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Structure and energetics of interlayer dislocations in bilayer graphene
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We present a general hybrid model based upon the continuum generalized Peierls-Nabarro model (with density
functional theory parametrization) to describe interlayer dislocations in bilayer systems. In this model, the bilayer
system is divided into two linear elastic 2D sheets. The strains in each sheet can be relaxed by both elastic in-plane
deformation and out-of-plane buckling; this deformation is described via classical linear elastic thin plate theory.
The interlayer bonding between these two sheets is described by a three-dimensional generalized stacking-fault
energy (GSFE) determined from first principle calculations and based upon the relative displacement between
the sheets. The structure and energetics of various interlayer dislocations in bilayer graphene was determined by
minimizing the elastic and bonding energy with respect to all displacements. The dislocations break into partials,
and pronounced buckling is observed at the partial dislocation locations to relax the strain induced by their edge
components. The partial dislocation core width is reduced by buckling. An analytical model is also developed
based upon the results obtained in numerical simulation. We develop an analytical model for the bilayer structure
and energy and show that these predictions are in excellent agreement with the numerical results.
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I. INTRODUCTION

Since the successful exfoliation of monolayer graphene,
its extraordinary physical properties have been widely inves-
tigated and show promise for future nanotechnology applica-
tions [1]. Recently, bilayer graphene, the stacked counterpart of
monolayer graphene, has attracted increasing attention, in part,
because its band gap is tunable up to 300 meV [1]. Band-gap
modulation induced by application of an electric field in bilayer
graphene has been experimentally confirmed [2]. The band gap
of layered materials, such as bilayer graphene [3—5], hexagonal
boron nitride, MoS,, as well as phosphorene can also be varied
by changes in bilayer stacking [3—8] and elastic strain [8—10].

While the relatively weak van der Waals (vdW) like
interactions between graphene layers (compared to the strong
interlayer covalent bonds) are sufficient to adhere two layers,
the energy difference and barriers between different (sliding)
translational states are sufficiently small that several distinct
bilayer states can be realized. Mechanical procedures used
to assemble bilayer graphene inevitably lead to a variety
of translation states, often in a single graphene bilayer.
Dislocation lines, lying between the two graphene sheets that
compose the bilayer, separate domains in the bilayer that are
in different translational states. Grain boundaries between two
layers that are rotated with respect to one another (i.e., twist
boundaries) can be described as arrays of dislocations plus
stacking faults (metastable translation states). The generalized
stacking-fault energy [11] (GSFE, i.e., the energy landscape
associated with uniformly translating one layer with respect
to the other) can be used to understand (and predict) both
dislocation and bilayer twist boundary structure and properties.

In two-dimensional materials, such as monolayer graphene,
the term dislocation is usually used to describe pointlike (OD)
defects lying within the sheet; e.g., pentagon-heptagon or
square-octagon pairs. Such defects are edge dislocations with
line directions oriented normal to the sheet. Unlike in monolay-
ers, in bilayers itis also possible to have one-dimensional (line)
dislocations. Such linear defects are interlayer dislocations
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that lie between the two layers of a bilayer material; these
dislocations do not require the generation of any topological
defects within either sheet to form. Also, unlike in monolayers,
where the motion of pointlike dislocations requires a large
energy ~7 eV [12] (because of the covalent nature of the
bonding), we expect that the weak van der Waals bonding
between graphene layers should lead to very small activation
energies for the glide of such 1D interlayer dislocations in
bilayer graphene.

A general model for describing dislocations and twist
boundaries in bilayer systems can be derived on the basis of
earlier models for dislocations in three-dimensional materials
and thin films. For example, an edge dislocation in a free-
standing thin film will bend the film through an angle
0 = 3b/2h, where b is the magnitude of the Burgers vector
and A is the film thickness [13]. This demonstrates that the
elastic field of a dislocation can bend/buckle free standing
films. The applicability of this result to bilayer graphene is
not straightforward because it is both extremely elastically
anisotropy and sliding between layers can occur. The latter
can lead to different translational states on each side of the
dislocation, i.e., dislocations in graphene can break into partial
dislocations. An appropriate model must account for both of
these effects.

Recently, buckling has been observed in bilayer graphene
and investigated via TEM, diffraction, and atomistic simula-
tion [14]. Butz er al. [14] showed that the amplitude of the
buckling in bilayer graphene is ~1 nm and the width of the
buckled region is several tens of nanometers. Compared with a
flat bilayer, buckling substantially reduces the dislocation core
width and relaxes the dislocation line energy in a free standing
bilayer. Another recent study analyzed interlayer dislocations
in bilayer graphene on the basis of a one-dimensional, Frenkel-
Kontorova-like model [15], in which a dislocation is treated as
a soliton. While interesting and reasonable, such an idealized
model predicts dislocation core widths significantly larger than
experimentally observed [15].
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In this paper, we present a general approach based upon
a Peierls-Nabarro model to describe interlayer dislocations
in bilayer materials. In the classical Peierls-Nabarro model
[16-18] (and its generalizations [19,20]), the material is
divided into two semi-infinite linear elastic continua by the
dislocation slip plane, the interface between these two continua
have a relative displacement (disregistry) in the presence
of dislocations, and the two continua are connected via a
nonlinear function (atomic bonding) of the disregistry. We
adopt a similar approach, replacing the semi-infinite crystal
continua with 2D membranes. The strains in the membranes
relax in-plane elastic deformation and out-of-plane buckling;
the membrane deformation is described via linear elastic
thin plate theory [21-23]. The GSFE describes the bonding
between graphene sheets. The structure and deformation of
the bilayer with an interlayer dislocation is determined by
the force balance between the local stresses in the graphene
sheets and the restoring force from the interlayer bonding,
as represented by the GSFE. We apply this approach to
determine the structure and energetics of four interlayer
dislocations in bilayer graphene: edge, screw, 30°, and 60°
(i.e., the angles between the Burgers vector and the line
direction). We determine the buckling amplitude, in-plane
strain distributions, partial dislocation structures, core widths,
and dislocation energies. Based on these results, we construct
a simple analytical model to describe the buckling and in-plane
deformation of bilayer graphene with dislocations of arbitrary
Burgers vector and show that the analytical model is in
excellent agreement with the simulation results.

II. HYBRID MODEL FOR BILAYER STRUCTURE

Figure 1(a) shows 2D views of the bilayer with an interlayer
dislocation. First, the natural state consists of two flat, parallel
elastic sheets without any deformation. In the x; direction,
the lengths of the upper and lower layers are l(l) . and
19 [Fig. 1(al)]. Next, we uniformly compress/stretch the
uppet/lower layer to the same length / ? such that there is no net
stress in the bilayer [Fig. 1(a2)]. The “buckled state” is found
by minimizing the system energy [Fig. 1(a3)]. Its projected
length is I; (I; <19 due to buckling); we also introduce a
flat “reference state” of the same length [Fig. 1(a4)]. There

state
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(a2) b:
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FIG. 1. Schematic illustrations of the bilayer system with (a) 2D
and (b) 3D views, indicating [(al) and (bl)] its natural state; [(a2)
and (b2)] its uniformly strained state; [(a3) and (b3)] its buckled
state; and [(a4) and (b4)] its reference state. The Burgers vector is
b= (I?Jr —19)%,.
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are uniform normal strains sgi = - l?:t)/l?:t (i=12)
in the reference state [Fig. 1(b4)], &) = (17 /17 el —
1, —19)/12,, where i € {1,2}.

The total energy of the bilayer consists of the elastic energy
E. and the misfit energy E,, (the bonding energy between the

two layers), i.e.,
E,=Ey +E._+Ep, (D

where +/— represents the upper/lower layers.

The elastic energy of a single layer E.. has contribu-
tions from in-plane strains E;y and bending Epy [21,23,24]
(Eex = Esx + Eps):

1
Es:l: = E/Eicieidxldxz, (2)

1
Eb:l: = E/K:I:sz:dxldx% (3)

where € 1 are the in-plane strain tensors, C 4 are the anisotropic
elastic constant tensors, and x4 are bending rigidities corre-
sponding to the mean curvature H.. The strains in the buckled
layer need to include the effects of deflection away from the
flat configuration,

ex =€ +(Vur +Vul + V[ i ®@V[f))2, 4)

where uy = (u4,ur4 ) are the x1,x, displacement vectors and
€Y are the reference strains. The mean curvature of each layer
is calculated from its vertical (z) displacement fy [21].

The misfit energy E,, associated with the vdW interactions

between the layers is
En = [ Tt fidxda, )

where T'(u', f1) is the 3D GSFE [5,11], and ut = (ui,uy)
is the relative in-plane displacement between the layers
(measured in the deformed configuration), and f* is the
interlayer separation (measured along the layer normal).
The relative displacements between the two buckled layers
are ui = (e, — &) xi + (i — i) + (3 + Fo)do +
fr— f)and f = f, — f_ +dy. In the results presented
below, we use the 3D GSFE reported by Zhou et al. [5].

The equilibrium bilayer structure can be obtained by
minimizing the total energy with respect to the six functions,
u1+(x1,x2), us+(x1,x2), and fi(xy,x2). The equilibrium equa-
tions for those variables are
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The minimum energy configuration can be found by
iterating the following set of equations to convergence:
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These equations are solved using the fast Fourier transform
method with a semi-implicit scheme, i.e., the linear (nonlinear)
terms are discretized using an implicit (explicit) scheme. The
numerical details are in the Supplemental Material (SM) [25].

III. INTERLAYER DISLOCATION-INDUCED BUCKLING

We apply the model to describe the buckling of bilayer
graphene in the presence of interlayer dislocations. We assume
that the dislocation is straight and lies along the x, axis; the
edge and screw components of the Burgers vector of the
dislocation are b, = b - | and b; = b - X,, respectively. For
the case of a straight dislocation, all of the displacements
and strains are uniform along x,; hence, there is only one
variable x; in all of the simulations. The edge component b,
can be thought of as originating from the addition of an extra
atomic period in the x; direction; this is the origin of the length
differences of the two layers along x; contributes to the natural
state in Fig. 1, i.e., l?+ = 1?7 — b,. The screw components of
the Burgers vector do not induce any natural length differences
between the two layers, i.e., I3, =13_.

In this paper, we consider four types of dislocations (i.e.,
with different orientations of the Burgers vector with respect
to the line direction, 0): (1) edge 90° (b, = —agp,b; = 0); (2)
mixed 60° (b, = —+/3a0/2,bs = ap/2), (3) mixed 30° (b, =
—ay/2,bs = ﬁao/Z), and (4) screw 0° (b, = 0,b, = ayp),
where ap = 0.242 nm is the carbon-carbon separation along
the zigzag direction. For the edge and mixed 30° dislocations,
the x; and x, axes are along the [1120] and [1100] directions,
respectively, and for the mixed 60° and screw dislocation, the
x1 and x, axes are along the [1100] and [1120] directions. It is
well known that basal dislocations in graphite can dissociate
into pairs of partial dislocations, separated by a planar stacking
fault [26] with a finite stacking fault energy (per area). In
bilayer graphene, the same type of dissociation occurs [14]; see
Table 1. Upon crossing from one side of a partial dislocation
to the other, the local stacking order changes from AB to
AC. These two stacking sequences are equivalent in bilayer
graphene (not so in graphite) and, hence, there is no energy
difference between these (i.e., the stacking fault energy in
bilayer graphene is exactly zero) [5,14].

In our simulations, the only input into the hybrid model
is the elastic properties of each monolayer (based on
AIREBO [27] potential calculations [23] C;; = 312.67J /m?,
Ci» =91.66 J/m?,Cyy = 110.40 J/m?, and Kk = 22.08 x

TABLE I. Partial dissociation in bilayer graphene.

Partial A Partial B
Dislocation b? b,° 0° bz 0
Edge 90° ap[1120]/3  ag[1010]/3  60°  ap[0110]/3 120°
Mixed 60°  ao[2110]/3 ao[11001/3  90°  ao[1010]/3 150°
Mixed 30°  ap[2110]/3 ao[1010]/3  60°  ap[1100]/3  ©0°
Screw 0° ap[1120]/3  ag[0110]/3  150°  ap[1010]/3 150°

b is the Burgers vector of the full dislocation.

b, and by are the Burgers vectors of partial dislocations A and B,
respectively.

6 is the angle between the Burgers vector and the dislocation line
direction.
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FIG. 2. The first two panels are the variation of the layer (a)
profiles f, (b) gradient of the profiles df/dx;, (c) the mean curvature
of the layers, (d) the relative displacements between two layers u™,
strains (e) €;; and (f) €, as a function of distance x; along the
bilayer. The blue and red solid curves correspond to the upper and
lower layers, and the solid and dashed curves to the buckled and flat
bilayer cases, respectively. The third panel is the layer profiles f for
(g) mixed 60°, (h) mixed 30°, and (i) screw 0° dislocations.

1072% J) and the interlayer 3D GSFE. The 3D GSFE employ
here was determined by fitting to accurate density func-
tional theory results obtained using the adiabatic-connection
fluctuation-dissipation theorem within the random phase ap-
proximation [28-30] (ACFDT-RPA) by Zhou et al. [5].

A. Edge dislocation

Figure 2 shows the main edge dislocation results. In the
buckled state, the bilayer projection length [see Fig. 1(a3)] is
[y = 72.52 nm. The edge dislocation decomposes into two
partials and buckles upward by ~1.4 nm. Note that the
amplitude of the buckling is almost identical in the upper
and lower layers. The slope of the bilayer profile [Fig. 2(b)]
shows a sawtoothlike form, with two abrupt jumps at the
positions of the partial dislocations. Figure 2(c) shows that
the curvature of each layer is nearly constant except very near
the partial dislocation cores where it is approximately Gaus-
sian. The width of the Gaussian provides a good measure of
the dislocation core size; we measure the FWHM core size
from this to be ~2.4 nm.

Figure 2(d) shows the relative displacements along the x;
and x; direction, ulL and uzL (corresponding to the edge and
screw components of the Burgers vector). These displacement
profiles are approximately piecewise constant (each constant
region corresponds to perfect AB/AC stacking of the bilayer)
with jumps in between these. The jump magnitudes are
(—ao/2,a0/2~/3) and (—ag/2, — ag/2+/3). These two com-
ponents correspond to the edge and screw components of
the partial dislocation Burgers vectors. The dislocation core
widths, deduced from these data, are nearly the same width as
estimated from Fig. 2(c).

The in-plane strains ¢ and €, for each layer are shown
in Figs. 2(e) and 2(f). In both cases, the strains are nearly
zero except in the vicinity of the dislocation cores. £1; shows
peaks of the same sign in each layer, while &, shows peaks
with opposite signs in each layer. This corresponds to the sign
of the edge and screw components of the two partials, i.e.,
bA,e = bB,e = —00/2 and bA,s = _bB,s = a0/2\/§. Unlike in
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FIG. 3. The total and component energy densities of the buckled

(solid lines) and flat (dashed lines) graphene bilayers containing an
edge dislocation.

bulk materials, here, the amplitude of the strain ¢;; is much
smaller than the strain &;,; we return to this below.

In order to clarify the effects of layer buckling, we also
consider the case where the bilayer is flat fi = 0; see the
dashed lines in Fig. 2. Trivially, the profile of f versus x;
and all its derivates are zero in this case [Figs. 2(a)-2(c)].
However, comparison of the results in Figs. 2(d)-2(f) between
the buckled and flat geometries is instructive. The partial
dislocation core widths for the case where the layers are flat
can be estimated from Figs. 2(d)-2(f). We measure the core
widths to be ~6.3 nm which is larger than in the buckled case
by a factor of ~2.5.

The total energy has contributions from in-plain strain,
bending, and misfit, as shown in Table III and the correspond-
ing profiles shown in Fig. 3. Focusing first on the buckled case,
we see that the in-plane strain energy is larger than the misfit
and much larger than the bending energy (these energies are
the integrals under the curves in Fig. 3). The energy density
peak heights for the bending and strain are nearly equal to the
misfit energy. This demonstrates that very little energy is stored
in the bending degree of freedom of the bilayer. For the flat
case, the in-plane strain energy (since there is no bending here,
this energy is the entire elastic energy) and the misfit energy
are almost perfectly balanced. Comparison of the buckled and
flat cases shows that buckling decreases the dislocation energy
by nearly a factor of two. The energy density curves show
that peak heights for the total energy and misfit energy are
almost identical in the two cases. The difference in energy is
attributable to the fact that buckling decreases the dislocation
core width (Fig. 3).

We also compare our bilayer graphene simulation results
to those obtained from the fully atomistic simulations of Butz
etal. [14], as shown in Fig. 4 (we interpolate the discrete atom-
istic data, as discussed in the Supplementary Material [25])
[31]. In the atomistic simulations [14], the empirical AIREBO
potential [27] and a registry-dependent interlayer potential [32]
were used to describe the in-plane carbon bonds and interlayer
interactions in bilayer graphene, respectively. Butz ef al. [14]
implemented these potentials [27,32] within the molecular
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FIG. 4. Comparison between the results from this study and the
atomistic results from Butz ef al. [14]. The solid and dashed curves
represent the model and atomistic results, respectively. Panel (a)
represents the vertical displacement f, (b) relative displacements
between the layers, and the strain (c) ;; and (d) €, profiles. An
enlarged view of (a) can be found in the Supplementary Material [25]
along with the uninterpolated atomistic simulation data.

dynamics simulation package LAMMPS [33]. Examination
of this figure and the more detailed Fig. S1 in the SM
show that our continuum-based model provides an excellent
quantitative match to the atomistic simulation results and
validates our continuum-based model. The very small devi-
ations are likely the result of two factors. First, the atomistic
simulations are based on an empirical interatomic potential
(the registry-dependent interlayer potential was fit to density
functional theory results in the local density approximation),
while our continuum-based model was parameterized from
accurate first principles (GSFE) data (obtained using the
more reliable ACFDT-RPA approach [5]) and elastic con-
stants. The second is due to the differences of relaxation
methods and convergence criteria (the energy differences in-
volved are extremely small, hence exact coincidence between
our model and the atomistic simulations is not expected).
The overall excellent agreement suggests that model is
quantitative.

B. Simulation results for other dislocations

In this section, we show the results for the other three types
of interlayer dislocations: (1) mixed 60° (b, = —\/§a0 /2,by =
ap/2), (2) mixed 30° (b, = —ag/2.by = ~/3ay/2), and (3)
screw 0° (b, = 0,b; = agp). For the mixed 30° dislocations,
the x; and x, axes are along the [1120] and [1100] directions,
respectively, and for the mixed 60° and screw dislocation, the
x; and x, axes are along the [1100] and [1120] directions.

The edge dislocation results demonstrate that the disloca-
tion dissociates into a pair of 60° partial dislocations that are
identical (apart from a mirror symmetry; AB/AC vs AC/AB).
We demonstrate here that other dislocations also dissociate
into partials but these partials are, in general, inequivalent (the
exceptions are the pure edge and pure screw cases). In Fig. 5,
we show the model results for the 60°,30°, and pure screw
dislocations, as shown for the edge dislocation in Fig. 2.

The 60° dislocation [Fig. 5(a)] decomposes into edge and
30° partials. The amplitude of the profile and the jump in
df/dx at the edge partial is larger than that of the 30° partial.
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TABLE II. Core width for different partial dislocations (nm).

Edge 90° Mixed 60°  Mixed 30°  Screw 0°

1 1 1 1 1 1
0 100 200 300 0 100

1 | 1 1 1 1 1
200 300 0 100 200 300

X,/ a, X,/ ag

-1 ! 1

X,/ ag

FIG. 5. Results for general dislocations in buckled configuration
(solid lines) and flat configuration (dashed lines). Left column: mixed
30° dislocation; middle column: mixed 60° dislocation. Right column:
screw dislocation.

The jump in df/dx, at the dislocation core tells us the turning
angle of the profile f there. Figure 5(a4) shows the ¢, profile
and also shows that this strain associated with the edge partial
is larger than that associated with the 30° partial; this is because
this strain component is related to the edge component of the
Burgers vector. On the other hand, the strain that couples to
the screw component of the Burgers vector 1, [Fig. 5(ad)]
does show the edge partial. The 30° partial also appears in
this profile because it has mixed edge/screw character. Finally,
the displacement difference profile [Fig. 5(a6)] shows either
just the edge partial or both partials, depending upon whether
the displacement component is parallel or perpendicular to the
dislocation line direction.

A mixed 30° dislocation dissociates into a 60° partial and
a screw (0°) partial. Surprisingly, examination of Fig. 5(b1)
shows only the 60° partial (the other partial is present, but
not visible). Comparison with Fig. 2(a) shows that this partial
is identical with the 60° partial seen in the pure edge case.
The missing partial is pure screw. This suggests that the edge

Buckled (Flat)  1.5(7.2)  24(63)  3.7(53) 4.5(4.5)

component of the partial dislocation Burgers vector controls
sharp bending; no edge component implies no sharp bend.
The curvature between the partial and next image (across the
periodic boundary condition) is nearly constant [Figs. 5(bl)—
5(b3)]. Figure 5(b4) shows no hints of the second partial; this
is because this partial has no edge component. The profile of
€12 [Fig. 5(b5)] does show this screw partial. Examination of
Figs. 5(a) and 5(b) show that the turning angle increases in
magnitude from the screw partial to the 30° partial to the 60°
partial to the edge partial [Fig. 5(a)]. This is, in fact, the order
in which the edge component of the Burgers vector increases.

As noted above, the bilayer curvature is uniform between
the edge partial and its periodic image, (i.e., the slope of
d? f/dx? vs x; is constant). However, more care examination
of Figs. 5(b2) and 5(b3) demonstrates that this is only
approximately true. We believe that this is a numerical
convergence issue; since the bending energy is so small,
achieving very uniform curvature would require a more severe
convergence criteria than we are able to achieve within our
numerical method [also see Figs. 5(a2) and 5(a3)].

Figure 5(c) shows that a screw dislocation dissociates into
two 30° partials. The structures of these partials are identical
to that of the 30° partial found upon the dissociation of the 60°
dislocation case, Fig. 5(b). Unlike the layer profiles found for
the other dislocations (edge, 30°, and 60° dislocations), each of
the layers here is flat, except for in the immediate vicinity of the
dislocation cores. At the dislocation cores, the bilayer profile
bends on a small length scale, resulting in a sawtooth bilayer
profile. This observation is also confirmed by Fig. 5(c2) where
we see that df/dx is approximately piecewise constant.

We now examine the question of how the out-of-plane
buckling affects the dislocation core size. This can be deduced
from Figs. 2 and 5, where we plot the results for the flat
(dashed curves) and buckled bilayers, and from Table II.
As we saw in the previous section in the discussion of the
edge dislocation case, buckling leads to a large reduction in
partial dislocation core width. We observe exactly the same
result for the partials of the nonscrew dislocations. However,
examination of Fig. 5(b5) and Table III shows that this is only
true for nonscrew partials; i.e., the dislocation core for the
screw partial is exactly the same width in the flat and buckled
cases. Table III further demonstrates that the magnitude of
the reduction of the core width on going from flat to buckled
increases as the edge character of the partial increases.

The core width is determined by a competition between the
misfit energy (favoring perfect AB/AC registry) and the elastic
energy (favoring uniform strains). In bulk materials (and the
flat case), large in-plane elastic stiffness, and small resistance
to shear between the layers leads to large dislocation core
widths [16].

However, when the bilayer is not constrained to be flat, the
normal strain (g11) is almost completely relaxed by buckling,
leading to a significant decrease in E;. This reduces the
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TABLE III. Contributions to the energy (per unit length) for the
edge dislocation (107" J/m). The values in the brackets are for the
flat case. All energies refer to the entire bilayer. 6 is the angle between
the Burgers vector and the dislocation line direction.

Buckled (Flat)
0 19 E, E, E,, E,
90° 200aqp 1.30(1.65)  0.13(0.00)  0.53(1.61) 1.97(3.26)
300a, 1.00(1.63)  0.14(0.00)  0.53(1.63) 1.67(3.26)
400a, 0.85(1.63)  0.14(0.00)  0.53(1.63) 1.52(3.26)
60° 200aq, 1.16(1.54)  0.13(0.00)  0.60(1.52) 1.89(3.06)
300a, 0.96(1.53)  0.13(0.00)  0.61(1.53) 1.69(3.06)
400a, 0.86(1.53)  0.13(0.00)  0.61(1.53) 1.60(3.06)
30° 200aqp 0.95(1.35)  0.069(0.00) 0.79(1.35) 1.81(2.69)
300a, 0.88(1.35)  0.07(0.00)  0.79(1.35) 1.74(2.69)
400a, 0.85(1.35)  0.07(0.00)  0.79(1.35) 1.71(2.69)
0°  200a, 0.88(1.26)  0.03(0.00) 0.91(1.26) 1.81(2.51)
300a, 0.88(1.26)  0.03(0.00) 0.91(1.26) 1.81(2.51)
400a, 0.88(1.26)  0.03(0.00)  0.91(1.26) 1.81(2.51)

elastic contribution in this competition and, hence, leads to
a significant reduction in the core width relative to the flat
case (where g is large). As b, decreases, the magnitude
of E relaxed by buckling is smaller and of course the core
width reduction is also smaller. We note that while buckling
efficiently reduces ¢, associated with the edge component of
the Burgers vector, it cannot reduce ¢),, associated with the
screw component. In fact, the peak height in €, is even larger
when buckling occurs, compared with the flat case. This is
simply the result of the smaller core size in the buckled case.

IV. ANALYTICAL MODEL FOR BILAYER DISLOCATION

The results can be used as a guide to develop a simplified
model for the structure of bilayer graphene and determine
the interactions between dislocations in bilayer graphene.
We first observe that the profiles of f, and f_ are nearly
identical (other than a shift) for all of the dislocations studied.
We also note that these dislocations always dissociate into
partials. It is reasonable to treat these bilayers as consisting
of two distinct regions. The first is the dislocation core
region, where there is a rapid variation of all of the structural
properties with respect to x;. dfy/dx; show a (relatively)
abrupt jump and the magnitude of the jump is proportional
to the edge component of the Burgers vector of the partial
dislocation, i.e., the edge partial has the largest jump, the
screw partial has the smallest (none) and the jump of the mixed
partials lies in between. The width of this region (1.6 nm to
4.5 nm) is very narrow compared with the simulation cell size
or the spacing between partial dislocations. The second region
is between the partials, which is quite wide compared with
the core size. In this region, dfy/dx; has (nearly) constant
slope, which implies that the layer curvature is nearly constant
and the bilayer shape between the partials is nearly parabolic.
Moreover, in this region, the structural properties, including
the relative displacements ull and uzl, the strains €11+ and €12+,
and the energy density, are nearly independent of position x;
and €114 = —€11-,812+ = €12, and d* ;. /dx} = d* f_/dx3.
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This implies that the elastic energy here is nearly constant and
the misfit energy E,, =~ 0.

Based upon these observations, we construct an analytical
model for dislocations in bilayers, in which the core width
is assumed to be zero such that the gradient of f, and f_
and the relative displacements i and u5 have discontinuous
jumps at the position of the dislocation. The magnitude of the
jump in f at the cores is related to the edge component of the
partial dislocation and should be b, /dy, where b, is the edge
component of the partial. The magnitude of the jump in ulL
(u%‘) at the cores is equal to the edge (screw) component of the
partial dislocation. The slopes of dfy/dx; and the profiles
of ui and uy in the interpartial region are constants. We
further assume f = fi = f_. In our analytical model, the
two partials are separated by a distance dp; the partials are at
x;1 = —dp)/2and x; = (I + dp)/2. Therefore the structure
and the energy of the bilayer system can be obtained from the
df /dxl,uf- and 142l profiles. See the SM for more details. The
total energy of the bilayer system with interlayer dislocations
has contributions from the core and elastic energy (the first is
localized in the core region and the second is associated with
the curved regions between the partials), i.e.,

E = Eedge(sin2 64 + sin® 0g) + Esmw(cos2 64 + cos? 0p)

Cii(ba.+bg.)? ba.+bp.)?
+ 11(ba, B.e) +K( A, ! B.e) .
4 12

©))

By fitting Eq. (9) to the simulation results shown in Table III,
the core energy for pure edge and pure screw partial dislo-
cations can be obtained: Eegge = 0.318 X 10719 and Egew =
1.091 x 107!° J/m. The model discussed above suggests that
the total energy of a dislocation in bilayer graphene can
be determined solely in terms of the elastic constants, total
Burgers vector, bending rigidity and the partial dislocation
core energy (as determined from the simulation results above).
Figure 6 shows a comparison of the analytical expression for
the total energy of the dislocation [per unit length, Eq. (9)] with
the results from the simulations for bilayer graphene. Clearly,

x 107"° J/m
(b) T T T T T
2.3 Fit Simul. -
=3 Edge 90° — =
S ok Mixed 60° i
= Mixed 30° — =
S Screw 0°
« 1.9
(0]
o
>
D17
)
C
L
1.5
1 1 1

200 300 400
Simulation cell size l/a,

FIG. 6. Plot of the comparisons of E, based on the multiscale
simulation results and the proposed analytical form [Eq. (9)] for four
different types of dislocations with two fitting parameters Ecq,. and

ESCFSW .
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the agreement between theory and simulation is good with
no fitting parameters other than the pure edge and screw core
energies. This, together with the comparisons between the
predicting bilayer profiles (see the SM) and the comparison
with atomistic simulation results (Fig. 4) demonstrates the
validity of the simulation results and the analytical model.

Note that in an infinite bilayer, Eq. (9) shows that the force
between dislocations is zero (i.e., Eyq is independent of dp).
This is a direct result of the assumption that the dislocation
core is of zero width. This assumption implies that there
will be no interactions between dislocation cores and that
the interpartial dislocation regions have profiles determined
solely by the elastic properties of the layers and the boundary
conditions imposed by the core. Clearly, the simulations show
that this is not quite true and the dislocation cores do have
(a small, but) finite width. When the dislocations are well
separated, the effect of finite core width is very small and
can normally be ignored. This does, however, lead to a small
dependence on simulation cell size (spacing between partial
dislocations in our system), as shown in Table III. The force
between two dislocations arising from this small core effect
can be understood by consideration of simple models such as
the Frenkel-Kontorova model or sine-Gordon equation [34].
These models suggest that the cores are solitonlike and
the core-core interaction energy decays exponentially with
dislocation separation dp.

Compared to the forces between dislocations in bulk
crystalline materials, where forces between dislocations decay
inversely with separation, such interactions between dislo-
cations in bilayer graphene material are extremely small.
Also, unlike bulk crystalline materials where the energy of
a dislocation diverges as the sample size tends to infinity, in
bilayer graphene, the dislocation energy is always finite.

V. DISCUSSION AND CONCLUSIONS

We have presented a continuum-based model for general
dislocations in bilayer systems which are free to buckle or
constrained to remain flat. Our approach is based upon the
Peierls-Nabarro model, generalized to account for the thin
sheet elasticity of vdW layers and an accurate description of
the interaction between graphene layers. It explicitly considers
both the in-plane and out-of-plane deformation of the layer in
addition to a 3D GSFE for the interactions between layers. The
results show that dislocations in graphene bilayers decompose
into partial dislocations and that the bilayer will buckle with a
magnitude that depends on the edge component of the partial
dislocation. This out-of-plane deformation is critical for the
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determination of the structure and energetics of dislocations
in bilayer graphene, as well as such properties as partial
dislocation core width. The simulation results were validated
by comparison with the atomistic simulation results [14].

The input for the model only requires the 3D GSFE
and the elastic constants for individual layers. Hence, this
model can be directly applied to any vdW bilayer system
(such as BN/BN) in addition to bilayer graphene. Further,
the model is also directly applicable to heterobilayer systems
(such as graphene/boron nitride) where misfit dislocations
are always present (because of mismatches in the lattice
parameters of the two sheets). Such mismatch implies the
presence of an array of dislocations with edge character. This
model can also be extended to the case of twisted bilayer
structure, i.e., the two layers are rotated with respect to one
another. Such a twist interface/boundary necessarily leads to
a Moiré structure [35]. However, the experimentally observed
twist boundaries have structures unlike the rigid twist Moiré
patterns [15]; rather the pattern is strongly influenced by
the types of local relaxation considered here (for small twist
angles such structures are periodic networks of predominantly
screw dislocations that break into a partial dislocation array).
For twist boundaries in heterobilayers, this predominantly
screw dislocation network will be superimposed on the edge
dislocation network described above.

Based on the continuum-based model results presented
here, we constructed a simple analytical model for dislocations
in bilayers. We demonstrated that this model accurately
reproduces the simulation results for all dislocations with only
two parameters to be determined from simulation. This model
shows that, to first order, dislocations in vdW bilayers do
not interact with each other. However, when two dislocations
are very close, there will be an exponentially decaying force
associated with core-core interactions.
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