showed linearity over a much larger
energy range of ∼600–1000 meV. For Al63.5Cu24.5Fe12 and
Al75.5Mn20.5Si10.1, the data also extrapolate to finite intercept
as 	 → 0. For Al70Pd20Re10, the extrapolated conductivity
crosses the 	 axis at ∼200 meV. For Al2Ru, these authors
present curves which show two separate regions of linear
behavior; one extrapolates to zero at ∼620 meV, while the other

crosses the energy axis at ∼50 meV. Recently, Xu et al.[70]
measured the optical response of the WSM TaAs and found
a linear dependence below ∼30 meV (which extrapolates to
zero) followed by a Drude below ∼10 meV. They also found a
second linear region between ∼30 meV and 125 with a much
reduced slope (factor of ∼14) as compared with the first such
region. This line extrapolates to a finite vertical intercept. There
is also an experiment [31] on 3D zinc-blende Hg1−xCdxTe
where a linear interband conductivity is seen in zero magnetic
field, from ∼50–350 meV and extrapolates to cut the 	 axis
at positive photon energy. This material has been described
as a system with massless fermions with a low-energy band
structure, which has Dirac cones and a flat band at the Dirac
point. Contributions to the interband conductivity arise from
both transitions from the flat band to the Dirac cone and
between the cones [31,86], analogous to what is studied here,
and theory predicts a linear conductivity [31,87]. This system
can be understood as a superposition between a pseudospin
1/2 and pseudospin 1 3D DSM [86,88] and, hence, it fits with
our discussion. Overall, it is clear that the optical conductivity
of a number of materials has been measured and the unusual
linear conductivity suggesting 3D Dirac cones has been seen
although some details differ.

In the simplest theory of a DSM presented so far, the
extrapolation of the linear interband background goes through
zero (in the clean limit) as it is simply proportional to 	. This
observation poses an important question: how can our model
be modified to give a finite 	 intercept as seen in a number
of experiments? The introduction of a Dirac mass � into the
electronic dispersions to get εk = ±

√
�2 + (�vF k)2 does not

provide such a shift but rather, at zero temperature, introduces
a cut off in Eq. (21) for the interband optical conductivity of
2�. The extrapolation of σ IB

xx (	) = e2

24π�3vF
θ (	 − 2�)	 to

	 = 0 still goes through the origin. However, as was already
noted by Timusk et al. [30], σ IB

xx (	) can cut the horizontal
axis at finite photon frequency if the two Dirac cones are
pushed up and down by a gap � as illustrated by the inset in
Fig. 12. Such a band structure, which goes beyond a standard
Dirac fermion model, leads naturally to an interband optical
characteristic which goes through zero at finite photon energy
	, while massive Dirac cones do not. A similar model was
introduced and studied in relation to 2D systems (namely
graphene) in the work of Benfatto et al.[71,72]. In their work,
the energy of the Dirac quasiparticles is modified from the
usual εk = ±�vF k to ±(�vF k + �). The authors argue that the
origin of � can be found in the consideration of self-energy
effects. The possible microscopic origin of such a spectrum
was elaborated upon in Ref. [72]. The interband conductivity
becomes

σ 2D
IB (	) = e2

4�

(
1 − 2�

	

)
�(	 − max[2�,2μ]) (41)

at T = 0. Recently, Morimoto et al.[74] presented similar
results for a Mott-Weyl insulator and obtained a 3D version of
Eq. (41) σ 3D

IB (	) ∝ (	−U )2

	
�(	 − U ), where U is a Hubbard

potential which plays the role of a gap.
We can obtain similar results in a 3D band structure model

with quasiparticle energy modified from our previously used
εk = ±�vF k to ±(�vF k + �). The interband conductivity at
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FIG. 12. Optical conductivity of the gapped model. Unlike be-
fore, the interband background extrapolates to a negative y intercept.
(Inset) A 2D plot of the energy dispersion is shown where dark blue
coloring signifies occupied states.

finite temperature for such a phenomenological band structure
model, whatever its origin, is

σ IB
xx (	) = e2

3π�3vF

∫ ∞

−∞
dω

f (ω) − f (ω + 	)

	

∫ ∞

0
dεε2

× [δ(ω − ε − �)δ(ω + 	 + ε + �)

+ δ(ω + ε + �)δ(ω + 	 − ε − �)], (42)

which can be reduced to

σ IB
xx (	) = e2

3π�3vF

∫ ∞

−∞
dω

f (−	/2) − f (	/2)

	
δ(2ω + 	)

× [(ω − �)2�(ω − �) + (ω + �)2�(−ω − �)].

(43)

After manipulation, this reads

σ IB
xx (	) = e2

3π�3vF

sinh(β	/2)

cosh(βμ) + cosh(β	/2)

×
∫ ∞

�

dω
(ω − �)2

	
[δ(2ω + 	) + δ(−2ω + 	)].

(44)

The first δ function will always give zero in the range ω ∈
[�,∞) leaving

σ IB
xx (	) = e2

24π�3vF

sinh(β	/2)

cosh(βμ) + cosh(β	/2)

× (	 − 	c)2

	
�(	 − 	c). (45)

At zero temperature, the thermal factor reduces to the Heavi-
side step function �(	 − 2μ) and we obtain

σ IB
xx (	) = e2

24π�3vF

(	 − 2�)2

	
�(	 − max[2μ,2�]). (46)

In Fig. 12, we provide numerical results for μ = 0 which
confirm our analytic formulas derived in the clean limit.

For this figure, however, we return to Eq. (A4) (which has
both intraband and interband terms) and include a gap in the
dispersion curves through the substitution shown in Eq. (A14).
The clean limit is not taken so that both contributions from the
�0 and 1/�0 terms are retained. We have included a small
constant residual scattering rate �(ω) = �0 = 0.01 meV, and
used � = 1 meV so that the optical gap is 	c = 2 meV. Two
values of temperature are considered: T = 0 (solid black)
and T = 0.5 meV (dashed red). We also show T = 0 for
�0 = 0.1 meV (double-dash-dotted green). For T = 0, the
solid black curve onsets at 2 meV and then rises according to
Eq. (46) before displaying quasilinear behavior, which we have
indicated by a dotted line and labeled linear extrapolation. This
line extrapolates to 	 ∼ 2.8 meV. It should be noted that this is
not the linear behavior expected as 	 → ∞. In that limit, the
factor (	 − 	c)2/	 of Eq. (46) goes like 	 − 2	c + 	2

c/	

which is approximately 	 − 2	c. This would display an 	

intercept of 2	c = 4 meV in our example. However, in the
range of frequency shown here, the quasilinear dependence
extrapolates to a lower value ∼2.8 meV. Our results agree
well with the experimental data of Timusk et al. [30] on
the quasicrystal Al2Ru (higher energy component) with an
optical gap of ≈ 600 meV and with Al70Pd20Re10, where 	c ≈
200 meV. Comparison with the data of Sushkov et al.[69] on
pyrochlore Eu2Ir2O7 indicates a negligible gap. Comparison
with Chen et al.[68] on the semimetal ZrTe5 indicates a small
negative gap. Conversely, Xu et al. [70] suggest that the second
linear region observed in the conductivity of TaAs (which
does not extrapolate to zero) can be understood as having a
significant component coming from trivial bands rather than
Weyl points.

We can also infer from Fig. 12, that at finite T < � (dashed
red for T = �/2), temperature has little effect on the interband
conductivity while it introduces a Drude. Finally, the double-
dash-dotted green curve shows that increasing the scattering
rate introduces broadening which fills in the region below the
optical gap at 	 = 2 meV.

VI. DISCUSSION AND CONCLUSIONS

In this manuscript, we calculate the dc conductivity about
a single Dirac or Weyl node within the Kubo formulation.
Particular attention is paid to the approach towards charge
neutrality, either at zero temperature in the limit of small
chemical potential (μ → 0), or at μ = 0 for T → 0. Three
models for the residual (impurity) scattering rate are con-
sidered. Namely, a constant (model I), weak scattering in
the Born approximation which gives a scattering rate �(ω)
proportional to the density of states N (ω) ∝ ω2 (model II),
and long-range Coulomb charged impurities with the number
of scattering centres equal to the hole dopping (model III).
These model were considered in the work of Lundgren
et al. [17] on dc transport in Weyl and Dirac semimetals
with which we wish to compare. These authors used the
Boltzmann equation formulation while we proceed from the
Kubo formula. This provides a correction term which can be of
significant importance particularly when μ is not much greater
than the residual scattering rate or temperature.

The dc conductivity at μ = T = 0 [σdc(μ = 0,T = 0)]
depends on the scattering model employed and is not
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universal (independent of the scattering rate) as it is in
graphene. For example, in model I, it is given by σdc(μ,T ) =
σ0[3�0 + (1/�0)(μ2 + 1

3π2T 2)] where �0 is the constant
scattering rate. Therefore, σdc(μ = 0,T = 0) = 3�0σ0 with
σ0 = e2/(12π2

�
3vF ). This linearly depends on �0. In the

Boltzmann approach, the term linear in �0 is not there and
thus σdc(μ = 0,T = 0) = 0 instead. We also note that in the
approach to (μ,T ) = (0,0), the value of σdc is quadratic in μ

and T for both formulations. This is not the case in model
II. The Kubo formula predicts the same quadratic dependence
on μ and T , while the Boltzmann equation gives a constant
conductivity with no dependence on μ or T .

When considering the temperature dependence of the dc
conductivity, we find it important to account for the T

dependence of the chemical potential. This arises from the
energy dependence of the density of states which is quadratic
in ω. These effects are also important for other transport
coefficients, such as the thermal conductivity, thermopower
(Seebeck coefficient) and Lorenz number (Wiedemann-Franz
law). A minimum is obtained in σdc as a function of T which is
traced to the T dependence of μ. The predicted thermopower
shows a much sharper peak at low T and decays much more
rapidly as temperature increases when this dependence is
included in μ. It also leads to a faster rise in the Lorenz number
(L) with T . For all three scattering models, the Wiedemann-
Franz law is obeyed at T = 0 (i.e. L0 = π2k2

B/(3e2) where
kB is the Boltzmann constant and e the electron charge). It
rises with T and comes to a high-temperature plateau, which
is L = 4.2L0 for models I and II and is L = 9.49L0 for the
Coulomb scattering model III. This offers the possibility of
differentiating between the models. In this regard, we have
also found that, for weak scattering (model II), the Boltzmann
and Kubo approaches predict a quite different high temperature
saturated value. It is 4.2L0 in our work whereas keeping only
the Boltzmann-like term gives L0 (i.e. there is no T dependence
of L).

For the constant scattering rate model, we find it possible
and instructive to derive simple analytic formulas for the
ac conductivity in the clean limit (�0 → 0). The interband
transitions at T = 0 provide a linear-in-	 background, which
extrapolates to zero as 	 → 0. However, the interband
response is cut off below 	 = 2μ. As T increases, for μ = 0,
the interband background depletes at small 	 over a range
of photon energies of order � 10 times the temperature. For
finite μ, the jump at 	 = 2μ becomes smeared and for T

of order μ, no identifiable signature of a sharp step remains.
As the interband background becomes depleted by increasing
temperature, the Drude contribution is increased and we find
a sum rule on the optical spectral weight. Specifically, the
optical spectral weight in the Drude increases as the square of
the chemical potential [i.e., ∝ μ(T )2] as well as with the square
of temperature [∼ (π2/3)T 2]. In general, μ(T ) decreases with
increasing T and, in some circumstances, this can decrease
the Drude spectral weight by more than the increase from the
(π2/3)T 2 term. This leads to a net decreases from its T = 0
value. At higher T , the Drude weight always equals σ0π

2T 2/3.
For model I, it is also possible to obtain a simple expression

for the ac conductivity at T = 0 for any value of �0. The
Drude conductivity is found to be a Lorentzian with an optical
scattering width of 2�0, which is multiplied by the sum of

three terms. The first gives the usual Drude Lorentzian of
metal theory. The second is proportional to (μ/�0)2 which
does not modify the form of the Lorentzian as a function
of 	 but simply changes the spectral weight. The final term
goes like [	/(2�0)]2 and this does modify the shape of the
Lorentzian. In fact, for 	 → ∞, it no longer goes to zero but
rather becomes a constant equal to 4�0σ0/3. As with finite
T , including a nonzero �0 smears out the interband jump
at 	 = 2μ expected in the clean limit. It also adds spectral
weight in the interband transitions below 2μ and depletes the
region above. For small μ/�0, the Drude and interband regions
overlap significantly. The distinction between them becomes
clearer as μ/�0 increases. This is also the case for model II;
however, no simple analytic expressions exist and so we must
proceed numerically. For long-range Coulomb scattering, we
find distinct structures appear in σxx(	) due to the complex
variation of �(ω) versus ω. This could provide information on
such complicated scattering models.

In the clean limit, an isolated Dirac or Weyl node leads to
an interband background which is linear in 	 and extrapolates
to the origin as 	 → 0. Many experiments on Dirac and
Weyl materials as well as quasicrystals have found linear
interband regions which are taken as signatures of Dirac
physics. However, the data often does not extrapolate to zero
as 	 → 0. Instead, it can cross the y axis with a positive
intercept, or it can cut the photon-energy axis at 	 > 0. While
we have seen that impurity scattering can modify the linear
background and provide a positive intercept on the vertical
axis, the observation of linear experimental data that intercepts
the photon-energy axis at 	 > 0 cannot easily be explained.
With this in view, we have also studied a model where a
massless gap is included which could provide a more robust
explanation of some of the available data. In 2D, an analogous
model was used by Benfatto et al.[71,72] to explain the optical
data in graphene obtained by Dawlaty et al.[73]. In this model,
the conduction-band Dirac cone is shifted vertically upward
by a gap �, while the valence cone is shifted downward
by the same amount. More recently, Morimoto et al.[74]
have studied the Mott-Weyl insulator in which the valence
and conduction bands are displaced from each other by a
vertical gap due to the correlations with the Hubbard U , which
provides the gap. Consequently, we have generalized our work
to include such a gap. The energy spectrum is thus replaced
by εk = ±(�vF k + �) as opposed to the usual εk = ±�vF k

dispersion of a 3D Dirac material. At zero temperature, the
	 dependence of the interband conductivity calculated in
the clean limit is modified to ∼(	 − 2�)2/	. When the
optical gap 	c ≡ 2� is set to zero, we retain our previous
result. This model has a built in displacement of 	c along
the photon-energy axis and is quasilinear at small 	 before
becoming linear when 	 � 	c.

Finally, we have discussed predicted differences between
the two types of WSMs: those due to time-reversal symmetry
breaking, which separates the Dirac cones in momentum
versus noncentrosymmetric WSMs which have Dirac cones at
the same position in momentum but shifted in energy relative to
each other. For the former case, the results discussed here will
be indistinguishable from the 3D DSM situation. However, for
the latter system, we predict two steps in the B = 0 absorptive
dynamical conductivity at finite charge doping, each followed
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by a linearly increasing background with a slope ratio between
them of two (for simple Dirac cones). Unlike the previous
cases, there will be a Drude absorption at all dopings, even
at charge neutrality where μ = 0. Moreover, at μ = 0, there
will still be one step in the interband background. This result
is understood as a superposition of two Dirac cones, each with
a different doping μ±. Other properties discussed here (such
as the Seebeck coefficient, thermal conductivity and Lorenz
number) can also show differences for this type of WSM via
the signature of the displacement in energy of the split cones.

The study of the transport and optical properties of Dirac-
Weyl semimetals is still in its infancy and systematic data
involving samples with well-characterized and controlled
defects is largely still lacking. Our calculations serve to
illustrate that the temperature and chemical potential variation
of the dc transport coefficients can provide information on
aspects of the possible microscopic residual scattering models.
Studies of the intraband and interband ac conductivity can
provide additional information.
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APPENDIX A

In the one-loop approximation, the real part of the finite
frequency Kubo formula is

σαβ(	) = e2π

	

∫ ∞

−∞
dω[f (ω) − f (ω + 	)]

×
∫

d3k

(2π )3
Tr[v̂αÂ(k,ω)v̂βÂ(k,ω + 	)], (A1)

where f (ω) = [exp([ω − μ]/T ) + 1]−1 is the Fermi function.
The velocity operator is related to the Hamiltonian (Ĥ ) through
the relation v̂α = (1/�)(∂Ĥ/∂kα) = vF σ̂α . The spectral func-
tions Â are related to the Green’s function through

Ĝ(k,z) =
∫ ∞

−∞

Â(k,ω)

z − ω
dω, (A2)

which is, in turn, defined by

Ĝ−1(k,z) = Î z − Ĥ , (A3)

where Î is the identity matrix of dim(Ĥ ). The longitudinal
conductivity (α = β = x) is then [67]

σxx(	) = e2

6π�3vF

∫ ∞

−∞
dω

f (ω) − f (ω + 	)

	

×
∫ ∞

0
dεε2[A+A′

+ + A−A′
−

+ 2(A+A′
− + A−A′

+)], (A4)

where A± ≡ A(±ε,ω) and A′
± ≡ A(±ε,ω + 	) with

A(±ε,ω) = 1

π

−Im�(ω)

(ω − Re�(ω) ∓ ε)2 + Im�(ω)2
, (A5)

where �(ω) is the self-energy, which contains information on
the form of the impurity potential. Performing the dε integral,
the intraband component becomes∫ ∞

0
ε2dε[A+A′

+ + A−A′
−]

= 1

π

�2�′ + �′(�1 − ω)2 + �[�′2 + (ω − �′
1 + 	)2]

(� + �′)2 + (�1 − �′
1 + 	)2

,

(A6)

where � ≡ Im�(ω), �′ ≡ Im�(ω + 	), �1 ≡ Re�(ω), and
�′

1 ≡ Re�(ω + 	). Likewise, the interband contribution is∫ ∞

0
2ε2dε[A+A′

− + A−A′
+]

= 2

π

�2�′ + �′(�1 − ω)2 + �[�′2 + (ω − �′
1 + 	)2]

(� + �′)2 + (�1 + �′
1 − 2ω − 	)2

.

(A7)

For simplicity, we take �1 = �′
1 = 0. Therefore the intraband

and interband pieces of the conductivity are

σ D
xx(	) = e2

6π2�3vF

∫ ∞

−∞
dω

f (ω) − f (ω + 	)

	

× �2�′ + �′ω2 + ��′2 + �(ω + 	)2

(� + �′)2 + 	2
(A8)

and

σ IB
xx (	) = e2

3π2�3vF

∫ ∞

−∞
dω

f (ω) − f (ω + 	)

	

× �2�′ + �′ω2 + ��′2 + �(ω + 	)2

(� + �′)2 + (2ω + 	)2
, (A9)

respectively. In the limit of small scattering, these reduce to
Eqs. (8) and (9) of Ref. [67].

In the dc limit, 	 → 0, and we have

σ D
dc = e2

6π2�3vF

∫ ∞

−∞
dω

(
−∂f (ω)

∂ω

)
ω2 + �2

2�
(A10)

and

σ IB
dc = e2

6π2�3vF

∫ ∞

−∞
dω

(
−∂f (ω)

∂ω

)
�, (A11)

yielding

σdc = e2

6π2�3vF

∫ ∞

−∞
dω

(
−∂f (ω)

∂ω

)
ω2 + 3�2

2�
. (A12)

At T = 0, this gives

σdc = e2

12π2�3vF

μ2 + 3�(μ)2

�(μ)
, (A13)

where we have explicitly restored the functional dependence
of �(ω).

To consider a gapped model with gap 2�, we return to
Eq. (A4) and make the substitution∫ ∞

0
ε2dε →

∫ ∞

�

(ε − �)2dε. (A14)
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In the dc limit,∫ ∞

�

(ε − �)2dε[A+A′
+ + A−A′

−]

= 1

2�π2

{
π�2 − 2�� + π (�2 + ω2)

− [�2 + (� − ω)2]arctan

(
� − ω

�

)

− [�2 + (� + ω)2]arctan

(
� + ω

�

)}
, (A15)

and ∫ ∞

�

2(ε − �)2dε[A+A′
− + A−A′

+]

= �

2π2ω(�2 + ω2)

{
2πω(�2 + �2 + ω2)

− 2[�2ω + (�2 + ω2)(ω − 2�)]arctan

(
� − ω

�

)

−2[�2ω + (�2 + ω2)(ω + 2�)]arctan

(
� + ω

�

)

+�(�2 + ω2 − �2)ln

(
�2 + (� + ω)2

�2 + (� − ω)2

)}
. (A16)

APPENDIX B

To study the Wiedemann-Franz law requires information
about the electrical and thermal conductivities. The Lorenz
number (L) is given by the ratio of the thermal (κ) and dc-
electrical (σdc) conductivities as

L = κ

T σdc
, (B1)

where σdc is given by Eq. (A12). The temperature-scaled
thermal conductivity is [17,78,89]

κ

T
= κ22

T
− e2κ2

12

σdc
, (B2)

where, using the Kubo formula [89],

κ22

T
= 1

6π2�3vF

∫ ∞

−∞
dω

(
ω − μ

T

)2(
−∂f (ω)

∂ω

)
ω2 + 3�2

2�

(B3)

and

κ12 = 1

6π2�3vF

∫ ∞

−∞
dω

(
ω − μ

T

)(
−∂f (ω)

∂ω

)
ω2 + 3�2

2�
,

(B4)

which have similar forms to Eq. (5.8) of Sharapov et al.[89]
but applied to our model.

1. �(ω) = �0

Using a constant scattering rate, the dc electrical conduc-
tivity can be written as

σdc

σ0�0
=

(
T

�0

)2

F μ̄

2 + 3F μ̄

0 , (B5)

where

F μ̄
n ≡

∫ ∞

−∞

xndx

4cosh2
(

x−μ̄

2

) , (B6)

σ0 = 1/(12π2
�

3vF ) and μ̄ ≡ μ/T . Likewise,

κ22

T

e2

σ0�0
=

(
T

�0

)2(
F μ̄

4 + μ̄2F μ̄

2 − 2μ̄F μ̄

3

)
+ 3

(
F μ̄

2 + μ̄2F μ̄

0 − 2μ̄F μ̄

1

)
, (B7)

and

e2κ2
12

σdc

e2

σ0�0
= 1

σ̄dc

[(
T

�0

)2(
F μ̄

3 − μ̄F μ̄

2

) + 3
(
F μ̄

1 − μ̄F μ̄

0

)]2

,

(B8)

where σ̄dc = σdc/(σ0�0). These expressions are further simpli-
fied by noting (for μ̄ � 0)

F μ̄

0 = 1,

F μ̄

1 = μ̄,

F μ̄

2 = μ̄2 + π2

3
, (B9)

F μ̄

3 = μ̄(μ̄2 + π2),

F μ̄

4 = μ̄4 + 2μ̄2π2 + 7π4

15
.

Using these results, the Lorenz number is found to be

L = L0

[
3
(
15�2

0 + 5μ2 + 7π2T 2
)

5
(
9�2

0 + 3μ2 + π2T 2
)

− 12μ2π2T 2(
9�2

0 + 3μ2 + π2T 2
)2

]
, (B10)

where L0 = π2/(3e2).
The thermopower is also readily evaluated and is given by

S = eκ12

σdc

= 1

eσ̄dc

[(
T

�0

)2(
F μ̄

3 − μ̄F μ̄

2

) + 3
(
F μ̄

1 − μ̄F μ̄

0

)]

= 1

e

2π2T μ

3μ2 + π2T 2 + 9�2
0

. (B11)

2. �(ω) = �1ω
2

If we take the energy dependent scattering rate �(ω) =
�1ω

2, the dc electrical conductivity becomes

�1σdc

σ0
= F μ̄

0 + 3(�1T )2F μ̄

2 . (B12)

Similarly,

κ22

T

e2�1

σ0
= 3(�1T )2

(
F μ̄

4 + μ̄2F μ̄

2 − 2μ̄F μ̄

3

)
+F μ̄

2 + μ̄2F μ̄

0 − 2μ̄F μ̄

1 , (B13)
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and

e2κ2
12

σdc

e2�1

σ0
= 1

σ̃dc

[
3(�1T )2

(
F μ̄

3 − μ̄F μ̄

2

) + (
F μ̄

1 − μ̄F μ̄

0

)]2
, (B14)

where σ̃dc = �1σdc/σ0. This yields

L = L0

{
5 + 3�2

1(5μ2 + 7π2T 2)

5
[
1 + �2

1(3μ2 + π2T 2)
] − 12π2�4

1μ
2T 2[

1 + �2
1(3μ2 + π2T 2)

]2

}
. (B15)

The associated thermopower is

S = 1

e

2π2�2
1T μ

1 + �2
1(3μ2 + π2T 2)

. (B16)
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