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Recently, optical probes have become available that can access and observe energy renormalization due to
electron-phonon interaction in graphene away from the well-studied Dirac K point. Using an expanded deforma-
tion potential approach, we present a theoretical study of the electron-phonon self-energy and scattering matrix
elements across the entire Brillouin zone. We elucidate the roles of modulated hopping and conventional defor-
mation potential coupling, parameterized via standard deformation potentials, the in-plane phonon modes, intra-
and interband contributions, and umklapp processes. Applying the theory to nonlinear optical transmission spec-
troscopy in the vicinity of the M point, we find very good agreement with recently published experimental data.
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I. INTRODUCTION

Graphene is widely recognized as a transformative material
system for the development of new electronic and photonic
devices including high-speed field-effect transistors, efficient
terahertz sources, ultrafast broadband photodetectors, modu-
lators, plasmonic devices, and photodetectors (for example,
Refs. [1–15]). The fundamental electronic, vibronic, and
optical properties are, by now, well understood (e.g., Refs. [16–
18]). In particular, much effort has been spent on Raman
spectroscopy [19–23], linear and nonlinear spectroscopy close
to the Dirac point including THz spectroscopy and genera-
tion (e.g., Refs. [24–42]), electron-electron interactions (e.g.,
Refs. [43,44]), phonons (e.g., Refs. [45–49]), electron-phonon
interactions (e.g., Refs. [50–56]), and linear and nonlinear
spectroscopy close to the saddle point (e.g., Refs. [40,57–
61]). Recently, increasing emphasis has been put on the
understanding of differential optical transmission spectra that
are negative; in other words, on the increase of absorption
caused by optical pumping [35–37,61,62]. Negative differ-
ential transmission is usually related to complex many-body
effects, in contrast to optically induced phase-space filling that
leads to positive differential transmission. We will comment
on this effect below in the context of spectroscopy close to the
saddle point (M point), Sec. V.

As mentioned, the theory of phonon spectra and electron-
phonon interactions in graphene has been well studied. The
theoretical work can be broadly grouped into two classes,
first-principles theories (density-functional theory, DFT) on
the one hand, and explicit models for the dynamical matrices
and effective electron-phonon Hamiltonians on the other.
Both approaches have their advantages. The DFT models
are nominally without fitting parameters, although in practice
specific implementations and even the number of points used
in numerical integrations can influence the results. However,
the disadvantage is a potential lack of transparency because
publications usually do not include the exact theoretical for-
mulas. Explicit models always have fitting parameters, making
them less predictive, at least regarding their quantitative
predictions; qualitative predictions are frequently independent

of the fitting parameters’ values. However, conceptual and
mathematical simplicity and transparency is an advantage
of those approaches. For example, the authors of Ref. [63]
point out that their dynamical matrix for the graphene phonon
spectrum is not meant to improve on the phonon spectra
obtained in Ref. [45], but to give a “simpler alternative
for the phonon spectrum.” A similar dynamical matrix was
also used in Ref. [64]. Other studies of electron-phonon
coupling involving explicit phonon models include [65,66],
where the role of zone-boundary phonons has been elucidated.
Explicit models for the electron-phonon coupling, formulated
in terms of the electron self-energy, include [51,67–69], a
related Boltzmann transport theory approach and mobility
analysis was used in Refs. [70–74], the role of out-of-
plane phonons was studied in Ref. [75], and the self-energy
for optical phonons was investigated in Ref. [76]. First-
principles studies of phonon spectra include [77], phonon
anharmonicities were studied in Ref. [78], and first-principles
studies of phonons and electron-phonon coupling include
[52,53,79–82].

Among the explicit theories for electron-phonon inter-
actions are the so-called deformation potential models that
are important because of their simplicity. They allow easy
comparison across disciplines like electrical and thermal
transport as well as optics, while being able to capture at least
some general and possibly robust features of electron-phonon
scattering. Within the class of deformation potential models,
we need to distinguish between the conventional deformation
potential theory, which can be found in many solid-state
textbooks (e.g., Ref. [83]), and those that, in the context of
graphene, may be called modulated hopping (or gauge field
coupling), developed in Refs. [84–87]. In the following, we
will reserve the term deformation potential (DP) theory to the
conventional, textbook deformation potential theories, and for
the other use the term modulated hopping (MH). Common to
the deformation potential theories is that they typically involve
a small number of parameters.

As optical probes capable of accessing almost arbitrary
points in the Brillouin zone (BZ) become more widely
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available, it becomes increasingly important to establish a
good understanding of electron-phonon interaction, especially
deformation potential models that are not limited to the vicinity
of the Dirac point. In this paper, we present a detailed study
of an expanded deformation potential model that includes
both modulated hopping (MH) and conventional deformation
potential (DP) coupling. We pay particular attention to the
electron-phonon processes that involve BZs other than the first
zone. The expanded model, which is based on a commonly
used Hamiltonian for on-site and nearest-neighbor coupling,
leads to a DP/MH model that generalizes well-established
forms valid near the Dirac point. We discuss this limiting
process not only for the purposes of identifying our parameters
with those already existing in the literature, but also to use
literature results based on first-principles theories to obtain
reasonable parameter values. As shown below, in contrast
to MH, which includes only one parameter, the case of
DP is more complex, as that coupling requires a physically
motivated cutoff in reciprocal space in order to be well defined.
We discuss the physical motivation for this and derive a
reasonable functional form for the wave-vector-dependent DP
model.

Our numerical results include phonon frequencies and
eigenvectors calculated over the entire BZ from the diago-
nalization of a dynamic matrix [64]. We present calculated
self-energies, relevant for transport and optical properties,
as well as differential self-energies relevant for nonlinear
differential spectroscopy across the entire BZ. We also present
scattering matrix elements for the various phonon modes.
The matrix elements for LA and LO exhibit discontinuities
in the electronic BZ, which can be understood as a result
of phonon dispersion degeneracies on the boundary of the
phonon BZ. As a specific application, we calculate differential
transmission spectra for nonlinear M-point spectroscopy and
compare the results to recently published experimental data.
We find that these results are in even better agreement than
previous results that were based on the concept of effective
deformation potentials. We also discuss this concept and its
relation to the much more general theory employed in this
paper, which involves both kinds of coupling processes (i.e.,
MH and DP), and all in-plane phonon modes (i.e., TA, LA,
LO, TO).

This paper is organized as follows. We begin by introducing
the necessary definitions and conventions by which our ex-
panded deformation potential model is constructed (Sec. II A).
We then derive the Hamiltonians and self-energies for the
deformation potential and modulated hopping components of
this larger model and compare its predictions against salient
approaches in the literature that primarily address the Dirac K

point (Secs. II B and III). Having established this consistency,
we then explore the predictions of this expanded deformation
potential model at other regions of the BZ, most notably at
the M point. We focus on transition matrix elements and
electronic self-energies in Sec. IV, and on recently published
ultraviolet pump-probe differential transmission spectroscopic
measurements in Sec. V. We conclude with three appendices
that provide additional information about the microscopic
motivation of our model, the phonon model used throughout
the manuscript, and the contribution of higher BZs and
avoidance of unphysical divergences.

II. EXPANDED DEFORMATION POTENTIAL MODEL

A. Definitions

Let us start with a Hamiltonian in the basis of localized
electrons that can be regarded as a purely phenomenological
description of the system. All parameters will be fixed either
through comparisons with experiments or with completely
predictive theories. In Appendix A, we will discuss options
to fix some of the free parameters by viewing how the
general Hamiltonian is derived from a more basic physical
starting point. Our phenomenological Hamiltonian, restricted
to on-site energies and nearest-neighbor hopping terms, reads
as

H =
∑
jnσ

ε2pc
†
jnσ cjnσ −

∑
〈jn,j ′n′〉σ

tc
†
jnσ cj ′n′σ , (1)

where ε2p is the on-site energy of the 2p electrons in the
graphene lattice (not the 2p energy of the individual carbon
atoms), t is the hopping (or transfer) integral, and 〈jn,j ′n′〉
denotes summation over nearest neighbor pairs. The creation
(annihilation) operators c

†
jnσ (cjnσ ) are labeled by the unit cell

index j , the basis atom index n = 1,2, and the spin σ . The
on-site energy ε2p of an electron at site j,n can be thought of
as having a kinetic energy contribution at site j,n as well as
an electron-ion interaction contribution of the form

Wel-ion(r)|r=Rjn
= −

∑
j ′n′

W (r − Rj ′n′)|r=Rjn

= −
∑
j ′n′

W (Rjn − Rj ′n′ ), (2)

where Rjn is the position vector of the ion at the site n,j .
The condition r = Rjn means the electron orbital at site
n,j moves rigidly with the ion at that site. The hopping
parameter t is assumed to be a function of the nearest-neighbor
distance, i.e., t = t(|Rjn − Rj ′n′ |), where it is implied that
the site indices are restricted to nearest neighbor pairs. We
denote the ion positions as Rjn = R(0)

jn + �ξjn, where R(0)
jn

are the two-dimensional equilibrium lattice position vectors
(R(0)

j1 = R(0)
j , R(0)

j2 = R(0)
j + �δ1, R(0)

j = j1a1 + j2a2), and �ξjn

are the displacements due to lattice vibrations. Our notational
convention for defining various lattice vectors in real and
reciprocal spaces is shown in Fig. 1. We follow Ref. [17]
and use a coordinate convention in which the hexagons in real
space have horizontal lines and those in reciprocal space have
vertical lines. Specifically, the nearest-neighbor vectors are

�δ1 = a

2
(1,

√
3), �δ2 = a

2
(1, −

√
3), �δ3 = a(−1,0).

The primitive translation vectors in real space are

a1 = a

2
(3,

√
3), a2 = a

2
(3, −

√
3),

and in reciprocal space are

b1 = 2π

3a
(1,

√
3), b2 = 2π

3a
(1, −

√
3),

where a is the carbon-carbon bondlength (a = 1.42 Å), which
is related to the lattice constant aL via aL = √

3a.
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FIG. 1. Definition of (a) primitive translation vectors �a, nearest-
neighbor vectors �δ, phonon mode vectors �η defined through Eq. (12),
and (b) Brillouin zone used in this paper.

We obtain the electron phonon interaction (e.g.,
Refs. [83,84]) by writing the on-site energy in Eq. (1) as

ε2p → ε0
2p −

∑
j ′n′

[
W (Rjn − Rj ′n′ ) − W

(
R(0)

jn − R(0)
j ′n′
)]

, (3)

where ε0
2p = ε2p(Rjn = R(0)

jn ), and the hopping energy as

t → t0 + (t − t0), (4)

where t0 = t(|R(0)
jn − R(0)

j ′n′ |) and t = t(|Rjn − Rj ′n′ |). To the
first order in the displacements, we have the Hamiltonian for
the DP term,

HDP = − 1

A

∑
jnσj ′n′q

iq · (�ξjn − �ξj ′n′ )

× e
iq·(R(0)

jn−R(0)
j ′n′ )W (q)c†jnσ cjnσ (5)

after writing the potential energy W in terms of its two-
dimensional Fourier transform, W (r) = (1/A)

∑
q eiq·rW (q)).

Here, A is the area of the system, and the index DP stands
for deformation potential, by which we mean the conventional
deformation potential discussed in most solid state text books.
We note that it is customary to take only the second term with
�ξj ′n′ in Eq. (5) for the deformation potential approximation
called Nordheim’s rigid ion model (e.g., Refs. [83,88,89]). The
argument for this is that in the general electron-ion interaction,
which is of the form Wel-ion(r) = −∑j ′n′ W (r − Rj ′n′), only
the ion positions Rj ′n′ should be displaced, not the electron
positions r. One might wonder if this is always appropriate,
especially in the case of strongly localized electron orbitals
for which the Hamiltonian (1) is designed. In other words,
if the electron always moves with the ion, there would
be a contribution to the electron-phonon interaction that
corresponds to the displacement of r, which in turn is “slaved”
to the displacement of the ion at Rjn. Below, we will
argue that this is not of practical importance in the present
case because the contribution from �ξjn in Eq. (5) turns out to
be small compared to the �ξj ′n′ contribution.

Furthermore, the first-order expansion in �ξjn of the hopping
term in the Hamiltonian yields

HMH = − ∂t

∂r

∣∣∣∣
0

1

a

∑
〈jn,j ′n′〉σ

[
R(0)

jn − R(0)
j ′n′
]

· [�ξjn − �ξj ′n′]c†jnσ cj ′n′σ , (6)

where the subscript MH stands for modulated hopping,
and the spatial gradient of the hopping parameter, �∇t(r) =
(∂t/∂r)r/r , ∂t

∂r
|
0

= ∂t
∂r

|
r=|R(0)

jn−R(0)
j ′n′ |, and |R(0)

jn − R(0)
j ′n′ | = a, has

been used. We now define the deformation potentials as
follows. For the conventional deformation potential, we use

DDP = 2

A0
W (0), (7)

DDP(q) = DDP
W (q)

W (0)
= 2

A0
W (q), (8)

and for the modulated hopping, we use

DMH = 3

4

∂t

∂r

∣∣∣∣
0

a. (9)

An estimate for DMH could be based on the bondlength
derivative of the bond energy, which in Ref. [90] is found to be
−6.4 eV/Å. Using a = 1.42 Å, we have DMH 	 −6.82 eV,
which is, apart from the sign, slightly larger than the value of
2.5 eV used in Ref. [53]. At the end of Sec. III we further
explore possible numerical values for DMH.

In conventional deformation potential theories, only the
long-wavelength limit is important; therefore the deformation
potential is one number, usually taken as DDP(0), which
is assumed to exhibit no singularity at q = 0 as in met-
als. Wave-vector-dependent deformation potentials have been
used, for example, by Woods and Mahan [63], and the issue
of possible divergences in the long-wavelength limit has to
be discussed for specific models. We discuss this in more
detail in Appendix A. Since we want to keep the theory
at a rather general, semiphenomenological level, we assume
for the time being that the q → 0 limit exists. Furthermore,
we will see shortly that the short-wavelength limit |q| → ∞
requires DDP(q) → 0. Quite generally, the interaction must
be smooth on a subatomic length scale, leading to small or
vanishing Fourier coefficients with wave vectors outside the
first Brillouin zone). From a pragmatic point of view, the
deformation potential may be characterized by two values
rather than one: the value at q = 0, and the approximate range
in wave-vector space over which W (q) is essentially nonzero.
Alternatively, one can try to find specific models predicting
the full q dependence, which is done in Appendix A. In terms
of DDP and DMH, the electron-phonon interactions are

HDP = −i
1

N

∑
jnσj ′n′q

DDP(q)q

· (�ξjn − �ξj ′n′ )eiq·(R(0)
jn−R(0)

j ′n′ )c
†
jnσ cjnσ (10)

and

HMH = − 4

3a2
DMH

∑
〈jn,j ′n′〉σ

[
R(0)

jn − R(0)
j ′n′
]

· [�ξjn − �ξj ′n′]c†jnσ cj ′n′σ , (11)

where N is the number of carbon atoms, with N/2 = A/A0

being the number of unit cells. Note that the q sum in Eq. (10)
is not restricted to a Brillouin zone.

We next convert HDP and HMH in Eqs. (10) and (11) into a
sum over the free phonon and Bloch electron eigenmodes. For
this, the ionic displacements �ξjn and electron operators cjnσ
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(c†jnσ ) are expanded in their respective eigenmodes. For �ξjn,
standard phonon quantization theory [91] gives

�ξjn = i√
A

∑
μ,Q∈BZ

eiQ·R(0)
jn �ημn(Q)

√
�A0

2ω
μ

QMc

(d†
−Qμ + dQμ),

(12)

where ω
μ

Q are the phonon mode frequencies of branch μ at

wave vector Q, Mc is the mass of the ion, dQμ (d†
Qμ) are

the phonon annihilation (creation) operators, and �ημn(Q) are
the two-dimensional phonon mode vectors. Below, we restrict
ourselves to the in-plane transverse and longitudinal acoustic
and optic modes, μ = TA,LA,LO,TO. A specific model for the
phonon frequencies and mode vectors is given in Appendix B.
The mode vectors are normalized,

2∑
n=1

|�ημn(Q)|2 = 1,

and have the following symmetries within our convention for
�ξjn containing a factor of i. From the fact that the operators
�ξjn are Hermitian, it follows that

�ημn(Q) = −�η∗
μn(−Q).

Moreover, given the lattice periodicity of the (classical)
phonon Hamiltonian, �ημn(Q) satisfy the following relations
under translations in reciprocal space (see Appendix B):

�ημ1(Q + G) = �ημ1(Q), (13)

eiG·�δ1 �ημ2(Q + G) = �ημ2(Q), (14)

where G is a reciprocal lattice vector. In practice, it is
convenient to make one component, e.g., the y component
of �ημ1(Q), purely real for all Q.

Similarly, the localized electron operators are transformed
to Bloch states,

cjnσ =
√

2

N

∑
k∈BZ,s=±1

eik·(R(0)
j +�δ1δn,2)uksncksσ ,

where cksσ denotes the electron annihilation operator for
a Bloch electron in band s with two-dimensional crystal
momentum �k, δn,2 is the Kronecker delta, and uksn is the
lattice-periodic part of the Bloch wave function. We are
using here a well-established tight-binding approach, see
for example [17,65,92]. Within this approach, we have two
electronic bands, often called the π or valence band and π∗
or conduction band. In our formalism, we denote the valence
(conduction) band by s = −1 (s = 1). It is worth noting that
the quality of this two-band approximation decreases with
increasing photon energy, so care should be used in applying
this formalism at the highest energies approaching the 
 point.

We work in the approximation of symmetric bands, related
to the omission of next-nearest-neighbor hopping in Eq. (1).
The band structure and Bloch coefficients in this approach are
as follows. The band energy is given by E(0)

s (k) = st |f ′(k)|,

and the lattice-periodic part of the Bloch wave function is(
uks1

uks2

)
= 1√

2

(
1

−se−iφ(k)

)
,

(
uk+Gs1

uk+Gs2

)
=
(

uks1

e−iG·�δ1uks2

)
,

(15)

where k is in the first Brillouin zone, and G is a reciprocal
lattice vector. Here the function f ′(k) is given by

f ′(k) =
3∑

i=1

eik·�δi

= 2 cos(kxa/2) cos(
√

3kya/2) + cos(kxa)

+ i[2 sin(kxa/2) cos(
√

3kya/2) − sin(kxa)], (16)

and φ(k) is the phase of f ′(k). Explicitly, f ′(k) = |f ′(k)|eiφ(k)

with

|f ′(k)| =
√

3 + 2 cos(
√

3kya) + 4 cos

(
3

2
kxa

)
cos

(√
3

2
kya

)
,

(17)

φ(k) = tan−1

[
2 sin

(
kx

2 a
)

cos
(√

3
2 kya

)− sin(kxa)

2 cos
(

kx

2 a
)

cos
(√

3
2 kya

)+ cos(kxa)

]
. (18)

Before proceeding, we comment briefly on the sign of
the hopping (or transfer) integral t . In Ref. [92] by Saito,
Dresselhaus, and Dresselhaus (subscript SDD in the follow-
ing), the 2 × 2 tight-binding Hamiltonian has off-diagonal
elements tSDDf ′(k) [f ′(k) is called f (k) there], and it is
pointed out that tSDD is negative. Our Hamiltonian (1) has
a minus sign in front of t , so t = −tSDD. Hence t is positive.
Since the magnitude of t can be assumed to decrease with
increasing bond length (certainly |t | → 0 as a → ∞), we may
assume that ∂t

∂r
and hence DMH are negative.

B. Hamiltonian and self-energy

In terms of the free phonon and Bloch electron modes, the
deformation potential Hamiltonian Eq. (10) becomes

HDP = − 1√
A

∑
kk′εBZ
ss ′σμ

(
�A0

2Mca2ω
μ

k−k′

)1/2

DDPW
DP
μ (ks,k′s ′)

× [d†
−k+k′,μ + dk−k′,μ]c†ksσ ck′s ′σ (19)

with

WDP
μ (ks,k′s ′) = 1

2

∑
G∈R

W (k − k′ − G)

W (0)
a(k − k′ − G)

· [�ημ1(k − k′) + �ημ2(k − k′)eiG·�δ1 ]

× 1

2
[1 + ss ′ei(φ(k)−φ(k′)−G·�δ1)], (20)

where R denotes the set of reciprocal lattice vectors.
In calculating the G sum numerically, it is often more

convenient to evaluate the phonon vectors only within one
Brillouin zone and use Eqs. (13) and (14) to extrapolate to other
zones. For each Q, the diagonalization procedure determines
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each eigenvector up to an overall phase, to which numerical
routines may assign an arbitrary value, hence destroying the
correct G-periodicity of the �ημn. To facilitate computations
following this method, we rewrite WDP

μ as

WDP
μ (ks,k′s ′) = 1

2

∑
G∈R

W (k − k′ − G)

W (0)
a(k − k′ − G)

· [�ημ1(q) + �ημ2(q)e−i(Gu−G)·�δ1 ]

× 1

2
[1 + ss ′ei(φ(k)−φ(k′)−G·�δ1)], (21)

where q = k − k′ − Gu, and the reciprocal vector Gu is
chosen such that q lies in the first Brillouin zone. A nonzero
Gu signifies umklapp processes.

The last line in Eqs. (20) and (21) is a generalization of the
well-known Bloch factor 〈uks |uk′s ′ 〉 = 1

2 (1 + ss ′ei(φ(k)−φ(k′)))
to include contributions from phonons in Brillouin zones other
than the first. These processes are determined by the range of
W (k − k′ − G) in reciprocal space, which in principle could
involve zones far away from the first BZ. They are more general
than regular umklapp processes, in the sense that regular
umklapp processes involve only zones adjacent to the first BZ.

In Eq. (19), we have used only the second term with �ξj ′n′

in Eq. (5), which appears to be the standard approach (i.e.,
Nordheim’s rigid ion model [83,88,89]). The first term with
�ξjn in Eq. (5) yields a correction of the form

HDP,corr = 1√
A

∑
kk′εBZ

ss ′σμ

(
�A0

2Mca2ω
μ

k−k′

)1/2

× 1

8

∑
G 
=0

DDP(G)[1 + eiG·�δ1 ]aG · [�ημ1(k − k′)

+ ss ′ �ημ2(k − k′ − G)ei(φ(k)−φ(k′))]

× [d†
−k+k′,μ + dk−k′,μ]c†ksσ ck′s ′σ . (22)

This is a small correction because it excludes the first Brillouin
zone from the integration over DDP(k), and DDP(k) is very
small outside the first BZ. We show examples for DDP(k) in
Appendix A. In deriving Eqs. (19) and (22), we have used∑

G′

BZ(k − k′ + G + G′) = 1, (23)

where 
BZ(k) = 1 if k ∈ BZ and 
BZ(k) = 0 elsewhere. This
is because for each k − k′ + G there is exactly one G′ that
reduces k − k′ + G to the first BZ.

In a similar way, we obtain for the modulated hopping
Hamiltonian from Eq. (11),

HMH = − 1√
A

∑
kk′εBZ

ss ′σμ

(
�A0

2Mca2ω
μ

k−k′

)1/2
4

3
DMHWMH

μ (ks,k′s ′)

× [d†
−k+k′,μ + dk−k′,μ]c†ksσ ck′s ′σ ,

where

WMH
μ (ks,k′s ′)

= i

2
[seiφ(k)(F(−k) · �ημ1(q) − F(−k′) · �ημ2(q)e−iGu·�δ1 )

+ s ′e−iφ(k′)(F(k′) · �ημ1(q) − F(k) · �ημ2(q)e−iGu·�δ1 )]

(24)

with q and Gu defined below Eq. (21). The function F(k) is
defined by

F(k) = 1

a

3∑
j=1

�δj e
ik·�δj , (25)

which in our choice of coordinate system yields

F(k) = [ei 1
2 kxa cos(

√
3kya/2) − e−ikxa]x̂

+ [i
√

3ei 1
2 kxa sin(

√
3kya/2)]ŷ.

We note again that the deformation potential strength
WDP

μ (ks,k′s ′) in Eq. (21) contains a sum over reciprocal lattice
vectors G and therefore requires a physical cutoff in wave
vector space, provided by the finite range of the interaction
W . In contrast, the modulated hopping strength WMH

μ (ks,k′s ′)
in Eq. (24) involves only regular umklapp processes with
wavevectors that are within the first Brillouin zone, and at
most a reciprocal lattice vector that reduces q = k − k′ to the
first BZ, with k and k′ restricted to the first BZ.

The total electron-phonon Hamiltonian is now of the form

HMH + HDP = 1√
A

∑
kk′εBZ

ss ′σμ

(
�A0

2Mca2ω
μ

k−k′

)1/2

Mμ(ks,k′s ′)

× [d†
−k+k′,μ + dk−k′,μ]c†ksσ ck′s ′σ

with the transition matrix element

Mμ(ks,k′s ′) = −4

3
DMHWMH

μ (ks,k′s ′) − DDPW
DP
μ (ks,k′s ′).

(26)

Straightforward evaluation of the diagrams for the lowest
(second-order) electron self-energy, shown in Fig. 2, and
applying the quasiparticle approximation �s(k) = �s(k,�ω =
E(0)

s (k)), yields

�s(k) = 1

A

∑
k′∈BZ,μs′

C
μ
s,s′(k,k′)

×
[

1 − fs ′ (k′) + n
ph
μ (k − k′)

E
(0)
s (k) − E

(0)
s ′ (k′) − �ω

μ

k−k′ + iζ

+ fs ′ (k′) + n
ph
μ (k′−k)

E
(0)
s (k) − E

(0)
s ′ (k′) + �ω

μ

k′−k + iζ

]
, (27)

with (1/A)
∑

k′∈BZ = ∫BZ d2k′/(2π )2, ζ is a small positive
constant ensuring the retarded nature of the self-energy, and
the coupling coefficients (squared transition matrix elements)
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 s s s' s' 

FIG. 2. Feynman diagram for e-ph interaction; intraband (inter-
band) contributions s = s ′(s 
= s ′); dashed line = phonon Green’s
function.

are

C
μ

s,s ′ (k,k′) = �

2Mca2

Ao

ω
μ

k−k′

∣∣∣∣43DMHWMH
μ (ks,k′s ′)

+DDPW
DP
μ (ks,k′s ′)

∣∣∣∣2. (28)

The self-energy contains intraband (s = s ′) and interband
contributions (s 
= s ′). The electronic distributions functions
are denoted by fs(k), and n

ph
μ (k) = 1/(e�ω

μ

k /kBT − 1) is the
Bose function for the phonons.

We note that for acoustic branches, where ω
μ

Q → 0 linearly
in Q = k − k′, the deformation potential contribution to
C

μ

s,s ′ (k,k′) has terms of the form (Q − G)/ωμ

Q. In the first BZ
for which G = 0, this limit is trivially without singularities.
In all other Brillouin zones, where G 
= 0, the absence
of singularities is not obvious. We address this issue in
Appendix C.

The electron-phonon self-energy (e.g., Refs.
[35,50,51,93,94]) �s(k) critically contributes to many
physical observables such as electrical conductivity and
optical spectra. Electrical conductivity is largely determined
by scattering processes close to the Dirac point. However,
optical techniques provide tools for studying electron phonon
interactions at a variety of points in the Brillouin zone, so
knowledge of �s(k) over the entire Brillouin zone becomes
more important. In an ultrafast spectroscopic differential
transmission investigation of transitions close to the M point,
recent studies of nonlinear optical processes involved the
differential self-energy ��s(k), defined by

��s(k) = 1

A

∑
k′∈BZ,μs′

C
μ
s,s′(k,k′)

×
[

−�fs ′ (k′) + �n
ph
μ (k − k′)

E
(0)
s (k) − E

(0)
s ′ (k′) − �ω

μ

k−k′ + iζ

+ �fs ′ (k′) + �n
ph
μ (k′−k)

E
(0)
s (k) − E

(0)
s ′ (k′) + �ω

μ

k′−k + iζ

]
, (29)

where �fs(k) and �n
ph
μ (k) denote the optically induced

changes to the electronic and phonon distribution functions.
[Note that we do not calculate the self-energy self-consistently,
but rather we depend on unrenormalized band energies
E(0)

s (k).] In Sec. IV, we present a numerical study of the
electron-phonon self-energy �s(k), the differential self-energy
��s(k), and the coefficients C

μ
s,s′(k,k′), which determine the

strength of scattering an electron from initial state k′,s ′ to final
state k,s via electron-phonon interaction involving phonons
from branch μ.

III. LIMITING EXPRESSIONS CLOSE TO DIRAC POINT

To validate the appropriateness of this methodology, we
first use it to calculate the scattering strengths WMH

μ (ks,k′s ′)
and WDP

μ (ks,k′s ′) close to the Dirac K point and compare
the results with the published literature. We believe this is
useful because the expressions depend on the choice of the
coordinate system and hence are not exactly the same as,
for example, in Ref. [53]. Furthermore, when comparing
our results with the results in Refs. [53], we identify the
relative sign of the deformation potentials DMH and DDP

that enter the coupling coefficient C
μ

s,s ′ (k,k′) (i.e., the squared
transition matrix element) given in Eq. (28). We also identify
our deformation potential parameters with those in Ref. [55],
and we will comment on the concept of effective deformation
potentials.

We write k = K + p and k′ = K + p′, where K denotes
the Dirac point and p (p′) are small deviations from the Dirac
point. We denote by θp the angle of the vector p relative to the
x axis in the two-dimensional plane, and similarly for p′ and q
with q = p − p′. We expand the scattering strengths and other
quantities to leading order in q = |q|. For the phase in Eq. (18),
we obtain φ(k) = θp − θK + π in the vicinity of the Dirac point
K = 2π

3a
(1,1/

√
3) with θK = 30◦, and similarly φ(k) = −θp +

θK′ + π in the vicinity of the Dirac point K′= 2π
3a

(1,−1/
√

3).
For the intraband coupling, we find for the acoustical

phonon contributions

WMH
TA (K + p,1; K + p′,1)

= 3aq

4
√

2
ei 1

2 (θp−θp′ ) cos
1

2
(θp + θp′ + 4θq), (30)

WMH
LA (K + p,1; K + p′,1)

= 3aq

4
√

2
ei 1

2 (θp−θp′ ) sin
1

2
(θp + θp′ + 4θq), (31)

WDP
LA (K + p,1; K + p′,1)

= aq√
2
ei 1

2 (θp−θp′ ) cos
1

2
(θp − θp′), (32)

and for the optical phonon contributions

WMH
LO (K + p,1; K + p′,1)

= − 3i√
2
ei 1

2 (θp−θp′ ) sin
1

2
(θp + θp′ + 2θq), (33)

WMH
TO (K + p,1; K + p′,1)

= 3i√
2
ei 1

2 (θp−θp′ ) cos
1

2
(θp + θp′ + 2θq), (34)

WDP
LO (K + p,1; K + p′,1) = O(q2). (35)

Note that there is no deformation potential contribution to
transverse phonon modes, as a result of the dot product found
in Eq. (20).

For the general expression including interband and in-
traband couplings, we have for the acoustical phonon
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contributions

WMH
TA (K + p,s; K + p′,s ′) = 3aq

8
√

2
[sei(θp+2θq) + s ′e−i(θp′ +2θq)],

(36)
WMH

LA (K + p,s; K + p′,s ′)

= −i
3aq

8
√

2
[sei(θp+2θq) − s ′e−i(θp′ +2θq)], (37)

WDP
LA (K + p,s; K + p′,s ′) = aq

2
√

2
[1 + ss ′ei(θp−θp′ )], (38)

and for the optical phonon contributions

WMH
LO (K + p,s; K + p′,s ′) = − 3

2
√

2
[sei(θp−θq) − s ′e−i(θp′ −θq)],

(39)

WMH
TO (K + p,s; K + p′,s ′) = 3i

2
√

2
[sei(θp−θq) + s ′e−i(θp′ −θq)],

(40)

WDP
LO (K + p,s; K + p′,s ′) = O(q2). (41)

Using these expressions, we can relate the parameters
DMH and DDP derived here with similar parameters from the
literature. For LA phonons, our intraband coupling coefficient
close to the Dirac point is

CLA
1,1 (k,k′) = �

4Mc

Ao

ωLA
q

q2

∣∣∣∣DMH sin
1

2
(θp + θp′ + 4θq)

+DDP cos
1

2
(θp − θp′)

∣∣∣∣2. (42)

For comparison with Kaasbjerg et al., Ref. [53], we
combine Eqs. (5) and (7) of that paper, square them, and obtain,
using the notation in their paper,∣∣gLA

kq

∣∣2 = �

2AρωqLA

q2

∣∣∣∣β cos

(
2θq + 1

2
(θk + θk+q)

)

+α cos
1

2
(θk+q − θk)

∣∣∣∣2. (43)

We use ρ = 2Mc/A0 for the mass density and assume the extra
factor 1/A in Eq. (43) corresponds to the same factor we have
in Eq. (27). The first term in Eq. (42) is sin (2θq + 1

2 (θp + θp′)),
while that in Eq. (43) is cos (2θq + 1

2 (θk + θk+q)). The values
of these angles depend on the choice of the reference direction
relative to which the angles are defined. For example, a rotation
of the reference axis by 30◦ would convert the sine function in
question into a cosine. We suspect the apparent difference of
sine and cosine in Eqs. (42) and (43) could be nothing more
than a difference in the coordinate convention. Therefore, with
this caveat we can make the following assignment:

DDP = α, (44)

DMH = β. (45)

In order to determine the relative sign between DMH and DDP,
we plot in Fig. 3 our matrix element [compare Eq. (28)]
as

√
2

a
| 4

3DMHWMH + DDPW
DP| for comparison with Fig. 1

of Ref. [53], using DMH = ±2.5 eV and DDP = −2.8 eV

FIG. 3. The squared matrix element from Eq. (43) in the vicinity
of the Dirac point with DMH = −2.5 eV and DDP = ±2.8 eV (− left,
+ right) for comparison with Fig. 1 of Ref. [53]. The case of both
deformation potentials being negative (left) yields the same structure
as in Ref. [53].

where, as pointed out in Sec. II A, DMH is assumed to be
negative. We obtain good agreement with Ref. [53] only for
DMH = −2.5 eV, while opposite signs of DMH and DDP do not
reproduce the DFT results in Ref. [53]. (Again, note that in
our geometry, the hexagons in k space include vertical lines,
whereas in Kaasbjerg’s geometry they include horizontal lines,
explaining the relative rotation of our Fig. 3 to Kaasbjerg’s
Fig. 1.)

We next compare our expressions with those given in Park
et al., Ref. [55] as follows. Squaring the LA coupling matrix
element from Table I of Ref. [55], we have, using their notation
(the symbol η in Ref. [55] should not be confused with the
displacement vectors �η used throughout this paper),∣∣gLA

1,1(p,q)
∣∣2 = �|k′ − k|

4McvLA
s

∣∣∣∣34bη cos

(
2θk′−k + 1

2
(θk + θk′)

)
+D cos

1

2
(θk − θk′)

∣∣∣∣2. (46)

Here, ωLA
q = vLA

s q and |k′ − k| = q, and we assume that their
expression must be multiplied by A0 in order to compare
with ours. This latter assumption is based on the fact that
the k′ integral in our self-energy involves

∫
BZ d2k′/(2π )2,

see Eq. (27), whereas in much of the literature, it is written
as
∫

BZ d2k′/ABZ, where ABZ = (2π )2/A0 is the area of the
Brillouin zone, see, for example, Eq. (17) of Ref. [51]. With
this, we find the following association between our parameters
and those of Ref. [55]:

DMH = 3
4bη, (47)

DDP = D. (48)

In Ref. [55], the conventional deformation potential
was set to zero (D = 0) and η = 4.57 eV/Å, b =
1.405 Å, giving 3

4bη 	 5 eV, slightly larger but roughly
the same order of magnitude than the value βLA = 2.5 eV
in Ref. [53]. See Ref. [55] for a discussion of that
difference.

We finally would like to comment on the concept of so-
called effective deformation potentials, a formalism in which
contributions from modulated hopping (with longitudinal
and transverse phonons) are absorbed in the conventional
(longitudinal phonon) deformation potential terms. This means
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that the angular dependence of the electron phonon coupling is
assumed to be that of the conventional deformation potential,
whereas the numerical value of the conventional deformation
potential is adjusted in a way that it approximately includes
the modulated hopping contribution. This concept has been
used for scattering involving acoustical and optical phonons.
For example, Ref. [53] introduces an effective deformation
potential � 	 5 eV for electron-acoustic phonon scattering,
using the simple isotropic angular dependence of Eq. (32),
rather than using the more complex, anisotropic angular
dependence of Eqs. (30) and (31).

In our recent study, Ref. [61], we adopted that concept
and found good agreement with our experimental pump-
probe measurements near the M point. Similarly, an optical
deformation potential was used in Ref. [71] with a value of
11 eV/Å using an angular dependence based on the form given
in Eq. (32). In Ref. [61], we adopted the concept of an effective
optical deformation potential with the angular dependence of
the conventional longitudinal acoustical deformation potential
coupling and a value of D

op
eff = 11 eV/Å. We found reasonable

agreement with the experiment, but the theoretical values for
the differential transmission were slightly larger than those
obtained from the experiment.

In order to introduce an effective optical deformation
potential using the expressions WMH

μ (ks,k′s ′) given above, we
introduce an effective optical deformation by using Eq. (33):

CLO
1,1 (k,k′) = �Ao

4McωLO
q

16

a2
D2

MH sin2 1

2
(θp + θp′ + 2θq). (49)

Constructing now an effective optical coupling by replacing
the anisotropic angular dependence by the isotropic form,

C
op
eff(k,k′) = �Ao

4McωLO
q

D2
op,eff cos2 1

2
(θp − θp′), (50)

we have Dop,eff = 4DMH/a. Using the above value of DMH =
2.5 eV, and a = 1.42 Å, we find Dop,eff = 7 eV/Å, which
would improve our agreement with the experiment. However,
rather than using effective deformation potential models, in
this paper, we present results using the full model given by
Eq. (28).

IV. NUMERICAL RESULTS FOR TRANSITION MATRIX
ELEMENTS AND SELF-ENERGIES FOR THE ENTIRE BZ

In this section, we present a numerical analysis of the
transition matrix elements and self-energies. We do not restrict
ourselves to results close to the Dirac point, but show results
for the entire BZ. We numerically solve Eq. (28) for the
squared transition matrix elements (i.e., the probabilities for
electron scattering from k′,s ′ to k,s) and the corresponding
electronic self-energy Eq. (27), which determines, among
other things, transport coefficients, and the differential self-
energy Eq. (29), which determine the optical differential
transmission signal. The phonon eigenvalues and eigenvectors
entering the C

μ
s,s′(k,k′) are calculated as shown in Appendix B.

Unless otherwise noted, we use DMH = −2.5 eV, DDP =
−2.8 eV, a = 1.42 Å, t0 = 2.55 eV, temperature T = 300 K,
and ζ = 50 meV, a value small compared to the energy scale

FIG. 4. Self-energy (left: real part, right: imaginary part times
−1) at temperature T = 300 K including both deformation potential
(DP) and modulated hopping (MH) contributions for the conduction
(c) band, s = +1, and valence (v) band, s = −1.

in our problem but large enough for the k discretization in the
numerical evaluation of the self-energy.

The self-energy is shown in Figs. 4 and 5. The overall
features are in accordance with second-order perturbation
theory, as pointed out on p. 166 of Ref. [95] (cf. also
Ref. [96]). Second-order energy corrections are of the form
E

(2)
i =∑j 
=i |Vi,j |2/(E(0)

i − E
(0)
j ), where Vi,j are perturbation

matrix elements between states i and j . Neglecting the (small)
phonon energy in the denominator, Eq. (27), makes the
self-energy structure similar to calculations from conventional
perturbation theory. Considering first the conduction (c band,
s = +1) band in Eq. (27), we have a subset of energies with
lower and upper bound, and the expression for E

(2)
i shows

that the shift of the lower (upper) bound is negative (positive).
We see from Fig. 4 that indeed the shift (real part of �) is
positive at the highest c-band energy (i.e., at 
), and negative
at the smallest c-band energy (i.e., at K). In Fig. 4, we see that
the real part of � changes sign slightly above the M point. The
Kramers-Kronig relations dictate that there is a peak in the
imaginary part of � close to where the real part changes sign,
as seen in Fig. 4. A similar discussion holds for the valence
(v band, s = −1) band, except that the highest energy is at
the K point and the lowest at 
. These features also hold
qualitatively for the differential self-energy Eq. (29).

We see from Fig. 4 that the real part of the c- and v-band
self-energy becomes very small at the Dirac point. To analyze
this behavior further, we show in Fig. 6 the intra (cc) and
inter (cv) contributions. For semiconductors like GaAs, which
have a gap, it is not uncommon to restrict calculations of the
electron self-energy due to electron-phonon coupling to just
intraband contributions: the interband contributions are small

FIG. 5. Same as Fig. 4 but as a contour plot for the conduction-
band component �c (or s = +1). Units are meV.
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FIG. 6. The real part of the interband (cv) contribution to the
self-energy exists throughout the BZ. Close to the K point, it cancels
to a high degree the intraband (cc) contribution.

due to the appearance of the gap in the energy denominator. For
graphene, however, that would not be appropriate. From Fig. 6,
we see that there is a strong cancellation between intra- and
interband contributions that becomes gradually more perfect
as we approach the K point. Indeed, if the conical intersection
of c and v bands, characteristic for graphene, is to be preserved
by electron-phonon interaction, then either both c and v self-
energies have to vanish at K , or both have to be equal (i.e.,
they cannot have opposite signs). The former is the case for
T = 0 K, and the latter has been found to be true in Ref. [50].
We also note that the imaginary part of the interband self-
energy (not shown) is very small except very close to K , as
the transition energies from v to c are much larger than the
phonon energies.

Another feature of Fig. 4 is the lack of electron-hole
symmetry of the form �v(k) = −�∗

c (k). The symmetric two-
band model employed here preserves electron-hole symmetry
in the sense that Ev(k) = −Ec(k). At T = 0 K, the electron-
hole symmetry is also preserved by the distribution functions,
and at nonzero temperature the symmetry is preserved ap-
proximately, fv(k) 	 1 − fc(k). (Note that we do not consider
doped graphene.) The reason for the breaking of the electron-
hole symmetry seen in Fig. 4 is related to the squared matrix
elements (i.e. coupling coefficients). If we had either DP or
MH, but not both, the symmetry would still be preserved,
C

μ
cc(k,k′) = Cμ

vv(k,k′). But the DP and MH couplings add up
coherently in Eq. (28), and they have different behavior under
c-to-v exchange (MH changes sign, while DP does not). Thus
the coherent superposition of DP and MH scattering leads to
a breaking of the electron-hole symmetry.

Next, we take a more detailed look at the coupling
coefficients. In Fig. 7, we show the result for the sum of LA
plus LO phonon contributions for three choices of k. The DP
coupling has a finite range in k space; it is restricted to small
wave vector transfers q = k − k′, as discussed in Appendix A.
For k at the Dirac (here K ′) or M point, we see DP scattering
at the opposite side of the BZ, which indicates umklapp
processes that are discussed in Sec. V. Unlike scattering via
DP, scattering via MH is not restrictive to the vicinity of k
and is relatively strong across the entire BZ. For k at 
, it is
very weak, while k at M it dominates for small wave vector

FIG. 7. The squared matrix elements Cμ
cc(k,k′) in units of eV2 Å

2

for fixed k as a function of k′, for DP (left) and MH (right)
contributions. Here the sum CLA + CLO is shown.

transfers. Again, umklapp processes exist at the opposite side
of the BZ.

We show in Fig. 7 the sum LA plus LO contributions, be-
cause each contribution individually features discontinuities,
as shown in Fig. 8. The discontinuities are not unphysical but
related to the fact the LA and LO phonon frequencies are
degenerate on the BZ boundary, which in turn is a result of the
equal masses of the two atoms in the basis of the honeycomb
lattice. The discontinuities in the electronic self-energies occur
at locations that correspond to wave vector transfers q on the
BZ boundary, i.e., the boundary of the phonon dispersion.
Crossing that boundary in a continuous way would require
going from the LA to the LO branch. If we restrict ourselves
to, say, the LA branch, then crossing that boundary involves
a discontinuity in the phonon displacement vectors. Since the
C

μ
cc(k,k′) are in principle physically observable, one might

be led to conclude that such discontinuities should also be
observable. However, that would require an experimental

FIG. 8. The MH contribution to Cμ
cc(k,k′) in units of eV2 Å

2
for

k at the K point, showing the individual contributions from LA and
LO phonons as well as their sum.
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FIG. 9. Same as Fig. 7, but for TA phonons.

restriction to, say, the LA branch, which seems unlikely to
be realizable.

Figures 9 and 10 show the squared matrix elements due
to TA and TO phonons, respectively. The DP scattering
through coupling to the transverse phonons is weak. In
textbook treatments, this contribution is often completely
neglected, as in the long-wavelength limit the transverse

FIG. 10. Same as Fig. 7, but for TO phonons.

phonon displacement vectors are indeed strictly transverse,
and a coupling containing a factor q · �η vanishes. However,
on the larger scale of the entire BZ, the displacement vectors
deviate from being purely transversal: quite generally, their
translation properties in reciprocal space [Eqs. (13) and (14)]
impose a hexagonal symmetry (see Appendix B). Without the
finite range in k space of the DP coupling, we would see
large DP couplings to transversal phonons in the electronic
self-energy, at the locations corresponding to the BZ boundary
in the wave vector transfer q. However, the finite range cuts
that off, and what we see is the interplay between small DP
coupling range (favoring small q) and the deviation from
purely transverse displacements (favoring large q on the BZ
boundary). As expected, for coupling to transverse phonons
the MH contribution is stronger than the DP contribution. The
strongest scattering in Figs. 9 and 10 happens for k at the K

point with MH coupling. This is the well-known iTO coupling
discussed in Ref. [65]. Our results are also consistent with
those found in Ref. [55].

V. NUMERICAL RESULTS FOR DIFFERENTIAL
TRANSMISSION SPECTROSCOPY CLOSE

TO THE M POINT

In this section, we expand our recently published analysis
of differential transmission spectroscopy. In Ref. [61], we
presented experimental data for nondegenerate differential
transmission spectra, obtained for pump-probe delay times
from about 4 to 400 ps and spanning optical transitions close
to the M point at frequencies from about 3.6 to 5 eV. We also
presented a theoretical simulation using effective deformation
potentials as defined in Sec. III above. In the following, we
present new analysis of the same experimental data, now using
the more general theory outlined above using deformation
potential coupling (DP) and modulated hopping (MH) with
the same values for DDP and DMH as given in the previous
sections, taken from Ref. [53].

We calculate the differential spectra the same way as
detailed in Supplement Material to Ref. [61] [see Eqs. (6)–(8)
of that Supplement Material and the text following those
equations for parameter values]; however, the differential
self-energies entering the susceptibility here are those obtained
with the DP and MH models. In Fig. 11, we see that the
present theory gives overall very good agreement with the
experiment. The spectra exhibit regions of negative differential
transmission, which might be compared to Refs. [35–37,62],
but which in our theoretical model follow solely from an
increase of the phonon temperature. The change in phonon
temperature is manifest in the temperature dependence of
n

ph
μ (k) responsible for the �n

ph
μ (k) in Eq. (29). We assume

all phonons have the same elevated temperature, identical to
the temperature of the electrons, because the shape of the
differential signal does not vary substantially over delay times
up to 400 ps (see Fig. 3 of Ref. [61]). At such large delay
times, phonons have equilibrated with each other—via phonon
anharmonicities—and with the electronic system [78].

Breaking down the differential spectra into contributions
from DP and MH, we see that both contributions separately
give the correct shape of the spectrum: both give the correct
zero crossing and approximately the same ratio of the positive
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FIG. 11. Calculated differential transmission spectra (solid lines)
and experimental data (squares, after Ref. [61], for delay time 4
ps). The equilibrium temperature is 300 K and the elevated phonon
temperature is 600 K. (a) The contributions from DP and MH for
both optical and acoustic phonons. (b) The contribution from optical
and acoustic phonons for DP and MH.

over negative peak values. The absolute contribution of MH is
larger than that of DP, but the DP contribution is not negligibly
small. Shown in Fig. 11 is also the result without including
umklapp processes. It is roughly one half of the full result,
which is not surprising given the fact that for transitions close
to the M point umklapp processes occupy roughly half of the
BZ. A more detailed understanding of the role of umklapp
processes is given in Fig. 12. From the definition of umklapp
processes, it is clear that scattering processes with wave vector
k fixed at 
 do not involve any umklapp processes: comparing
Figs. 7 and 12, we see that there is no region of the BZ missing

FIG. 12. The squared matrix element, summed over all phonon

branches,
∑

μ Cμ
cc(k,k′) in units of eV2 Å

2
for fixed k as a function

of k′, for DP (left) and MH (right) contributions, without umklapp
processes.

FIG. 13. The longitudinal phonon contributions (LA and LO) to
the self-energy (top) and differential self-energy (bottom) in units of
meV. The equilibrium temperature is 300 K, and in the differential
self-energy, the elevated phonon temperature is 600 K.

due to the omission of umklapp. On the other hand, fixing k
at the M point and omitting umklapp leads to the loss of the
contribution from the left side of the BZ. In the case of DP
this is almost exactly one half of the scattering processes. For
the MH case we see that the area with zero value is actually
slightly larger than one half of the BZ.

In Fig. 11, we also break down the total differential
transmission into contributions from acoustic and optical
phonons. As mentioned above, the acoustic phonons yield
a larger contribution than the optical phonons because the
differential transmission requires thermal phonon occupation.
Note that the differential electronic occupation, �fs ′ (k′) in
Eq. (29), is numerically negligible for the temperatures used in
the present case. Hence, while optical phonons often dominate
over acoustic phonons, the strength of the acoustic phonons
is enhanced in differential transmission measurements. This
can also be seen from a global comparison of the underlying
self-energies across the BZ, shown in Fig. 13. Comparing
the overall magnitudes of the LA and LO self-energies, we
see immediately that the approximate maximum values are
12 and 5.5 meV, respectively. In contrast, the differential
self-energy yields 7.7 and 0.54 meV, respectively, indicating
a much greater role of the acoustic phonons in differential
transmission measurements.

VI. CONCLUSIONS

Using an expanded deformation potential approach, we
present a theoretical study of the electron-phonon self-energy
and scattering matrix elements of graphene across the entire
Brillouin zone. With phonon modes obtained from a dynamical
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matrix model as input, it is found that both modulated hopping
and conventional deformation potentials include umklapp
processes, but only deformation potentials require a physical
cutoff of its range in reciprocal space. Parameter values for the
deformation potential models are obtained from comparison
with literature data based on ab initio calculations. Discontinu-
ities in the scattering matrix elements inside the electronic BZ
are traced to phonon degeneracies at the phonon BZ boundary.
We apply the theory to nonlinear optical spectroscopy in
the vicinity of the M point and analyze the contribution of
umklapp processes to the observable differential transmission
signal. We find very good agreement with recently published
experimental data.

The use of deformation potentials to parametrize the
electron-phonon interaction in graphene is an important tool
for the quantitative analysis of transport and optical properties
of graphene. The consistency and agreement of our approach
with prior work at the Dirac K point and with our ultrafast
spectroscopic measurements at the M point indicate the
potential of this formalism to explore energy renormalization
due to electron-phonon interaction throughout much of the BZ.
However, we note that the validity of the theory, which is based
on two symmetric bands, likely varies throughout the BZ.
Apart from the K point, we have shown that the model is valid
close M point (see Sec. V), but close to the 
 point other bands
are found in realistic band-structure calculations [97]. These
may cause deviations from the predictions of the simple model
employed here. Such deviations need to be addressed in future
research. Furthermore, the dependence of the deformation
potentials DMH and DDP on the substrate is presently not
well understood. As discussed in Appendix A, we assume
that DDP depends stronger on the choice of substrate than
DMH. This assumption should be investigated in future studies.
Our present studies may also be helpful for further studies
of electron-phonon interaction effects in graphene and other
two-dimensional materials, such as the relationship between
electron-phonon interactions and topological effects and spin
textures in Dirac fermion systems [94,98].

APPENDIX A: MICROSOPIC MOTIVATION
OF DEFORMATION POTENTIAL MODEL

Throughout this paper, we use the Hamiltonian (1) as a
phenomenological starting point for a theory that includes
both conventional deformation potential coupling and mod-
ulated hopping coupling. In this appendix, we explore some
microscopic motivations that help us understand the functional
form of the q-dependent deformation potential coupling and
the sign of the deformation potential DDP.

A more general starting point for the derivation of the
deformation potential coupling would be that used in text
books (e.g., Refs. [83,95]):

Hel-ion = −
∫

nel(r,z)V (r − R,z − Z)nion(R,Z)d2rd2RdzdZ

(A1)

= − 1

A

∑
q

∫
nel( − q,z)V (q,z − Z)nion(q,Z)dzdZ,

(A2)

where V (r,z) is the Coulomb potential in three dimensions,
possibly screened through dielectric screening from the sub-
strate if the graphene layer is attached to a dielectric substrate.
The electron (ion) densities are denoted by nel (nion), and
spatial coordinates are denoted by lower case (upper case). In
the second line, we performed the two-dimensional Fourier
transform (q = (qx,qy)) since the graphene layer is extended
only in two dimensions. One possible simple way to proceed
would be to expand the Coulomb potential in a Taylor series
based on the system’s small extension in the direction normal
to the layer, V (q,z − Z) 	 V (q,0) + V

′
(q,0)(z − Z) + · · · ,

and possibly keeping only the leading order term,

V (q,z − Z) 	 V (q,0). (A3)

This approximation is probably more valid at small q and
less appropriate for q approaching the BZ boundary. Defining
the z-integrated electron and ion densities (or their qz = 0
components) via∫

nel(r,z)dz = nel(r,qz = 0) = nel(r),

∫
nion(R,Z)dZ = nion(R,qZ = 0) = nion(R),

the electron-ion interaction becomes

Hel-ion =
∫

nel(r)VL(r)d2r

with

VL(r) = −
∫

V (r − R,0)nion(R)d2R.

We use the 2p wave functions �2p(r,z) for the electron density
and the 2s functions �2s(R,Z) (highest occupied orbitals) for
the ion density, as was done in Ref. [63]. We can then write

nel(r,z) =
∑
jnσ

natom
el (r − Rjn,z)c†jnσ cjnσ ,

with natom
el (r,z) = |�2p(r,z)|2, and

nion(R) =
∑
jn

natom
ion (R − Rjn)nion

jn ,

with natom
ion (R) = ∫ natom

ion (R,Z) dZ, and natom
ion (R,Z) =

Ze|�2s(R,Z)|2, where Ze is the ion’s numeric charge (whose
value we do not need to specify as it will be absorbed in the
definition of the deformation potential). We can set nion

jn = 1
since in our theory, only small lattice vibrations are allowed,
and the number of ions inside each unit cell is always one.
Now

Hel-ion =
∑
jnσ

Vjnc
†
jnσ cjnσ

with

Vjn = −
∑
j ′n′

∫
natom

el (r − Rjn)V (r − R,0)

× natom
ion (R − Rj ′n′ )nion

j ′n′d
2rd2R.
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If we define

W (Rjn − Rj ′n′ ) =
∫

natom
el (r − Rjn)V (r − R,0)

× natom
ion (R − Rj ′n′ )nion

j ′n′d
2rd2R,

we obtain the form that we used in Eqs. (1) and (2):

Hel-ion = −
∑

jnσj ′n′
W (Rjn − Rj ′n′)c†jnσ cjnσ .

Using the two-dimensional Fourier transform, we can write

Hel-ion = − 1

A

∑
jnσj ′n′q

e
iq·(R(0)

jn−R(0)
j ′n′ )W (q)c†jnσ cjnσ , (A4)

with W (q) =natom
el (−q)V (q)natom

ion (q).
We follow Ref. [63] and use the following 2p and 2s model

functions: �2p(r,z) = z/(
√

32πa5
e )e−r/(2ae), and �2s(r,z) =

r/(
√

96πa5
i )e−r/(2ai ), where r = √

r2 + z2 and ae (ai) is
the electron (ion) Bohr radius. These model functions are
approximations to the Roothaan-Hartree-Fock wave functions,
p. 282 of Ref. [99], where in the 2s wave function the r0 term
(i.e., the 1s contribution in the Hartree-Fock expansion of the
2s wave function) has been neglected because its coefficient
is smaller than that of the r1 terms. The exponential decay
constant ai has been assumed equal for all terms in the
Hartree-Fock expansion. We now have

natom(q) = natom
el (−q)natom

ion (q) (A5)

with

natom
el (q) = 1

[1 + (qae)2]3
(A6)

and

natom
ion (q) = Ze

1 − (qai)2

[1 + (qai)2]4
. (A7)

In our numerical calculations, we assume both the electron
and the ion Bohr radius to be equal and equal to half of
the bond length a, so ae = ai ≡ a0 = a/2. Clearly, the range
of the potential W (q) is limited to values of q not much
larger than the inverse bondlength, and therefore roughly
constrained to within one Brillouin zone. Because of the strong
q-dependence of natom(q), we assume that for the definition
of the q-dependent deformation potential, we can omit the q
dependence of the Coulomb potential. Hence, in our numerical
studies, we use

DDP(q) = 2

A0
W (q) = 2

A0
V (0)natom(q) = DDP

1 − (qa0)2

[1 + (qa0)2]7
,

(A8)

with DDP = 2ZeV (0)/A0 and assuming that V (0) is finite. For
the case of the two-dimensional screened Coulomb potential,

V (q) = 2πe2

εeff[q + κ]
, (A9)

this requires a nonzero screening length κ , which depends
on the amount of plasma screening and therefore on the
doping concentration. In Eq. (A9), εeff is an effective dielectric
screening due to a potential substrate. For example, εeff =

FIG. 14. The q dependence of the deformation potential accord-
ing to Eqs. (A8) (blue solid line) and (A11) (red dotted line). The
position of the M point is indicated for various choices of a0.

(1 + εsubstrate)/2 represents the common case of a single
graphene layer attached to a substrate (see Refs. [69,74,100]).

We need to make two remarks regarding this approach.
First, based on this approach we would conclude that DDP =
4πZee

2/(A0εeffκ) is positive. Second, DDP depends on the
substrate via the factor of 1/εeff . It is then reasonable to
assume that the modulated hopping parameter DMH depends
less sensitively on the substrate, as it does not carry a
factor of 1/εeff . Future experiments that are more sensitive
to the conventional deformation potential than the modulated
hopping coupling might be able to test whether DDP has indeed
a 1/(εeff) dependence.

Regarding the first remark, we note that the possibility of a
negative deformation potential can be seen in the expression
given by Woods and Mahan [63]. In the notation of their
Eq. (49), they give an expression for the deformation potential

D̃ = v(q)ρT (q)ρe(q) = 4πZe2
(
3α−2

e − 5α−2
i

)
, (A10)

where v(q) is the Coulomb potential, ρ denotes the densities,
and α the inverse Bohr radii. Woods and Mahan introduce a
total density ρT (q) = ρi(q) − Zρe(q), which determines the
deformation potential D̃. For comparison, note that using our
notation and the densities given in Eqs. (A6) and (A7) as well
as a three-dimensional Coulomb potential V 3D(q) = 4πe2/q2,
the q → 0 limit of V 3D(q)[natom

ion (q) − Zen
atom
el (q)]natom

el (q) is
4πZee

2[3a2
e − 5a2

i ]. The treatment by Woods and Mahan
seems to indicate that a negative deformation potential might
be possible. Their q dependence would be

D̃(q) = D̃
1

[1 + (qa0)2]7
(A11)

if again we assume ae = ai = a0. For practical purposes, the
difference in the q dependence between Eqs. (A8) and (A11)
is not large, as shown in Fig. 14. We believe that more studies
along the lines outlined in this appendix will be needed in
the future to further elucidate the sign and q dependence
of the effective interaction W (q). In particular, relaxing the
approximation Eq. (A3) and starting with a three-dimensional
Fourier transform of Eq. (A1) yields an effective interaction
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of the form

W (q) =
∫

dqz

2π
V (q,qz)n

atom
el (−q,−qz)n

atom
ion (q,qz). (A12)

Further insight into the deformation potential might be gleaned
by expanding this approach to include the three-dimensional
Coulomb potential, following the approach introduced by
Woods and Mahan who used the total density to avoid the
q → 0 divergence. For the present analysis, we simply view
DDP as a parameter to be fitted, and the q dependence DDP(q) to
be given by Eq. (A8) as a reasonable representative functional
dependence.

APPENDIX B: PHONON MODEL

In this appendix, we list for completeness the details of the
phonon model that we use throughout this paper. It is based
on a model given in Appendix A of Ref. [64], but we are
using a different coordinate system, so here we will specify
the dynamical matrix as used in our calculations.

The in-plane phonon frequencies ω
μ
q and their polarization

vectors �ημ

j (q) (j = 1,2 for the two atoms in the basis) are
obtained from a numerical solution of the phonon eigenvalue
equation, neglecting out-of-plane phonon modes (see, for
example, Ref. [84]). As illustrated in Fig. 1, we use a notation
and geometry, adapted from Ref. [17], in which the two basis
atoms are chosen to lie on a horizontal axis, and atom 1 (2)
is the right (left) atom, with two-dimensional displacement
vector �ημ

1 (�ημ

2 ). For this geometry, the phonon eigenvalue
equation equivalent to that derived in Ref. [64] reads

(�ωμ)2

⎡⎢⎢⎢⎣
η

μ

1x

η
μ

1y

η
μ

2x

η
μ

2y

⎤⎥⎥⎥⎦ = (D̂bs + D̂bb)

⎡⎢⎢⎢⎣
η

μ

1x

η
μ

1y

η
μ

2x

η
μ

2y

⎤⎥⎥⎥⎦, (B1)

where the bond stretching dynamical matrix is

D̂bs = K̄1

⎛⎜⎜⎜⎝
3
2 0 h3 −h2

0 3
2 −h2 h1

h∗
3 −h∗

2
3
2 0

−h∗
2 h∗

1 0 3
2

⎞⎟⎟⎟⎠, (B2)

and the bond-bending dynamical matrix reads

D̂bb = K̄2

⎛⎜⎜⎜⎝
h6 −h5 6h1 6h2

−h∗
5 h4 6h2 6h3

6h∗
1 6h∗

2 h6 −h∗
5

6h∗
2 6h∗

3 −h5 h4

⎞⎟⎟⎟⎠, (B3)

with the matrix elements

h1(q) = −3

2
eiqxaL/(2

√
3) cos

(qyaL

2

)
, (B4)

h2(q) = i

√
3

2
eiqxaL/(2

√
3) sin

(qyaL

2

)
, (B5)

h3(q) = −e−iqxaL/
√

3 − 1

2
eiqxaL/(2

√
3) cos

(qyaL

2

)
, (B6)

FIG. 15. The phonon dispersion diagram for the in-plane branches.

h4(q) = 7 + sin2
(qyaL

2

)
+ 2 cos

(qyaL

2

)
cos

(√
3

2
qxaL

)
,

(B7)

h5(q) =
√

3iei
√

3qxaL/2 sin
(qyaL

2

)
− i

√
3

2
sin(qyaL), (B8)

h6(q) = 9 − 3 sin2
(qyaL

2

)
. (B9)

The normalization of the phonon modes is |ημ

1x |2 + |ημ

1y |2 +
|ημ

2x |2 + |ημ

2y |2 = 1, and we choose the y component of �ημ1

to be purely real for all q. We use the parameter values K̄1 =
0.01 (eV)2, and K̄2 = 0.0565K̄1 [64]. Figure 15 shows the
phonon dispersion obtained from this model, and Fig. 16 shows
the eigenvectors across the entire Brillouin zone. Note that,
according to Eq. (14), the eigenvector for atom 2 is not periodic
in reciprocal space.

We note that in the small q limit, the acoustic branches are,
to linear order in q [64],

�ωTA
q = qaL

√
3

2

K̄1K̄2

K̄1 + 6K̄2
, (B10)

�ωLA
q = qaL

√
3

2

K̄1K̄2

K̄1 + 6K̄2
+ 1

8
K̄1, (B11)

where aL is the lattice constant. Furthermore, the two-
dimensional eigenvectors of atom 1 and 2 become identical
in this limit,

�ηTA
1 = �ηTA

2 = 1√
2q

(−qy

qx

)
, (B12)

�ηLA
1 = �ηLA

2 = 1√
2q

(
qx

qy

)
. (B13)

It is clear from Fig. 16 that at away from the zone center the
two eigenvectors of atom 1 and 2 are not identical anymore.
Furthermore, away from the zone center they are not real-
valued, purely transverse, or purely longitudinal anymore.
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FIG. 16. The vector contour plots of the complex-valued two-
dimensional displacement vectors η1 and η2 corresponding to the
phonon branches in Fig. 15. The real part of the vectors are shown as
arrows, and the magnitude of the imaginary part as color contour.

APPENDIX C: ABSENCE OF DIVERGENCES
IN HIGHER BRILLOUIN ZONES

A potential singularity problem in the deformation potential
contribution to the self-energy [Eqs. (27) and (28)] may arise at
k − k′ = Gu, where Gu is any reciprocal lattice vector, due to
the vanishing of ω

LA,T A
k−k′ at these points. We consider a possible

compensating zeroing of WDP
LA and WDP

TA here, see Eq. (21). We
consider first the case Gu = 0 and then the case Gu 
= 0.

1. k − k′ = q ∈ BZ

We consider the point q = 0 and hence k = k′. By this we
imply in the following the limit of q → 0 where the phonon
vectors �ημi(q) are well-defined for any small but nonzero q.
To show the vanishing of ω

LA,T A
q=0 , it can be seen from Eq. (21)

that one needs to show

∑
G

W (−G)G[1 + eiG·�δ1 ][1 + ss ′e−iG·�δ1 ] = 0, (C1)

where we have used �ημ1(q) = �ημ2(q), which is valid in the
small q limit and omitted the common factor of �ημ1(q).
Equation (C1) would not be generally true for an arbitrary
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FIG. 17. Sketch of the first Brillouin zone, labeled (0,0), and three
rings surrounding the first BZ.

function W (G). Some assumptions on W ’s behavior need to
be taken.

a. Intra(electron)band scattering: s = s′

Equation (C1) can be proven in this case with the weak
assumption W (−G) = W (G). Under this assumption, the
factor W (−G)[1 + eiG·�δ1 ][1 + e−iG·�δ1 ] is invariant under the
substitution G → −G, while the factor G acquires a minus
sign. So, the summand in Eq. (C1) is odd under G → −G,
and the sum is zero.

b. Inter(electron)band scattering: s = −s′

This case appears to be more difficult, and instead of a general
proof, we restrict ourselves to the assumption that W (G) is
the same for all G’s in the same ring of reciprocal space cells
around the first Brillouin zone, and proceed as follows. We
outline a general strategy for the proof, and we check that
Eq. (C1) is indeed valid for the G sum over each ring up to the
third ring, see Fig. 17.

The rings are numbered by j = 1,2,3, . . . outwards from
the first ring around the first BZ. We consider the sum over the
j th ring and denote the common value of W in this ring by
W (G ∈ j th ring) = Wj . The left-hand side of Eq. (C1) reduces
to ∑

G∈j th ring

W (−G)G[1 + eiG·�δ1 ][1 − e−iG·�δ1 ]

= 2iWj

∑
G∈j th ring

G sin(G · �δ1). (C2)

The summand is even under G → −G and so the argument
in the intraband case does not apply here. G can be written as
G = m1b1 + m2b2, where b1 = 2π

3a
(x̂ + √

3ŷ), b2 = 2π
3a

(x̂ −√
3ŷ) are the basis vectors in reciprocal space, and m1, m2 are

integers. This gives

sin(G · �δ1) = − sin[(m1 + m2)2π/3] =
√

3

2
M(m1 + m2),

(C3)
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where

M(m1 + m2)

= 0 for m1 + m2 being a multiple of 3,

= 2mod(m1 + m2,3) − 3 otherwise.

For example, for m1 + m2 = −4, − 3, . . . ,3,4, the cor-
responding values for M(m1 + m2) are, respectively,
1,0,−1,1,0,−1,1,0,−1. Equation (C2) is then given by

2π√
3a

Wj i
∑

m1,m2
(j th ring)

[(m1 + m2)x̂ +
√

3(m1 −m2)ŷ]M(m1 + m2),

(C4)

where the sum goes over values of m1,m2 that give G’s lying in
the j th ring. We note that if one G is given by kb1 + nb2, then
its mirror image across the x axis is given by nb1 + kb2, which
implies that the contributions to the y component of Eq. (C4)
from a G and its mirror image cancel each other. The G’s in
a ring are paired up as mirror images across the x axis except
for those lying on the x axis, each of which is of the form
n(b1 + b2) and yields zero to the y component of
Eq. (C4). Therefore Eq. (C4) reduces to 2π√

3a
Wj ix̂

∑
m1 ,m2

(j th ring)

(m1 +

m2)M(m1 + m2), and one needs to show∑
m1,m2

(j th ring)

(m1 + m2)M(m1 + m2) = 0. (C5)

The coordinates (m1,m2) and the functional values of M(m1 +
m2) are shown in Fig. 17 for the innermost three rings. It is
easy to see that Eq. (C5) is satisfied for each of these rings.

2. k − k′ − Gu = Q ∈ BZ and Gu �= 0

We reduce this case to the case discussed above. For this, we
set q = 0 and hence k = k′ + Gu. Then the factor in WDP

LA,T A

becomes ∑
G

W (Gu − G)(G − Gu)

× [1 + ei(G−Gu)·�δ1 ][1 + ss ′e−i(G−Gu)·�δ1 ], (C6)

where we have used φ(k′ + Gu) = φ(k′) + Gu · �δ1. We substi-
tute the dummy variable G → G′ ≡ G − Gu and see that the
summed part of Eq. (C6) is the same as the left-hand side of
Eq. (C1), which was shown to vanish to the extent explained
above.
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