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We show here that an extension of the Hamiltonian theory developed by us over the years furnishes a composite
fermion (CF) description of the ν = 1/2 state that is particle-hole (PH) symmetric, has a charge density that
obeys the magnetic translation algebra of the lowest Landau level (LLL), and exhibits cherished ideas from highly
successful wave functions, such as a neutral quasiparticle with a certain dipole moment related to its momentum.
We also a provide an extension away from ν = 1/2, which has the features from ν = 1/2 and implements the
PH transformation on the LLL as an antiunitary operator T with T 2 = −1. This extension of our past work
was inspired by Son, who showed that the CF may be viewed as a Dirac fermion on which the particle-hole
transformation of LLL electrons is realized as time-reversal, and Wang and Senthil, who provided a very attractive
interpretation of the CF as the bound state of a semion and antisemion of charge ±e/2. Along the way, we also
found a representation with all the features listed above except that now T 2 = +1. We suspect it corresponds to
an emergent charge-conjugation symmetry of the ν = 1 boson problem analyzed by Read.
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I. INTRODUCTION TO THE PROBLEM

Consider electrons in a high magnetic field [1,2] partially
filling the lowest Landau Level (LLL) in the limit when
the cyclotron frequency ωc → ∞ is much larger than the
interaction. In this limit, one expects a complete description
entirely in terms of the LLL states. A partially occupied
band of electrons may be equally well described in terms of
electrons on top of an empty band or holes depopulating the
filled band. At filling factor ν = 1

2 , for translationally invariant
two-body interactions, the Hamiltonian has particle-hole (PH)
symmetry [3], and one should be able to develop a treatment
in which this symmetry is manifest. In addition, it must be
possible to relate the physics at ν to that at 1 − ν away from
ν = 1/2 by a PH transformation. This had proven elusive
until recent work [4–9], inspired by the work of Son [4].
It should be noted that this problem is intimately related to
the surface states of strongly correlated, three-dimensional
time-reversal invariant topological insulators [5,6], and that
numerical work [7,8] (an early example being [10]) confirms
the particle-hole symmetry of the ν = 1/2 ground state in the
LLL.

A class of successful approaches to the fractional quantum
Hall effect (FQHE) requires flux attachment, that is, trans-
forming the electrons into either composite bosons (CB) [11]
by attaching an odd number of flux quanta, or composite
fermions [12,13], by attaching an even number. At half-filling,
this turns the electron problem to that of CF’s that see zero
field on average and form a Fermi liquid [14,15], as elucidated
in detail by Halperin, Lee, and Read (HLR) [15]. A similar
Fermi surface arises in the problem of the hard-core bosons
at ν = 1 in the LLL analyzed by Read [16]. By attaching one
flux quantum to each of the bosons he turns them into fermions
that see zero field on the average.

When implemented in the wave function language and pro-
jected to the LLL, Composite fermions (CFs) produce excel-
lent parameter-free wave functions [2,12] for the Jain fractions
of the type ν = p/(2p + 1), and the Rezayi-Read [17] wave
function for the gapless ν = 1/2 state.

There are at least two types of particles called CF’s in the
past fractional quantum Hall (FQH) literature. If we work in
the complete Hilbert space of the electron, flux attachment in
Chern-Simons (CS) theory [11,13,15] leads to a particle of
charge e (the electron charge). For such a particle, one can
derive, at ν = 1/2, the constraint σ CF

xy = − 1
2

e2

h
following Lee,

Krotov, Gan, and Kivelson [3]. We shall refer to this as the
Chern-Simons CF. The other is the CF that resides entirely in
the LLL and the one we will focus on. At ν = 1/2, attachment
of the double-vortex (now double-zero and not just a phase
4π ) drives away a charge −e and leaves us with a neutral CF.
This point of view was emphasized by Read [17] who also
argued that the CF of momentum p will have a dipole moment
ẑ×pl2, where

l2 = 1

eB
. (1)

At the moment, there are conflicting claims about ν =
1
2 . On the one hand are arguments from Chern-Simons
theory that there are two distinct states, a particle-CF-Fermi
sea and a hole-CF-Fermi sea [18]. On the other hand are
numerical calculations in the wave-function language [7] or by
exact diagonalization [8], which show a unique, particle-hole
symmetric state at ν = 1/2. In this work, we will not attempt
to resolve the controversy, but begin with the premise that the
ν = 1

2 state does have particle-hole symmetry in the lowest
Landau level.

Now for the main business of this paper. The work of
HLR [15], which leads to a Fermi surface for the CS-CFs, is
not particle-hole symmetric at ν = 1/2. One does not expect it
to be since the symmetry is emergent only in the limit ω0 → ∞
or me → 0, which is problematic in their approach. However,
is there a description in which PH symmetry is manifest at
ν = 1/2? Is there a way to relate the physics at ν to that at
1 − ν? An affirmative answer was given recently by Son [4].
The underlying physical picture was provided by Wang and
Senthil (WS) [5]. Connections of this problem to the surface
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states of 3D time-reversal invariant topological insulators have
also been elucidated in recent work [5,6].

In this paper, we will reexamine and extend our Hamiltonian
theory [19] in light of these developments.

The heart of our Hamiltonian approach [19] is to define
the LLL problem algebraically in terms of the commutation
rules of the projected electron density ρ̄(q), which alone
enters the LLL Hamiltonian and obeys the magnetic translation
algebra. Having defined it thus, the next step is to represent
this algebra faithfully in a larger fermionic space subject to
some constraints. The reason is that in this new space there
is a natural Hartree-Fock state at the Jain fractions and the
limiting case ν = 1/2.

When we reexamine our approach in the light of Son’s
work [4], we find several interesting results, which we report
here. The first is that the most straightforward representation
of a neutral CF in terms of a nonrelativistic one-component
CF yields a description of an LLL system in which there is
an antiunitary operator T with T 2 = +1, which plays the
role of time reversal on the CF’s and charge conjugation on
the physical charge. It exchanges the role of a (hard core)
boson and a single vortex. Since we know that the electronic
LLL problem must have T 2 = −1 [20] (confirmed by recent
numerics [8]), this most probably describes an emergent
charge-conjugation symmetry of the ν = 1 boson problem in
the LLL [16].

Secondly, after the work of Son [4] and WS [5], we realized
that we could represent the magnetic translation algebra in
the space of a two-component Dirac CF, whose number is
always half the number of flux quanta, regardless of the
number of electrons. Now we find exactly what Son did; an
antiunitary operator T with T 2 = −1, which plays the role
of time-reversal on the CF’s and charge conjugation on the
electronic charge. In addition, we obtain two representations of
the physical charge density at all ν. One has a Hamiltonian with
a set of constraints commuting with it, but does not manifestly
show the neutrality of the Dirac CF or the PH symmetry. The
other shows both symmetries in a manifest way, but ignores
the constraints that limit the larger space to the LLL sector.

However, but for Son’s work, it would not have occurred to
us to bring in Dirac fermions, because we were always insistent
on working in a space that was adiabatically connected to
the single-component electron. This was to ensure that we
did not represent the problem algebraically in a space that
had no bearing on the LLL problem. Furthermore, it would
also not have occurred to us, who tried to implement Jain’s
construction using operators, to tie the number of CFs to the
flux as Son did (and not the number of electrons). We thank
Senthil for emphasizing the importance of this point, which in
the end was what made it possible to extend the GMP algebra
away from ν = 1

2 when working with Dirac fermions. It is our
hope that the explicit representation of the electronic charge
density obeying the GMP algebra, and a neutral fermion of the
right dipole moment paves the way for many operator based
calculations.

Now for the organization of the paper. First, we will furnish
a telegraphic introduction to the Hamiltonian theory [19] citing
only those results germane to this paper. Next, we will consider
the most natural representation of the algebraic problem: in
terms of a one-component nonrelativistic CF, whose number

is equal to the number of electrons. This gives us a theory
that has a PH symmetry with T 2 = 1, possibly pertaining
to an emergent charge-conjugation symmetry of the ν = 1
hard-core boson problem [16]. Next, we will demonstrate that
the magnetic translation algebra can be realized in the space of
a Dirac CF, whose number is half the number of flux quanta and
T 2 = −1. This representation works both at ν = 1

2 and away
from it. At ν = 1/2, it provides a representation of the physical
charge density that realizes the PH symmetry in a manifest way.
Away from ν = 1/2, we show how the PH transformation of
the LLL electrons (implemented by T ) relates ν ↔ 1 − ν. A
summary follows.

II. HAMILTONIAN THEORY: WHY AND HOW?

The problem of interacting electrons in the LLL is defined
by the LLL-projected Hamiltonian

H̄ = 1

2

∑
q

ρ̄(q)vee(q)ρ̄(−q), (2)

where ρ̄(q) is the electron density projected to the LLL,

ρ̄(q) =
∑

j

e−iq·Re
j , (3)

where a factor e−q2l2/4 from each ρ̄(q) has been absorbed
in the electron-electron potential vee, and Re is the electron
guiding-center coordinate obeying[

Re
x,R

e
y

] = −il2. (4)

As a result of Eq. (4), ρ̄(q) obeys the Girvin, MacDonald,
and Platzman [22] (GMP) or magnetic translation algebra:

[ρ̄(q),ρ̄(q′)] = 2i sin

[
l2

2
q×q′

]
ρ̄(q + q′). (5)

The mathematical problem is defined by the Hamiltonian
H̄ and the GMP algebra of the projected charge density
entering it. Of course, the answer could vary with the space
in which we represent this algebra. (Compare the spin-1/2
and spin-1 chains.) The original electron problem in defined
in the electronic LLL Hilbert space. Now the trouble with
formulating the problem in the electronic space is that there is
no Hartree-Fock (HF) state due to the huge degeneracy of the
partially filled LLL.

Jain [12] beats this by switching to the CF which sees a
weaker field and fills exactly p Landau levels for the fractions

ν = p

2p + 1
. (6)

Motivated by Jain, we will start by using the Hilbert space
of a one-component nonrelativistic fermion that sees just this
field to represent the Hamiltonian (2). The number of CFs is
equal to the number of electrons in this construction.

Let us trace some of the steps along the way to the
final picture. More details are provided in the Appendix.
Starting with the CS theory of fermions in the full Hilbert
space [19], we trade the CS gauge field (whose components
are conjugate) for magnetoplasmon oscillators à la Bohm-
Pines [21]. When we decouple the oscillators and freeze them
in the ground state, we obtain an LLL description of the
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projected electron density ρ̄(q) and the constraints χ̄(q) that
pay for the collective oscillator degrees of freedom. We could
only derive expressions for ρ̄(q) and χ̄(q) at small q. The series
were exponentiated [19] to form expressions valid for all q,
with the nice feature that ρ̄(q) obeyed the GMP algebra and
χ̄(q) commuted with ρ̄(q) and hence H̄ and closed to form a
GMP-like algebra of a particle with the charge of the double
vortex. In this connection, which evolves from the CS theory,
the number of CFs equals the number of electrons (NCF = Ne)
and the (spin-polarized) fermion has only one component.

Here is the final picture. The CF experiences a weaker
magnetic field B∗, just right to fill p Landau levels, as
envisaged by Jain. That is encoded in the CF velocity operator,
which obeys

[�∗
x,�

∗
y] = ieB∗ = ie∗B = i

l∗2
= i

1 − c2

l2
, (7)

where

c2 = 2ν = 2p

p + 1
. (8)

For example, at ν = 1/3, we have p = 1,c2 = 2/3,e∗ = e/3,
and at ν = 1

2 , we have c = 1 and p = ∞.
Now we introduce in this (full fermionic) space a pair of

coordinates

Re = r − l2

1 + c
ẑ×�∗, (9)

which obey [
Re

x,R
e
y

] = −il2. (10)

We recognize this as the algebra of the guiding center
coordinate of the electron. This ensures that the corresponding
density

ρ̄(q) =
∑

j

e−iq·Re
j (11)

obeys the GMP algebra. The LLL-projected Hamiltonian is
represented in the CF space by

H̄ = 1

2

∑
q

ρ̄(q)vee(q)ρ̄(−q). (12)

Although H̄ is now written in terms of a ρ̄(q), which obeys
the same GMP algebra as the one in Eq. (2), there is a big
difference. It is now expressed in terms of CF coordinates in
their Hilbert space, and there is a unique HF state by design:
with p-filled CF Landau levels.

In the CF space, there is room for another canonical pair
besides Re:

Rv = r + l2

c(1 + c)
ẑ×�∗. (13)

We call Rv the guiding center coordinate of the double vortex
since it has the same charge −2ν = −c2, as can be seen by the
commutator

[
Rv

x,R
v
y

] = i
l2

c2
. (14)

Finally, the two conjugate pairs commute:

[Re,Rv] = 0. (15)

Consider the densities formed by Rv:

χ̄(q) =
∑

j

exp
[−iq · Rv

j

]
. (16)

They obey

[χ̄(q),χ̄(q′)] = −2i sin

[
l2

2c2
q×q′

]
χ̄(q + q′) (17)

and commute with ρ̄(q):

[ρ̄(q),χ̄(q′)] ≡ 0. (18)

We see that H̄ commutes with a huge family of operators χ̄(q),

[H̄ ,χ̄(q)] = 0, (19)

that do not enter H̄ and close under commutation. Appendix
shows that the χ̄(q) are the constraints that pay for the
magnetoplasmon oscillators that were introduced à la Bohm-
Pines [21] and decoupled.

If one wanted to skip the intermediate steps one could
simply begin with Eqs. (7)–(12), which pose the LLL problem
of electrons in the larger space of the CF, preserving the algebra
of ρ̄(q) and H̄ . The physical sector is defined by χ̄(q) � 0,
where � means “when χ̄(q) appears within correlation
functions.”

While a HF state exists in the CF space, the result of naive
HF calculations is a mixed bag. On the plus side, one sees the
K invariance of Haldane in the HF spectrum at ν = 1/2. On the
minus side, ρ̄(q = 0), the charge associated with ρ̄(q) seems
to be e and not e∗ = e(1 − c2), there is no evidence of the
dipole at ν = 1

2 , and the structure factor is S(q) � q2, and not
q4 as required by Kohn’s theorem. However, these features can
be recovered upon imposing the constraints via a conserving
approximation à la Kadanoff and Baym [23], which enforces
χ̄(q) � 0. When Read [16] carried out this approximation for
ν = 1 bosons (also a CF Fermi liquid), he found S(q) � q3 ln q

and the overdamped mode of HLR. Murthy [24] found
S(q) � q4 for Jain fractions using the conserving
approximation.

III. THE PREFERRED DENSITY ρ̄ p(q)

At this point, we proposed a shortcut to some of these results
obtained in the conserving approximation. We argued that in
an exact theory which obeyed the constraint, we could replace
ρ̄(q) by ρ̄(q) − αχ̄(q) for any value of α. While all values of
α were equal in the exact theory, the following one stood out
as the preferred density in the HF calculation:

ρ̄p = ρ̄(q) − c2χ̄(q). (20)

With this choice, one found, as q → 0, the charge
(1 − c2)e = e∗, S(q) � q4, and the correct dipole moment

ρ̄p(q) =
∑

j

e−iq·rj ((1 − c2) − il2q×�∗
j + · · · ). (21)

At ν = 1/2, c = 1, the fermion becomes neutral, �∗
j → p

and we regain the dipole moment by Read’s wave function
analysis. In this approach using

H̄p = 1

2

∑
q

ρ̄p(q)vee(q)ρ̄p(−q), (22)
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one gets many results (at small q) of the conserving approx-
imation at tree level. On the other hand, ρ̄p(q) does not obey
the GMP algebra except at small q, and there is no systematic
way of deriving the overdamped mode of HLR [15].

We will see shortly that this ad hoc recipe becomes a
legitimate option in the algebraic approach but only at ν = 1/2.

Going forward, it should be borne in mind that when we
work with ρ̄p and H̄p, there are no commuting constraints to
select states CF space corresponding to electrons in the LLL.
Instead, the role of χ̄(q) is to represent the charge density
of the double vortex. In the spirit of a low-energy effective
description, we hope, motivated by Jain [12], that despite the
larger CF Hilbert space, the low-energy properties of the FQH
states in the LLL will be correctly reproduced.

We addressed several quantitative questions [25] using H̄p

and found it to be a 10%–20% theory for gaps, polarizations,
etc., as long as there was an infrared cutoff in the form of a
gap or temperature.

IV. THE CF-FERMI SEA FOLLOWING JAIN

Let us focus on finding a formalism which exhibits the
PH symmetry at ν = 1/2. This is a special point in other
ways as well. Here, the electron and vortex have exactly
opposite charges, the CF is electrically neutral and sees no
magnetic field. However, even more special is the following:
the preferred density ρ̄p(q) itself obeys the GMP algebra

[ρ̄(q) − χ̄(q),ρ̄(q′) − χ̄(q′)] = [ρ̄(q),ρ̄(q′)] + [χ̄(q),χ̄ (q′)]

= 2i sin

[
l2

2
q×q′

]
(ρ̄(q + q′) − χ̄(q + q′)).

Thus, if we follow the algebraic route, at ν = 1/2, ρ̄p(q) is
another candidate besides ρ̄(q) that satisfies the GMP algebra.
Thus the ad hoc introduction of ρ̄p(q) as a shortcut to the results
of the conserving approximation now becomes a legitimate
alternative to ρ̄(q).

In other words, there are two ways to obtain a realization
of the GMP algebra. The first is to find the electron guiding
center coordinate in the CF space and then to exponentiate
it, as in Eqs. (9) and (11). The other is to directly go for the
preferred densities densities ρ̄p = ρ̄(q) − χ̄(q), which are not
exponentials of anything simple.

Thus, unlike ρ̄(q), which evolved adiabatically from the CS
formulation, the use of ρ̄p(q) represents a leap based entirely
on algebraic considerations. There is no reason to believe it
has to be realized in the space of the one-component fermion,
or that if it is realized in another space, that representation has
any relevance to the original LLL problem.

To begin with, let us assume that ρ̄p(q) lives in the
space of the one-component fermion and see what happens.
First, consider the antiunitary time-reversal operation in this
representation. It is easy to see in first quantization; as �∗ → p
and c = 1 at ν = 1/2,

Re = r − l2

1 + c
ẑ×�∗ = r − l2

2
ẑ×p,

Rv = r + l2

c(1 + c)
ẑ×�∗ = r + l2

2
ẑ×p. (23)

Note that
Re + Rv

2
= r (CF is midway between e and v),

Re − Rv = −l2ẑ×p (CF dipole moment). (24)

Under time-reversal T , we see that

T : Re ↔ Rv,

T : ρ̄(q) ↔ χ̄ (−q), (25)

T : ρ̄p(q) → −ρ̄p(−q).

The last equation informs us that T has effected the PH
transformation on the electronic charge. The Hamiltonian
being bilinear in ρ̄p remains invariant.

In second quantization where

ρ̄(q) =
∑

k

d
†
k−qe

− il2

2 q×kdk,

χ̄(q) =
∑

k

d
†
k−qe

il2

2 q×kdk, (26)

and the action of T is

T d
†
kT −1 = d

†
−k,

T dkT −1 = d−k, (27)

T iT −1 = −i,

we have

T ρ̄(q)T −1 =
∑

k

d
†
−k−qe

il2

2 q×kd−k

=
∑

k

d
†
k−qe

− il2

2 q×kdk

= χ̄ (−q), (28)

and, likewise,

T χ̄(q)T −1 = ρ̄(−q). (29)

Consequently,

T ρ̄p(q)T −1 = T (ρ̄(q) − χ̄(q))T −1

= −ρ̄p(−q). (30)

So this symmetry reverses the sign of the (preferred)
physical charge density (represented now by ρ̄p), making it
appropriate to call it charge-conjugation. This is reminiscent
of Son’s approach [4], but there is a crucial difference and we
are grateful to both Son and Senthil for emphasizing this: the
antiunitary operation T we have proposed obeys

T 2 = +1, (31)

whereas the PH symmetry of the electronic LLL problem
obeys [20]

T 2 = −1. (32)

Consequently, this model cannot be a representation of the
electronic ν = 1/2 LLL problem, and yet, it is a model in
which there is a CF-Fermi surface, which manifestly displays
the GMP algebra of the charge density, and the dipolar picture.
If it is not the ν = 1/2 problem of electrons, what is it? There
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is one obvious choice: the ν = 1 hard-core boson problem
analyzed by Read [16]. Indeed, if we switch from the hard-
core bosons to CFs by attaching one unit of statistical flux
and followed our Bohm-Pines approach, we would get the
same expressions for ρ̄(q) and χ̄(q) at small q. If we extended
to small-q results to all q to satisfy the GMP algebra, we
would get exactly the charge density and constraint algebra
that Read [16] obtained for the boson problem. The dipole
here is also made of charge ±1 objects. It can be quantized as
a single-component fermion given the absence of extra phase
factors from the boson-vortex bound state.

If our H̄p indeed describes the ν = 1 boson problem, it
suggests that there is an emergent charge-conjugation sym-
metry of the ν = 1 boson problem as well. This formulation
may be of relevance to the high-field superconductor-insulator
transition in which indications of boson-vortex duality have
been seen [26]. We have a concrete representation of the
electronic charge density in ρ̄p(q) for this case, which permits
us to do many of the detailed calculations of response
functions, even at T > 0.

V. HAMILTONIAN FORMULATION
OF SON’S DIRAC CFS AT ν = 1

2

To describe the electronic ν = 1/2 problem, we need
T 2 = −1. This is impossible in the space of a single-
component fermion. Having seen that the representation of
ρ̄p(q) need not be continuously connected to the primordial
problem, we can seek other options. We confess we could not
have made any headway till we turned to the very surprising
option Son [4] provides us, of a Dirac fermion. This option is
buttressed by Wang and Senthil [5] who give us a nice physical
picture of why this is so: one of the double zeros must lie on
the electron (by the Pauli principle) turning it into a charge 1/2
semion. The remaining vortex is a charge −1/2 antisemion.
The pair is quantized as a spinor (as shown in Appendix
of WS [5]) that appears in Son’s Dirac equation. Given this
internal structure the phase of π due to circumnavigating the
Fermi circle follows.

One may feel that where we place the two vortices (none
on the electron or just one on the electron which makes it
a semion) is a short distance feature, that both descriptions
have the same long distance features: a net charge of zero and
the same dipole moment �ẑ×pl2 which appears at ν = 1/2
fermions and ν = 1 bosons. However, the difference in internal
structure leads to a profound difference in the topology of the
Fermi surface, one with a Berry phase and one without.

Let us now implement our algebraic approach starting with
a Dirac fermion, which will be our composite fermion. The
number of these CFs, which so far equaled the number of
electrons, is also equal to half the number of flux quanta
penetrating the sample precisely at ν = 1/2, exactly as in
Son’s construction [4]. Thus ν = 1

2 is the confluence of two
approaches, the one we have always used, in which NCF = Ne

and Son’s in which NCF = 1
2Nφ . We will see that if we are to

go to ν 	= 1
2 we must follow Son’s assignment.

In 2+1 dimensions, the noninteracting two-component
Dirac equation is

i�∂tψ = σ · (p − a) ψ, (33)

where a is an external gauge field. Let us initially set it a = 0.
As usual, there are positive and negative energy solutions.
Paying no attention to filling the Dirac sea, we can expand ψ

in real space as

ψT (r) =
∑

k

eik·r
[

ck√
2

(1,eiθk ) + dk√
2

(1, −e−iθk )

]
, (34)

where eiθk = kx+iky

|k| .
The projected electron density is of course not the density

of the Dirac CF, just like it was not in the previous case of the
nonrelativistic field. It is determined by the GMP algebra. Let
us start with the same expressions for Re and Rv as in Eqs. (23)
adapted at ν = 1

2 (to fermions in zero field),

Re = r − l2

2
ẑ×p,

Rv = r + l2

2
ẑ×p. (35)

Note that under time reversal,

T : Re ↔ Rv. (36)

Next, we define the electron density and vortex density
operators in the Hilbert space of the Dirac CF by taking matrix
elements of e−iq·Re and e−iq·Rv between momentum states and
obtain

ρ̄(q) = 1

2

∑
k

e−i 1
2 l2q×k{[c†k−qck + d

†
k−qdk](1 + ei(θk−θk−q))

+ [c†k−qdk + d
†
k−qck](1 − ei(θk−θk−q))}

and

χ̄(q) = 1

2

∑
k

ei 1
2 l2q×k{[c†k−qck + d

†
k−qdk](1 + ei(θk−θk−q))

+ [c†k−qdk + d
†
k−qck](1−ei(θk−θk−q))}.

One may verify that ρ̄(q) and χ̄ (q) obey the same algebra as
before since Re and Rv do. So this is yet another algebraically
faithful representation of the LLL. Once again, we will use our
preferred density ρ̄p = ρ̄ − χ̄ , ignoring constraints in the spirit
of obtaining a low-energy theory that has all the symmetries
of the original. It is ρ̄p that allows us to display the PH
transformation as follows.

The PH transformation of electrons is once again imple-
mented as time reversal on the CF. However, the action of T
naturally follows from the Dirac nature of the CF:

T ckT −1 = eiθkc−k,

T c
†
kT −1 = e−iθkc

†
−k,

T dkT −1 = −eiθkd−k,

T d
†
kT −1 = −e−iθkd

†
−k. (37)

Using θk − θ−k = π , one sees that T 2 = −1. Next, one may
verify that

T ρ̄(q)T −1 = χ̄ (−q),

T χ̄(q)T −1 = ρ̄(−q), (38)

T ρ̄p(q)iT −1 = −ρ̄p(−q).
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(This is most easily seen in first quantization by considering
the action of T on e−iq·Re and e−iq·Rv : for iq → −iq and
Re ↔ Rv .)

Since T reverses the sign of the electronic charge ρ̄p it is
appropriate to call it a PH transformation. The Hamiltonian
built out of the preferred density

H̄p = 1

2

∑
q

vee(q)ρ̄p(q)ρ̄p(−q) (39)

is symmetric under T . On the other hand, the Hamiltonian
built out of ρ̄

H̄ = 1

2

∑
q

vee(q)ρ̄(q)ρ̄(−q), (40)

which does not display PH symmetry but has a huge symmetry
group generated by χ̄ is the only way to get the overdamped
mode in a conserving calculation.

Filling the Dirac sea will lead to the replacements
dk → b

†
−k, d

†
k → b−k, where the b, b† are now hole destruc-

tion and creation operators for negative energy states in the
filled Dirac sea. If one is interested in nonzero filling above
the Fermi point in the Dirac problem, the d or b operators
are high energy operators and can be set to zero to obtain
the low-energy physics. However, the density, if projected by
setting d,d† → 0, will not obey the GMP algebra exactly, but
only at small q.

It should be noted that our CF differs from Son’s [4] in one
regard. The projected physical charge density of the correlated
electrons is directly given in terms of our CFs but in Son’s
picture, the physical number density of electrons (measured
from half-filling) is the curl of an emergent, minimally coupled
gauge field.

One can also ask whether this theory has a sensible
nonrelativistic limit. At the level of the algebra, the natural
way to take this limit is to keep only the low-energy states
around the Fermi surface. A computation reveals that while
the small-q limit of the GMP algebra is correctly reproduced,
one needs the “high-energy” components to reproduce the full
GMP algebra. Next we turn to the nature of the ground state
of the interacting Hamiltonian we have proposed.

VI. HARTREE-FOCK NATURE OF SON’S GROUND STATE

So far, all we have shown is that we can realize the GMP
algebra in a Hilbert space of Dirac fermions. However, unlike
the effective theory proposed by Son [4], which already comes
with a “kinetic” term for the Dirac fermions, our two proposed
interacting Hamiltonians

H̄ = 1

2

∑
q

vee(q)ρ̄(q)ρ̄(−q),

H̄p = 1

2

∑
q

vee(q)ρ̄p(q)ρ̄p(−q) (41)

have no such kinetic terms. So one may ask in what sense one
can make a correspondence between Son’s proposed ground
state (all negative energy states filled, and positive energy
states filled to some μ which guarantees the correct number
of CFs).

The answer is that Son’s ground state is a Hartree-Fock
state of both of our interacting Hamiltonians. To see this, we
characterize Son’s ground state in terms of the expectation
values of the c and d operators defined in the previous section:

〈d†
kdk′ 〉 = δkk′ ∀k,

〈c†kck′ 〉 = δkk′NFc(k), (42)

〈d†
kck′ 〉 = 〈c†kdk′ 〉 = 0,

where NFc(k) = �(kF − k). One now writes the interacting
Hamiltonian and reduces it to a one-body (HF) Hamiltonian
by taking all possible expectation values. One can see by
inspection that since translation symmetry is preserved by the
ground state, the HF Hamiltonian must be of the form

HHF =
∑

k

(εc(k)c†kck + εd (k)d†
kdk

+ γ (k)c†kdk + γ ∗(k)d†
kck).

Each of the coefficients εc,d (k), γ (k) are sums over q. If
the coefficients γ (k) are not zero, one generates correlations
between c and d, and the ground state proposed by Son
will fail to be a HF state of our interacting Hamiltonian.
So the verification that Son’s ground state is a HF state
of our Hamiltonian reduces to verifying that γ (k) = 0. A
straightforward calculation shows that in the case of H̄ ,

γ (k) = − i

4

∑
q

vee(q){sin(θk − θk−q)[1 − NFc(k − q)]

+ sin(θk − θk+q)[1 − NFc(k + q)]}. (43)

Now, we note that for every k, q, there is a q∗, which is the
vector q reflected about k. All the terms in the expression
for γ are even under the change q → q∗, except for the
prefactor sin(θk − θk±q), which changes sign. The sum is thus
zero by symmetry for any rotationally invariant vee(q). A
similar arguments applies for the case H̄p in which we use the
preferred density ρ̄p = ρ̄(q) − χ̄(q), despite additional phase
factors.

Examining the HF Hamiltonian in more detail reveals that
for any k, εd (k) � εc(k). Equality is achieved only for k = 0.
These are also features of the noninteracting ground state of
Son.

So we have established that Son’s ground state is a HF
ground state of our interacting Hamiltonians H̄ and H̄p. We
plan to use H̄ , which commutes with χ̄ , as a starting point for a
conserving calculation of response functions in the near future.
As for H̄p, there are no obvious constraints that commute
with it. However, in addition to manifestly displaying the PH
symmetry, it captures many of the low-energy properties of
the CF at the level of naive Hartree-Fock.

VII. HAMILTIONIAN FORMULATION OF SON’S CFS
AWAY FROM ν = 1

2

The construction we carried out at ν = 1
2 can be extended

in a natural way away from 1/2. However, this requires us to
change our strategy. Until recently we were of the view that
ρ̄p(q) existed as an alternative to ρ̄(q) only at ν = 1

2 . This is in

085405-6



ν = 1
2 LANDAU LEVEL: HALF-EMPTY VERSUS . . . PHYSICAL REVIEW B 93, 085405 (2016)

fact true if we insist on NCF = Ne. However, a new path opens
up if we switch to NCF = 1

2Nφ . Here are the details.
Recall again that the number of Son’s CFs is

NCF = Nφ

2
= eBA

4π
. (44)

The CF couples to electronic charge via a gauge potential
whose curl is the physical charge density. The effective number
of flux quanta seen by the CFs is

Nφ,CF = Nφ − 2Ne, (45)

where Ne is the number of electrons. It follows that the effective
magnetic field seen by the CFs is

BCF = B(1 − 2ν) ≡ B θ, (46)

where
θ = 1 − 2ν. (47)

Introducing coordinates rCF and velocity operators �CF, we
demand

[
�CF

x (θ ),�CF
y (θ )

] = i(1 − 2ν)

l2
≡ iθ

l2
, (48)

where
�CF(θ ) = p − a(θ ). (49)

If we do a PH transformation on electrons, we want to map
the Hamiltonians such that H(θ ) → H(−θ ). The PH transfor-
mation of electrons is implemented in the CF space by time-
reversal. However, since the “gauge” potential representing the
deviation of the electron density from ν = 1/2 is dependent
only on CF coordinates, and not on CF momenta, we have

T a(θ )T −1 = a(θ ). (50)

This is identical to Son’s formulation. Let us now consider
the effect of time reversal on �CF:

T �CF(θ )T −1 = T (p − a(θ ))T −1

= (−p − a(θ ))

= −(p + a(θ ))

= −(p − a(−θ ))

= −�CF(−θ ). (51)

If we now conjugate Eq. (48), we find, using T iT −1 = −i,

[
�CF

x (−θ ),�CF
y (−θ )

] = −iθ

l2
(52)

as desired.
At θ 	= 0, we define two sets of conjugate coordinates Re

and Rv as follows:

Re(θ ) =
(

1 + θ

4

)
rCF − 1

2
l2ẑ×�CF(θ ),

Rv(θ ) =
(

1 − θ

4

)
rCF + 1

2
l2ẑ×�CF(θ ). (53)

It can easily be checked that for all θ ,[
Re

x,R
e
y

] = −il2,

[Re,Rv] = 0, (54)[
Rv

x,R
v
y

] = il2.

There are several pleasing features of these sets of coordi-
nates. Firstly, under time reversal in the Dirac world, since
T �(θ )T −1 = −�(−θ ), we find

T Re(θ )T −1 =
(

1 + θ

4

)
rCF + 1

2
l2ẑ×�CF(−θ )

= Rv(−θ ),

T Rv(θ )T −1 =
(

1 − θ

4

)
rCF − 1

2
l2ẑ×�CF(−θ )

= Re(−θ ). (55)

Secondly, the position coordinate of the Dirac CF is still the
average of Re and Rv , as at ν = 1

2 . Finally, we define ρ̄ and
χ̄ in the Hilbert space of the Dirac CFs exactly as before,
by taking the matrix elements of e−iq·Re and e−iq·Rv between
momentum states of the Dirac fermion.

Because the commutation relations of Re and Rv are
identical to those at ν = 1

2 , we can once again choose to
represent the physical charge density in two distinct ways,
either as ρ̄ or as ρ̄p = ρ̄ − χ̄ . If we choose to represent the
Hamiltonian in terms of ρ̄ it will commute with the set of χ̄ (q),
and will thus be amenable to a conserving approximation [23].
Of course, the physical charge e∗ of the quasiparticles and
the PH mapping will not be manifest. If, on the other hand,
we choose to represent the physical charge density as ρ̄p then
the PH transformation (implemented by T with T 2 = −1) can
be explicitly realized as follows. Given Eq. (55),

T ρ̄(q,θ )T −1 = χ̄ (−q, −θ ),

T χ̄(q,θ )T −1 = ρ̄(−q, −θ ), (56)

T ρ̄p(q,θ )T −1 = −ρ̄p(−q, −θ ).

The Hamiltonian, quadratic in ρ̄p(q) will respond as follows:

H̄p(θ ) → H̄p(−θ ). (57)

An important point to note: the ad hoc combination
ρ̄p = ρ̄(q) − c2χ̄(q) stood for a particle of charge e∗ = e(1 −
2ν), with e∗ = 0 only at ν = 1/2. In the present approach,
mirroring Son’s, ρ̄p always describes a neutral particle [ρ̄p(q =
0) = 0]. This is actually too much of a good thing, since
the actual charge of the quasiparticle at long wavelengths for
ν 	= 1

2 should be e∗ 	= 0. This is a problem we hope to resolve
in future work.

Thus we have been able to find a representation of the GMP
algebra in terms of the neutral Dirac CFs of Son [4] for all ν.
Presumably, this could be the starting point for calculations
of gaps, response functions, etc., as in our previous work on
Jain’s CFs.

VIII. SUMMARY

This paper explores the Son’s [4] recent solution for
displaying the PH transformation of electrons in the LLL
and the PH symmetry of the ν = 1/2 problem, within the
framework of our Hamiltonian formalism. In our approach, we
map the algebraic problem of the LLL projected charge ρ̄(q)
(which obeys the GMP algebra) and the projected Hamiltonian
H̄ (ρ̄(q)), from the electronic space (plagued with ground state
degeneracy) to a different space which permits a unique HF
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ground state. When realized in the CF space of a single-
component fermion which saw the weaker field mandated by
Jain [12], we also found a closed algebra of constraints χ̄(q)
that commuted with H̄ , delineated the physical sector, and
formed the GMP like algebra of an object with the charge −2ν

of the double vortex. These results could be derived at small
q, as indicated in Appendix.

Recently, we realized that at and only at ν = 1/2, a
preferred charge density ρ̄p(q) = ρ̄(q) − χ̄(q) also obeyed the
GMP algebra and could equally well represent the projected,
correlated electron density. The role of this isolated second
option escaped us until recently, as did the importance of the
PH transformation of the LLL. We now see that it allows us
to realize the PH transformation as an antiunitary operator T
with T 2 = +1 in the space of a one-component fermion. Since
one wants T 2 = −1 for electrons [8,20], we conjecture this
describes an emergent symmetry of the ν = 1 boson problem
studied by Read [16]. Such a theory could potentially be
relevant to the high-field superconductor-insulator transition,
where indications of boson-vortex duality [26] have been
seen.

Following Son [4] and the work of Wang and Senthil [5],
we then cast the algebraic formulation in the space of Dirac
fermion. By following Son’s approach of equating the number
of CFs to half the number of flux quanta (and not the number of
electrons), we were able to extend the operator approach to all
ν. In this version, the CF is always neutral. The commutation
relations for ρ̄(q) and χ̄(q) are the same at ν = 1/2. As always,
we have two options. One is to use ρ̄(q) as the electronic charge
density and χ̄(q) as the algebra of constraints that specifies the
physical LLL sector. The constraints are then to be enforced
in a conserving approximation [23], which would yield the
overdamped mode at ν = 1/2. The other option is to use ρ̄p(q),
in which the PH transformation properties are transparent.
However, unlike the ρ̄p(q) of the one-component (Jain) CFs,
the quasiparticle charge does not come out correctly at tree
level. Perhaps there is an even better representation in which all
the algebraic and symmetry properties of the CF are manifest.

One can ask whether the particle-hole symmetry can be
realized with two flavors of nonelativistic CFs, say two spin
flavors [27]. One can write down such a Hamiltonian theory in
which one spin flavor gets mapped into the other underT , and it
will even have the desired T 2 = −1. However, an undesirable
feature is that it will have two Fermi surfaces, and thus this state
is not a good candidate for the spin-polarized ν = 1/2 state.

There are a number of future directions we would like
to pursue. The first is to carry out a conserving calculation at
ν = 1/2 in the new formulation in terms of Dirac CFs. We have
already established the first necessary step, that Son’s ground
state is a HF ground state of our interacting Hamiltonian. The
structure factor should vanish as q4 to be in compliance with
Kohn’s theorem. We should also recover the overdamped mode
of HLR [15], and in the presence of disorder we should be able
to see the suppression of backscattering [8]. Presumably, we
should be able to extend this kind of treatment to ν away
from half as well. At the moment, we have a realization of the
GMP algebra away from 1/2 that does show the mapping from
ν → 1 − ν. However, the density operator does not have
the correct quasiparticle charge. We would like to find a
representation in which all the algebraic, symmetry, and

physical properties of the quasiparticles of the problem are
transparently visible.

Another direction leading towards more realistic systems
is to incorporate the breaking of PH symmetry [27]. Recall
that under T the preferred density changes sign. This suggests
that the most straightforward way to incorporate PH symmetry
breaking is by introducing a small three-body term. Such a term
(generated by Landau-level mixing) was shown to be crucial
in stabilizing the anti-Pfaffian [28] state over the Pfaffian [29]
in GaAs systems.
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APPENDIX

In our earliest work, we began with the CS theory and
adapted the strategy of Bohm and Pines. Collective charge
degrees of freedom were represented by magnetoplasmon
oscillators A(q) of cyclotron energy ωc and to pay for them
some constraints χ (q) were imposed. At the end the fermions
and oscillators were decoupled in the small q limit to yield the
following results for Jain fractions:

Hosc =
∑

q

A†(q)A(q)ωc,

je(q) = q̂(A(q) + A†(q)),

ρe(q) = q(A(q) + A†(q)) + ρ̄(q), where

ρ̄(q) =
∑

j

ε−iq·rj

(
1 − il2

1 + c
q×�∗

j + · · ·
)

,

χ̄(q) =
∑

j

ε−iq·rj

(
1 + il2

c(1 + c)
q×�∗

j + · · ·
)

,

0 = χ̄(q)|physical state〉 (constraint), (A1)

where

c2 = 2ν = 2p

2p + 1
, (A2)

and �∗
j is the canonical momentum of CF number j which

experiences the right field to satisfy Jain’s condition

[�∗
x,�

∗
y] = i(1 − c2)

l2
≡ i

l∗2
. (A3)

Notice that the current is carried only by the oscillators at every
ν. When the charge ρe is coupled to an external scalar potential
�(q), the resultant Hall current gives the correct σxy . Our CF,
restricted the LLL makes no contribution since the current has
no leading matrix elements within the LLL.

085405-8



ν = 1
2 LANDAU LEVEL: HALF-EMPTY VERSUS . . . PHYSICAL REVIEW B 93, 085405 (2016)

Following this, it was conjectured by RS that the two terms
in the expression for ρ̄(q) and χ̄(q) were the beginnings of the
following exponentials:

ρ̄(q) =
∑

j

exp(−iq · Rej ),

χ̄(q) =
∑

j

exp
(−iq · Rv

j

)
, where

Re = r − l2

1 + c
ẑ×�∗,

Rv = r + l2

c(1 + c)
ẑ×�∗. (A4)

In this “all q” formalism, the coordinates Re and Rv were
named thus because they have the following commutation
relations: [

Re
x,R

e
y

] = −il2,

[
Rv

x,R
v
y

] = i
l2

c2
,

[Re,Rv] = 0. (A5)

We recognize the commutation rules of Re as that of the
guiding center coordinate of the electron and Rv as describing
the guiding center coordinate of the double vortex. This
ensures that the density corresponding to Re,

ρ̄(q) =
∑

j

e−iq·Re
j , (A6)

obeys the GMP algebra. The density formed from the vortex
coordinate obeys

[χ̄(q),χ̄(q′)] = −2i sin

(
l2

2c2
q×q′

)
χ̄(q + q′) (A7)

and commutes with ρ̄(q):

[ρ̄(q),χ̄(q′)] ≡ 0 (A8)

and therefore with H̄ (ρ̄(q)). The careful reader will note that
these results apply equally well to the ν = 1 boson problem
after the fluxes are attached to the bosons.
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