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Enhancement of spin polarization by chaos in graphene quantum dot systems
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When graphene is placed on a substrate of heavy metal, the Rashba spin-orbit interaction of substantial strength
can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Would classical
dynamics have any effect on the spin polarization? Here we consider the quantum-dot setting, where the Rashba
interaction is confined within the central scattering region whose geometrical shape can be chosen to yield distinct
types of dynamics, e.g., regular or chaotic, in the classical limit. We find that as compared with regular or mixed
dynamics, chaos can lead to significantly smooth fluctuation patterns of the spin polarization in its variation
with the Fermi energy. Strikingly, in the experimentally feasible range of the Rashba interaction strength, the
average polarization for a chaotic dot can be markedly larger than that for a regular or mixed dot. From the
semiclassical viewpoint, a key quantity that determines the average spin polarization is the angle distribution of
the outgoing electrons at the interface between regions with and without the Rashba interaction, respectively.
Classical chaos generates a different distribution which, in turn, leads to higher average spin polarization. There
was little previous work on the interplay between classical chaos and electron spin, and the phenomenon of
chaos-enhanced spin polarization uncovered here can be exploited for spintronics applications.
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I. INTRODUCTION

In a two-dimensional (2D) solid-state system, when the
potential in the direction perpendicular to the 2D plane is
asymmetric, the atomic spin-orbit coupling can lead to a
momentum-dependent splitting of the spin bands, a phe-
nomenon known as the Rashba effect [1] or the Rashba-
Dresselhaus effect [2]. This effect can be exploited for
manipulating spin in various settings such as electrical spin
injection [3], 2D superconducting devices [4], spin modulation
through an electrical field [5], spin filtering [6], and spin
field effect transistor [7]. In two-dimensional Dirac materials
of current interest such as graphene [8–13], topological
insulators [14], and molybdenum disulfide (MoS2) [15,16],
intrinsic or extrinsic spin-orbit interactions of various degrees
can arise. The interaction typically leads to energy splitting
and can result in fascinating phenomena such as the spin
Hall effect [17,18], weak antilocalization [19,20], spin-flipping
scattering, and spin polarization [21–23]. There are two types
of spin-orbit coupling: intrinsic and external. In graphene,
the intrinsic spin-orbit coupling is usually quite weak, but
significant interaction (e.g., characterized by energy splitting
on the order of 200 meV) can be realized [24–26] through the
Rashba effect by depositing graphene on the surface of Ni(111)
or Ir(111). Rashba spin-orbit interaction preserves the time-
reversal symmetry but breaks the inversion symmetry in the
direction perpendicular to the two-dimensional material plane,
and has wide applications in spin transport devices [27–33].
For example, for a two-terminal (source-drain) system with
a Rashba field in the middle region, electrons of pure spin
(say, spin up) are injected from the source and enter the
central region. The Rashba coupling causes the electron spin
to precess. When these electrons move into the drain terminal,
some of them will have their spin flipped down. The flipping
process leads to imperfect spin polarization. The degree of
the spin polarization can then be modulated by the Rashba
interaction strength.

In addition to the Rashba interaction strength, the geometric
shape of the central interaction region can affect the electron
scattering dynamics and, consequently, can have an effect
on spin polarization. For convenience, we call the central
region where the Rashba coupling exists the scattering region.
Domains of different geometry can lead to characteristically
distinct types of classical dynamics. For example, if the scat-
tering region is rectangular, the underlying classical dynamics
is integrable (or regular). However, a simple addition of two
semicircular segments on two opposite sides of the rectangle
leads to the stadium geometry, for which the classical dynamics
is chaotic without any stable periodic orbits. If a small circular
region at the center of a square is converted into a classically
forbidden region (e.g., through the application of a localized
electrical potential), then the domain becomes that of a Sinai
billiard [34,35], for which the classical dynamics is fully
chaotic with all periodic orbits being unstable. The main result
of this paper is that chaos can enhance spin polarization,
a beneficial property that can be exploited for spintronics
applications.

We focus on a class of two-terminal graphene devices
with Rashba interactions occurring in the central scattering
region whose geometrical shape can be chosen to yield
distinct types of dynamics in the classical limit. The shape
of the scattering region is that of the cosine billiard [36–39]
with upper and lower hard boundaries at y(x) = W +
(M/2)[1 − cos (2πx/L − π )] and y = 0, respectively, for
−L/2 � x � L/2. To make the scattering region sym-
metrical, we choose the lower boundary to be y(x) =
±W + (M/2)[1 − cos (2πx/L − π )] for −L/2 � x � L/2,
and the lead width is accordingly 2W . The type of the classical
dynamics in the billiard can be controlled by the parameter
ratios W/L and M/L. For example, for W/L = 0.18 and
M/L = 0.11, there are both stable and unstable periodic
orbits, and the classical phase space is mixed (nonhyperbolic)
with both chaotic regions and Kolmogorov-Arnold-Moser
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(KAM) islands. However, for W/L = 0.36 and M/L = 0.22,
all periodic orbits are unstable and the classical dynamics is
fully chaotic (hyperbolic). Given a billiard shape, we construct
the Hamiltonian incorporating Rashba interaction and use the
Green’s function method to calculate the conductance and spin
polarization for systematically varied strength of the Rashba
interaction. We find that classical chaos can not only smooth
the fluctuations of the spin polarization with the Fermi energy,
but, more importantly, can enhance the average spin polariza-
tion. We provide a heuristic argument based on semiclassical
theory to understand the chaos-induced enhancement effect.

II. HAMILTONIAN AND CALCULATION
OF SPIN POLARIZATION

In the tight-binding framework, the Hamiltonian of the
graphene system with Rashba spin-orbit interaction (RSOI)
is given [17] by H = H0 + HR , where the first and second
terms describe the electron hopping and RSOI, respectively.
The explicit forms of H0 and HR are

H0 = −t
∑

〈i,j〉;σ
c
†
iσ cjα,

(1)
HR = i�R

∑
〈i,j〉;σ,σ

(sσσ × dij )zc
†
iσ cjσ ,

where, c
†
i,σ (cj,σ ) is the creation (annihilation) operator,

σ (σ ) = ↑(↓) or ↓(↑), dij is the vector from site i to site j ,
and (·)z represents the z component of the vector quantity in
parentheses. The hopping energy is t = 2.8 eV and �R is the
strength of the RSOI. We define the region with �R > 0 as the
RSOI region. For convenience, we call the region for which
�R = 0 the non-Rashba (NR) region.

The spin conductance of an open NR-RSOI-NR system
can be calculated from the Green’s function technique and the

classic Landaurer-Büttiker formula,

G(E) = e2

�
Tr[�LGr�RGa], (2)

where �L(R) = i[�r
L(R) − �a

L(R)], and Gr(a) is the retarded
(advanced) Green’s function of the central scattering region,
which is given by

Gr = (Ga)† = [
E − HC − �r

L − �r
R

]−1
. (3)

We use the recursive Green’s function method with high
computational efficiency [40,41]. The conductance can be
obtained as [30,42]

G(E) =
[
G11 G12

G21 G22

]
, (4)

where G11(22) = G↑(↓) = G↑↑(↓↓) + G↑↓(↓↑) and the total con-
ductance is given by Gtot = G↑ + G↓. The nondiagonal
element G12(21) contains the projection of the spin polarization
into the (x,y) plane. The spin polarization P = [Px,Py,Pz] can
be calculated through [31,42,43]

Pz = G11 − G22

G11 + G22
,

Px − iPy = 2G21

G11 + G22
. (5)

III. NUMERICAL RESULTS

We vary two parameters: the Fermi energy E and the
Rashba interaction strength �R . The range of E is between
zero and a fraction of t , the nearest-neighbor hopping energy
of graphene, and the maximum value of �R is set to be 0.07t ≈
200 meV, which is the currently experimentally achievable
value [24–26].

Effect of chaos and Rashba interaction on conductance and
spin-polarization fluctuations. Figures 1(a) and 1(b) show the
conductance fluctuation patterns with the Fermi energy for the
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FIG. 1. The total conductance and spin polarization vs the Fermi energy for (a), (c) a nonhyperbolic and (b), (d) a hyperbolic graphene
quantum dot. In both cases, the Rashba interaction strength is �R = 0.07t ≈ 200 meV and the unit conductance is G0 = 2e2/h. The geometric
parameters for the nonhyperbolic and hyperbolic dots are (W/L = 0.18, M/L = 0.11) and (W/L = 0.36, M/L = 0.22), respectively, with
W = 40a and a = 0.142 nm, and their dot shapes are illustrated in the insets in (a) and (b). The dashed boundaries are symmetrical with respect
to solid boundaries about y = 0, and the scattering region is defined as the region in between the two vertical line segments. The blue, red, and
green curves correspond to the x, y, and z components of the spin polarization. The gray dotted lines highlight the identical locations of the
resonant peaks in the conductance and spin-polarization curves.
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nonhyperbolic and hyperbolic dot systems, respectively, where
the Rashba interaction strength is �R = 0.07t ≈ 200 meV
for both cases. For graphene quantum dots, a previous
work [39] that did not treat Rashba interactions showed that
fully developed chaos can eliminate sharp (Fano) resonances
in the conductance curve and lead to smooth fluctuations.
Comparing the conductance curves in Figs. 1(a) and 1(b),
we see that the same holds: chaos can make the conductance
fluctuations dramatically smoother even in the presence of
Rashba interaction. A similar behavior occurs for all three
components, [Px,Py,Pz], of the spin polarization, as shown in
Figs. 1(c) and 1(d). In particular, Fig. 1(c) exhibits Fano-like
resonances in the spin polarization for the nonhyperbolic dot
system, while the resonances entirely disappear when the
classical dynamics becomes hyperbolic, as shown in Fig. 1(d).
Note that in the window of the Fermi energy from 0.16t

to 0.19t , the y component of the spin polarization for the
hyperbolic case maintains at a stable and relatively high
level, Py ≈ 0.4, but this behavior does not occur for the
nonhyperbolic system. As we will demonstrate, this stable
region leads to a markedly higher value of the average spin
polarization for the hyperbolic case as compared with the
nonhyperbolic case. Note that the results shown in Fig. 1 are for
zigzag boundaries in the horizontal direction. Since the average
spin polarization is obtained over the energy range with two
transverse modes (which is not close to the Dirac point), the
edge type has little effect on the average spin polarization. In
fact, our computations indicate that using armchair boundaries
yields essentially the same result.

To understand the effect of chaos on fluctuations in the
conductance and spin polarization, we calculate the width of
the resonances [39,44] from the non-Hermitian Hamiltonian of
the corresponding open system. In particular, the Hamiltonian
HC of the central scattering region is Hermitian with a set
of real eigenvalues denoted as {E0α|α = 1, . . . ,N}, where
N is the size of the Hamiltonian matrix (the number of
carbon atoms in the graphene lattice in the scattering region).
For the open system, the Hamiltonian matrix is Hc

tot(E0) =
HC + �r

L(E0) + �r
R(E0), where �r

L(E0) and �r
R(E0) are the

complex self-energy matrices associated with the left and right
leads, respectively, which characterize the coupling between
the states in the scattering region and those in the leads.
Solving the eigenvalues of Hc

tot(E0), we obtain a set of complex
numbers {Ec

α|α = 1, · · · ,N}, where Ec
α = E0α − �α − iγα .

The imaginary part of Ec
α characterizes the coupling strength

between the states in the scattering region and in the leads,
which effectively measures [39,45] the resonance width γα . If
γα is small, e.g., less than 10−4t , a sharp, Fano-type resonance
emerges in both the conductance and spin-polarization curves.
If γα is relatively large, e.g., larger than 10−3, the conductance
and spin-polarization variations are smooth.

Figures 2(a)–2(d) show, for the nonhyperbolic and hyper-
bolic systems, the locations of various eigenvalues Ec

α in their
own complex plane, for two cases where the Rashba interaction
is absent and present with strength 0.07t , respectively, where
we choose E0 = 0.2t from the energy range in Fig. 1. Based
on values of γα , qualitatively we can divide the complex plane
into three regions: regions I–III, corresponding to γα < 10−4t ,
10−4t � γα � 10−3t , and γα > 10−3t , respectively, which are
specified with the dashed lines. Roughly, the values of γα
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FIG. 2. Width of resonance γα for (a), (c) nonhyperbolic (squares)
and (b), (d) hyperbolic (circles) quantum-dot systems. The Rashba
interaction strength is (a), (b) �R = 0 and (c), (d) �R = 0.07t . Blue
and red colors correspond to the cases where the Rashba interaction
is absent and present, respectively. The gray dashed lines divide the
complex plane of Ec

α into three regions for the purpose of qualitative
analysis.

in regions I and II correspond to the Fano-like resonances
in the conductance and spin-polarization curves [Fig. 1(c)],
while those in region III correspond to the smooth variations
[Fig. 1(d)]. For the nonhyperbolic dot, as shown in Figs. 1(a)
and 1(c), without Rashba interaction, some values of γα are
located in region I [Fig. 1(a)]. Generally, Rashba interaction
can increase the width of the resonance [46]. In the presence
of the interaction [Fig. 1(c)], the values of γα tend to increase
slightly, but there are still a number of values in region II. For
the hyperbolic dot, as shown in Figs. 1(b) and 1(d), without
or with Rashba interaction, no eigenvalue is located in region
I and almost no eigenvalues are in region II. In fact, almost
all values of γα are located in region III, giving rise to smooth
conductance and spin-polarization variations.

Signatures of the band splitting and the weak antilocal-
ization effects can be seen in Fig. 2, which are caused by
the RSOI. In particular, the Fano-type resonance is caused
by the interplay between the quasidiscrete energy levels
from the quantum dot and the continuous background of the
semi-infinite leads [47]. As the Rashba coupling strength is
tuned up, a single discrete level splits into two. As a result, for
both nonhyperbolic and hyperbolic quantum dots, the number
of the Fano-type resonances doubles [cf., dot doubling in
Figs. 2(c) and 2(d)]. However, we note that a sharp resonance
corresponds to a pointer state in which the electrons are
localized in the dot region, but the ROSI can smooth out
the resonance. This is because of the weak antilocalization
effect [19,20], which reduces the degree of localization and
consequently broadens the width of the sharp resonances.
In fact, as can be seen from Fig. 2, comparing with the
case where there is no RSOI, the values of the imaginary
eigenenergies γα with the RSOI in regions I and II are generally
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FIG. 3. Average spin polarization vs Rashba interaction strength
(a) for integrable (black dashed curve), nonhyperbolic (blue dash-
dotted curve), and hyperbolic (red solid curve) quantum dots, and (b)
for rectangular (blue dash-dotted curve) and Sinai billiard (red solid
curve) dot systems. The maximum spin polarization of integrable
dots, P m

y , is equal to (a) 0.347 and (b) 0.09. The side length of the
rectangular billiard dot is D = 118a and the lead width is W = 6.5a.
The radius of the circular hard disk in the Sinai billiard system is
R = 0.258L.

higher. In general, as the electron energy is increased, the
total conductance will increase, reaching higher conductance
plateaus [48].

Enhancement of spin polarization by chaos. In our coor-
dinate setting, the y component of the spin polarization, Py ,
is much larger than the x and z components. To be concrete,
we focus on Py . For both nonhyperbolic and hyperbolic dot
systems, Py fluctuates with the Fermi energy. A surprising
finding is that for a relatively large energy interval, e.g., 0.15 �
E/t � 0.25, the average spin polarization tends to be larger for
the hyperbolic system. For example, for �R = 0.07t , we have
〈Py〉 ≈ 0.275 for the nonhyperbolic dot and 〈Py〉 ≈ 0.302 for
the hyperbolic dot. This is an indication that chaos can enhance
the average spin polarization. The average spin polarization
is obtained over the energy range covering two subbands.
The reason to choose a relatively small lead width for the
rectangular and the Sinai billiard systems in Fig. 3(b) was to
reduce the effect of the lead on the scattering properties of the
specific geometric domains to maximize the contrast between
classical integrable and chaotic dynamics.

To obtain a better understanding of the role of chaos in
enhancing spin polarization, we make the quantum-dot system
symmetric in y so that the x and z components of the spin
polarization vanish, while keeping the length of the scattering
region unchanged [43]. Figure 3(a) shows 〈Py〉 versus �R for
the symmetrical hyperbolic, nonhyperbolic, and integrable dot
systems, where Py is averaged over the energy range 0.083 �
E/t � 0.141 in which there are two modes in the leads. As �R

is tuned up from zero, 〈Py〉 increases initially and then plateaus
at a maximum value. For the integrable and nonhyperbolic
dots, the curves of 〈Py〉 versus �R are nearly identical. The
remarkable phenomenon is that the average spin polarization
for the hyperbolic dot is consistently larger than that for the
nonhyperbolic or integrable dots.

To demonstrate the generality of the phenomenon of
enhancement of spin polarization by chaos, we study a char-
acteristically different class of quantum-dot systems subject
to Rashba spin-orbit interaction. In particular, a rectangular
quantum dot, as shown in the inset of Fig. 3(b), has classically
integrable dynamics. However, when a circular hard disk
is introduced at the center of the rectangle, the classical
dynamics becomes that of the Sinai billiard, which is fully
chaotic [34,35]. The lead width is chosen to be small to
minimize the effect of the leads on the scattering properties,
so as to maximize the effect of the classical dynamics on spin
transport. Calculations show that depending on the strength of
the Rashba interaction, Py can be either positive or negative.
We thus focus on 〈|Py |〉, where the average is again taken
over the energy range in which the semi-infinite leads permit
two modes: 0.696 � E/t � 0.965. As shown in Fig. 3(b), the
normalized 〈|Py |〉 values (by its maximum for the integrable
case) for the chaotic case are markedly larger than that for the
integrable case, for all possible values of �R . For �R ≈ 0.04t ,
chaos-induced enhancement in the average spin polarization
reaches maximum.

IV. SEMICLASSICAL ARGUMENT FOR ENHANCEMENT
OF SPIN POLARIZATION BY CHAOS

In our system, a spin-up/-down electron enters the RSOI
region from the left lead, where the Rashba interaction leads to
spin precession. For simplicity, we assume that each scattering
event changes only the propagation direction of the electron
(as for the situation of classical reflection) and does not affect
the spin precession. Due to the surface reflections experienced
by the electron at the hard boundaries, the electron will scatter
into the right lead with certain outgoing angle, on which the
transmission coefficients tσR,σL

depend, where σL,R denote
the spin states at the left and right leads, respectively. The
angle-dependent transmission coefficients give rise to angle-
dependent spin polarization. Spin-polarization generation can
then be treated as a refraction process at the RSIO-NR
interface, as shown schematically in Fig. 4(a).

The Hamiltonian of a Dirac fermion with RSOI is given
by H = H0 + HR = �vF (σxkx + σyky) + �R(σxsy − sxσy),
where vF is the Fermi velocity. The energy dispersion is
given by E = k for the NR region if we set � = vF = 1.
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FIG. 4. (a) Schematic diagram of transmission behavior at the
RSOI-NR interface. (b) The y component of the spin polarization,
Py(θ ), vs the outgoing angle for �R/E = 0.005 (blue), 0.025 (red),
and 0.05 (green). Dashed lines represent the maximum outgoing
angles for different values of �R/E.
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In the RSOI region, due to the Rashba effect, the energy
band splits into two subbands: k± =

√
E2 ∓ E�R and the

eigenwave function is a linear superposition of the ± states:

R = c+ψ+ + c−ψ−, where c± and ψ± are the expansion
coefficients and the eigenfunctions associated with the ±
states, respectively. Following a previous work [49], we set
c+ = c− = 1/

√
2. The transmission coefficient tσR,σL

can then
be obtained by imposing appropriate boundary conditions.
The three components of the spin polarization are given
by [30,43,50]

Px − iPy = 2e2/h

G

∑
σL

t↑σL
t∗↓σL

,

(6)

Pz = (G↑↑ + G↑↓) − (G↓↑ + G↓↓)

G
,

where the total conductance is given by Gtot = G↑↑ + G↑↓ +
G↓↑ + G↓↓ and GσRσL

= e2/h|tσRσL
|2. Figure 4(b) shows the

y component of the spin polarization, Py , versus the outgoing
angle θ , where we observe a valley at the central region. As the
RSOI strength is increased, the width of the valley in the Py

curve narrows down and the maximum value of Py gradually
increases. Note that Pz(θ ) vanishes. For a system with an
angular symmetry, we have Px(θ ) = Px(−θ ) and, hence, Px(θ )
does not contribute to the spin polarization [43,50].

If the electronic wavelength is much smaller than the device
size, i.e., λe 
 L, the electron motion can be described as that
of a classical particle, rendering applicable a semiclassical
approximation. For a chaotic domain, its boundary plays
the role of random scattering sources for the electron. As a
result, the electron trajectories extend all over the domain.
Since the system is open, the electron has a finite average
dwelling time τdwell in the RSOI region. However, for
a nonhyperbolic/integrable domain, quantum pointer states
[51–54] can arise. As a result, the classical quantity τdwell

diverges. For the electrons that do escape, the angle distribution
can be characteristically different from that of the chaotic case,
as shown schematically in Figs. 5(a) and 5(b). To verify this, we
numerically calculate the distribution of outgoing angles, f (θ ),
for both nonchaotic and chaotic systems, as shown in Fig. 5(c),
where the classical particles are initialized from the left lead
with their incident angles and y locations chosen randomly and
uniformly. We see that fθ is flatter for the chaotic domain and
cosinelike for the nonchaotic domain. A fourth-order poly-
nomial fit of the angle distribution gives fθ = −0.057θ4 −
0.033θ2 + 0.416 and fθ = 0.024θ4 − 0.260θ2 + 0.504 for the
chaotic and nonchaotic domains, respectively.

The average spin polarization can be calculated from

〈Py〉 = 1

2θm

∫ θm

−θm

f (θ )Py(θ )dθ, (7)

where θm is the maximum outgoing angle, as indicated in
Fig. 4(b). Figure 5(d) shows the average spin polarization
versus �R , where we see that for the chaotic device, it
has higher values than those for the nonchaotic systems, in
agreement with the numerical results in Fig. 3(a).

Figure 6(a) shows the outgoing angle distributions for the
rectangular and Sinai billiard systems. For the former, the
outgoing angle distribution is identical to that of the incident
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FIG. 5. (a), (b) Schematic illustration of classical outgoing
trajectories for the nonchaotic and chaotic quantum-dot systems. (c)
Numerically obtained angle distribution of the outgoing classical
particles (blue: nonchaotic; red: chaotic), where the green solid and
brown dashed curves are fourth-order polynomial fitting curves for
the respective cases. (d) The average y spin polarization vs the RSOI
strength (blue dashed curve: nonchaotic; red solid curve: chaotic).
The maximum average spin polarization for the nonchaotic case is
P m

y ≈ 0.075.

angles. For the Sinai system, the escaping probability is
larger (smaller) for large (small) outgoing angles. The fitting
functions are f (θ ) = −0.120θ6 + 0.363θ4 − 0.284θ2 + 0.368
and f (θ ) = −0.775θ8 + 4.142θ6 − 7.059θ4 + 3.843θ2 +
0.056 for the rectangular and the Sinai systems, respectively.
Figure 6(b) shows the average spin polarization versus the
RSOI strength for the two cases. In general, chaos has a
more pronounced effect on spin polarization for large outgoing
angles. When the angle distribution is taken into account, this
leads to enhanced average spin polarization.
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FIG. 6. (a) Angle distribution of the outgoing classical particles
for the rectangular (blue squares) and Sinai (red circles) dot systems,
with the respective polynomial fitting curves. (b) The y component
of the average spin polarization vs the RSOI strength (blue dashed
curve: rectangular dot; red solid curves: Sinai dot). The maximum
average spin polarization for the rectangular system is P m

y = 0.0024.

085408-5



LEI YING AND YING-CHENG LAI PHYSICAL REVIEW B 93, 085408 (2016)

Would it be possible to obtain an explicit analytic expres-
sion for the average spin polarization? To address this question,
we note that, in general, the spin polarization depends on
the angle in a sophisticated way, and it seems not feasible
to carry out the integration in Eq. (7) analytically so as to
obtain an explicit formula for the average spin polarization.
However, the behavior of the average spin polarization can
be assessed by numerically integrating Eq. (7). Our results
indicate unequivocally that the average spin polarization can
be enhanced by chaos. Note that Eq. (7) is obtained based
on semiclassical considerations, which is approximate with
respect to the results from the tight-binding Hamiltonian.
Practically, it may not be necessary to write down an explicit
formula for the average spin polarization.

V. CONCLUSION AND DISCUSSION

Quantum chaos is referred to as the study of quantum man-
ifestations of chaotic behaviors in the corresponding classical
system [55,56], a field that has been extremely active for more
than three decades. In the past decade, due to the tremendous
development of the science of 2D Dirac materials initiated by
the experimental realization of graphene [8–13,57], relativistic
quantum manifestations of classical chaos [58] have emerged
as a new field of study [39,59–64], with the basic goal to
uncover and understand the possible role of chaos played
in relativistic quantum systems. From a practical point of
view, exploiting the interplay between chaos and relativistic
quantum mechanics can lead to novel ideas for developing
electronic devices.

This paper investigates the role of chaos in quantum
transport in graphene systems subject to Rashba spin-orbit
interaction (RSOI), an important quantum effect in solid-
state systems [1,2]. Using the setting of a two-terminal
graphene quantum dot where RSOI occurs in the central
dot region, we focus on the average spin polarization, a key
quantity in the study of spintronic devices. By varying the
geometric shape of the dot region, we generate a spectrum of
characteristically distinct classical behaviors such as integrable
(regular), mixed, and fully developed chaotic dynamics. The
quantum-dot setting thus represents a generic platform to study
the interplay among classical chaos, RSOI, and relativistic
quantum mechanics. We find that in the presence of RSOI,
chaos can significantly reduce the sharp fluctuations in the
spin polarization (e.g., as the Fermi energy is varied) that
occur when the corresponding classical system is regular. A
remarkable phenomenon is that in the experimentally feasible
range of the variation of the Rashba interaction strength,
the average spin polarization for the chaotic dot can be
markedly larger than that for the regular or mixed dot. We
develop a semiclassical understanding of the phenomenon of
chaos-enhanced spin polarization. In particular, a key quantity
that determines the average spin polarization is the angle
distribution of the outgoing electrons at the interface between
regions where RSOI is present and absent, respectively. We
find that the angle distribution generated by classical chaos
favors the spin alignments.

Our finding has practical value for developing graphene
or other 2D Dirac material-based spintronic devices, such
as nanoscale magnetic sensors using the mechanism of the
Datta-Das transistor [65,66]. In particular, due to its high
mobility and weak intrinsic spin-orbit coupling, graphene can
preserve the spin orientation of spin-polarized electrons over
long distances (e.g., ∼4 μm at room temperature and even
up to ∼200 μm at low temperature) [67–72]. However, for a
RSOI-based graphene device, the high spin-polarized currents
can lead to variable magnetoresistances when the device is
connected to a ferromagnetic material. The relatively large
range of variation in the magnetoresistances can be used to
develop magnetic sensors for reading magnetic information at
a higher speed.
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APPENDIX: CALCULATION OF SPIN POLARIZATION
AT THE INTERFACES BETWEEN THE FREE AND

RASHBA INTERACTION REGIONS

The continuous Hamiltonian of the Dirac fermion with
RSOI is given by H = �vF (σxkx + σyky) + �R(σxsy − sxσy).
There are two eigenvalues: k± =

√
E2 ∓ E�R , with their

normalized eigenwave functions given by

ψ± = N±

[(
1

E
k±

eiθ

)
|↑〉 ± i

(
E
k±

eiθ

e2iθ

)
|↓〉

]
eik·r, (A1)

where N± = 1/
√

2[1 + (E/k±)2] is a normalization constant
and θ = arctan(ky/kx). Due to the RSOI, the nondiagonal
elements are finite and thus the ratio of the spin-up and -down
state is equal to unity. The eigenwave function can be written
as

ψ↑,↓ =
[

1

eiφ

]
|↑,↓〉eiq·r. (A2)

The ratio can thus be arbitrary.
We consider a pure spin state incident from the left lead

into the RSOI region and finally reaching the right-hand NR
region, as shown in Fig. 4(a). The wave function in the RSOI
and the right-hand NR regions can, respectively, be written as


R = c+ψ+(φ+) + c−ψ−(φ−) + r+ψ+(−φ+)

+ r−ψ−(−φ−),



σL

N = t↑σL
ψ↑(θ ) + t↓σL

ψ↓(θ ). (A3)

At the RSOI-NR interface (x = 0), the boundary condition is


R(x) = 

σL

N (x), (A4)

leading to solutions [r+,r−,t↑,σL
,t↓,σL

]T , where we set c+ =
c− = 1/

√
2 for the cases of σL = ↑ and ↓. As a result, we

have tσR,↑ = tσR,↓. Note that the coefficients satisfy the relation
r2
+ + r2

− + t2
↑,σL

+ t2
↓,σL

≈ c2
+ + c2

−.
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[30] B. K. Nikolić and S. Souma, Phys. Rev. B 71, 195328 (2005).
[31] J.-F. Liu, Z.-C. Zhong, L. Chen, D. Li, C. Zhang, and Z. Ma,

Phys. Rev. B 76, 195304 (2007).
[32] B. Srisongmuang, P. Pairor, and M. Berciu, Phys. Rev. B 78,

155317 (2008).
[33] Q. Zhang, Z. Lin, and K. Chan, Appl. Phys. Lett. 102, 142407

(2013).

[34] Y. G. Sinai, Russ. Math. Surv. 25, 137 (1970).
[35] Y. G. Sinai, Introduction to Ergodic Theory (Princeton Univer-

sity Press, Princeton, 1976).
[36] G. A. Luna-Acosta, A. A. Krokhin, M. A. Rodrı́guez,

and P. H. Hernández-Tejeda, Phys. Rev. B 54, 11410
(1996).

[37] B. Huckestein, R. Ketzmerick, and C. H. Lewenkopf, Phys. Rev.
Lett. 87, 119901(E) (2001).

[38] H. Lee, C. Jung, and L. E. Reichl, Phys. Rev. B 73, 195315
(2006).

[39] R. Yang, L. Huang, Y.-C. Lai, and C. Grebogi, Europhys. Lett.
94, 40004 (2011).

[40] L. Ying, L. Huang, Y.-C. Lai, and C. Grebogi, Phys. Rev. B 85,
245448 (2012).

[41] L. Ying, L. Huang, Y.-C. Lai, and Y. Zhang, J. Phys. Condens.
Matter 25, 105802 (2013).

[42] J.-F. Liu, K. S. Chan, and J. Wang, Nanotechnol. 23, 095201
(2012).

[43] F. Zhai and H. Q. Xu, Phys. Rev. Lett. 94, 246601 (2005).
[44] G.-L. Wang, L. Ying, Y.-C. Lai, and C. Grebogi, Phys. Rev. E

87, 052908 (2013).
[45] M. Mendoza, P. A. Schulz, R. O. Vallejos, and C. H. Lewenkopf,

Phys. Rev. B 77, 155307 (2008).
[46] M. S. M. Barros, A. J. Nascimento Júnior, A. F. Macedo-Junior,

J. G. G. S. Ramos, and A. L. R. Barbosa, Phys. Rev. B 88,
245133 (2013).

[47] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod.
Phys. 82, 2257 (2010).

[48] W. Long, Q.-F. Sun, and J. Wang, Phys. Rev. Lett. 101, 166806
(2008).

[49] F. Liu, Y. Liu, J. Hu, D. L. Smith, and P. P. Ruden, J. Appl. Phys.
114, 093708 (2013).

[50] Q. Zhang, K. S. Chan, and Z. Lin, J. Phys. D: Appl. Phys. 47,
435302 (2014).

[51] R. Akis, D. K. Ferry, and J. P. Bird, Phys. Rev. Lett. 79, 123
(1997).

[52] L. Huang, Y.-C. Lai, D. K. Ferry, R. Akis, and S. M. Goodnick,
J. Phys. Condens. Matt. 21, 344203 (2009).

[53] D. K. Ferry, A. M. Burke, R. Akis, R. Brunner, T. E. Day, R.
Meisels, F. Kuchar, J. P. Bird, and B. R. Bennett, Semicond. Sci.
Technol. 26, 043001 (2011).

[54] R. Brunner, D. K. Ferry, R. Akis, R. Meisels, F. Kuchar, A.
M. Burke, and J. P. Bird, J. Phys. Condens. Matter 24, 343202
(2012).
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