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Spin-dependent Klein tunneling in polariton graphene with photonic spin-orbit interaction
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We study Klein tunneling in polariton graphene. We show that the photonic spin-orbit coupling associated with
the energy splitting between TE and TM photonic modes can be described as an emergent gauge field. It suppresses
the Klein tunneling in a small energy range close to the Dirac points. Thanks to polariton spin-anisotropic
interactions, polarized optical pumping allows one to create potential barriers acting on a single polariton
spin. We show that the resulting spin-dependent Klein tunneling can be used to create a perfectly transmitting
polarization rotator operating at microscopic scale.
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I. INTRODUCTION

Emergent physics [1] in solid-state systems with effective
Hamiltonians mimicking the behavior of less accessible
systems has become a very productive field of research. The
work of Semenoff [2] was a starting point for the research
on the analogs of effective electrodynamics in solids, which
has culminated with beautiful works on graphene [3], whose
practical properties, such as the carrier mobility, are very much
affected by the effect predicted in high-energy physics, but
inaccessible there—Klein tunneling [4], leading to perfect
transmission through a potential barrier by particle-antiparticle
conversion.

Although graphene is a very promising, rich in effects [5,6],
and popular system, offering wide possibilities for the study
of emergent physics [7,8], it has its own limitations: many
measurements are indirect, its structure is fixed, and its
parameters (such as the band gap) are difficult to tune [9].
The spin-orbit interaction in graphene with several contri-
butions is also difficult to control, which still prevents the
observation of the Z2 topological insulator [10]. This is
where various types of artificial graphene [11] come into
play. These can be based on different particles: atoms, both
fermionic [12,13] and bosonic [14,15], or on photons and
photonic quasiparticles [16–19], confined in a 2D honeycomb
potential. For these systems, the single particle Hamiltonian
is similar to the one in graphene, and it typically results in
the same type of dispersion, characterized by the presence
of the famous Dirac cones. The artificial graphene systems
offer a very wide tunability. The lattice parameters can be
modified, and specific types of spin-orbit interaction can be
implemented [20,21] and controlled. The physics of both
bosonic and fermionic interacting systems can be addressed.
Photonic systems are particularly useful, because they allow
a unique direct access to the time and spatial evolution of the
wave functions (for example, the Bloch functions of a lattice
in real and reciprocal space), with very simple experimental
means [22,23]. As an example, time-dependent perturbations
can be used in photonic graphene waveguide structure to create
Floquet topological insulators [24].
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Recently, a particular type of a 2D honeycomb lattice
has been implemented for interacting photonic particles,
the exciton-polaritons (polaritons) [25]. These quasiparticles
appear in microcavities [26] in the strong coupling regime
between the quantum well excitons and the cavity pho-
tons [27]. They combine light effective mass with strong
interactions. Their bosonic character provides the possibility
for Bose-Einstein condensation [28], while the two spin
projections make it possible to describe them within the
pseudospin formalism [29] where the pseudospin dynamics
is described by its coupling to effective magnetic fields [30].
The spin-anisotropic character of the interactions [31] together
with various controllable effective fields offer a large variety
of spin (polarization) effects for spin-optronics. The fabri-
cated polariton graphene is based on a lattice of coupled
micropillar cavities [25], but other realizations of periodic
lattices for planar cavities exist as well [32–35]. This system
is characterized by a spin-orbit interaction (SOI) acting on
the real polarization of the photonic eigenstates. This SOI
is induced by the energy splitting between the TE and TM
polarized eigenmodes. It makes polariton graphene suitable
for the realization of the optical spin Hall effect [36]. As
noticed in different contexts, the specific angular dependence
of the TE-TM SOI induces chirality, which can generate
stationary photonic spin currents [37,38]. When combined
with a Zeeman effective field in polariton graphene, it leads
to the formation of a polaritonic analog of a Z topological
insulator [39,40].

In this work, we propose and analyze an experimental
scheme to study Klein tunneling in polariton graphene. This
scheme is shown on Fig. 1(a). The potential barrier is created
by a non-resonant optical pumping (blue), which populates
an excitonic reservoir. This excitonic reservoir creates via the
exciton-exciton interactions a potential barrier [41] affecting
polaritons. The useful signal consists of polaritons optically
injected close to the Dirac point of the dispersion by quasires-
onant pumping (red). The height of the barrier can be very
precisely controlled as demonstrated experimentally [42–44].
Our study will include the role of the specific SOI present in the
system, and also the freedom offered by the spin-anisotropic
interactions between polaritons, which allows one to optically
create a potential barrier acting only on one specific spin
component [45]. Klein tunneling and particle scattering in
the presence of Rashba like spin-orbit coupling has already
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FIG. 1. (a) Scheme of the experiment. Patterned microcavity
shown in gray, pump 1 (red) creates propagating polariton, and pump 2
(blue) controls the barrier; (b) particle-antiparticle conversion in Klein
tunneling: the dispersion is shown in red, the potential in blue, and
the particle in green; (c) scheme of the Klein tunneling configuration.
The indices i,r ,t stand for incident, reflected, and transmitted waves.
The barrier is shown by blue hatching.

been studied both for electrons [46–48] and Bose-Einstein
condensates [49]. With qualitative similarities to their findings,
we show that the TE-TM induced SOI considerably suppresses
Klein tunneling in a narrow energy range around the Dirac
point. We show that this field can be represented as an
emergent gauge field. In the second part of the manuscript
we propose a scheme of “Klein polarization rotator,” which
allows one to optically control the polarization emitted by the
polariton graphene: if a potential barrier is created only for
one of the two spin components, it affects the phase of this
component, and thus the orientation of the linear polariza-
tion, while the transmission remains perfect thanks to Klein
tunneling.

II. TIGHT-BINDING DESCRIPTION OF
POLARITON GRAPHENE

Before addressing Klein tunneling, we need to discuss
the system, which provides the effective Hamiltonian respon-
sible for this phenomenon. Polariton graphene inherits the
most important properties of real graphene. The simplest
tight-binding model of electronic states in graphene [50]
neglects the spin degree of freedom. Taking into account only
the nearest-neighbor tunneling described by a constant J , the
Hamiltonian in the basis of the two atoms A and B of the unit
cell forming the lattice writes as follows:

Hk =
(

0 −Jfk

−Jf
†
k 0

)
, (1)

where fk = ∑3
j=1 exp(−ikdϕj

) is a sum over the three nearest
atoms. This model gives rise to an emergent Dirac equation for
electrons at the special points of the dispersion (called K and K′

or simply Dirac points) located at the corners of the Brillouin
zone. In this equation, the emergent “spin” 1/2 corresponds, in
fact, to the sublattice degree of freedom—atoms A and B (the
coordinates in the reciprocal space are usually modified for
convenience with respect to the full Hamiltonian of Ref. [50]
as kx → ky ,ky → −kx):

Ĥ = �vF k.σ̂ = �vF

(
0 kx − iky

kx + iky 0

)
, (2)

where vF = 3Ja/2� is the Fermi velocity of graphene,
replacing the light speed in the original Dirac equation. For a
bosonic particle, it should be considered simply as a parameter
of the dispersion, determining the group velocity. The index
of the dispersion branch is defined as α = sgn(Ekin) = ±1,
Ekin being the kinetic energy with its zero given by the energy
position of the Dirac points. By the analogy with the Dirac
equation, excitations with the branch index ±1 are called
“particles” and “antiparticles,” respectively.

In order to apply this Hamiltonian to exciton polaritons,
formed by the strong coupling of two dimensional excitons
and photons placed in a honeycomb potential, we need to make
several approximations. The transverse (lateral) dynamics of
photons in a cavity can be described using the Schrödinger
equation. Restricting the consideration only to the lower
polariton branch and using the parabolic approximation, which
is valid close to the bottom of this branch, it becomes possible
to apply the tight-binding approach, provided that the lattice
sites are not too small (to avoid large wave vectors) and the
confinement is strong enough, so that the band is smaller than
the energy difference between the two first energy states of an
isolated lattice site.

Periodic potential acting on photons and polaritons in
planar microcavities can be realized in different ways
[32–35], the main example being however based on a lattice
of micropillars obtained by patterning of a planar microcavity
for which the above mentioned approximation is well realized.

A. Spin-orbit coupling in polariton graphene

Since we are going to deal with the polarization degree
of freedom, we need to rewrite the tight-binding formal-
ism, accounting for the two spin projections of polaritons,
corresponding to right- and left-circular polarized photons.
For this, we will have to work with bispinors instead of
spinors. The corresponding tight-binding Hamiltonian for
polaritons has been derived in [36,40], together with extra
terms responsible for the spin-orbit coupling, which will be
discussed below. In the absence of spin-orbit coupling, the
two circular components are completely independent, and the
Hamiltonian is simply a combination of two tight-binding
graphene Hamiltonians:

Hk = −

⎛
⎜⎜⎝

0 0 Jfk 0
0 0 0 Jfk

Jf ∗
k 0 0 0

0 Jf ∗
k 0 0

⎞
⎟⎟⎠, (3)

written in the basis � = (�+
A ,�−

A ,�+
B ,�−

B )
T
, with �±

A(B)—
the wave functions of the two sublattices and two spin
components.
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Although we are using the wave function description
of polaritons, based on the Schrödinger equation, which is
possible due to the quantization of photons in the microcavity
in the growth direction, one should not forget that polaritons
are formed from photons, described by Maxwell’s equations. It
is natural to treat the electromagnetic waves on the basis of TE
and TM eigenmodes, which are split in energy in presence of
different media. For polaritons, the TE-TM splitting has been
thoroughly discussed since Ref. [51], and many interesting
effects based on this splitting have been demonstrated (e.g.,
optical spin Hall effect [52,53], or acceleration of emergent
magnetic monopoles [54]). For small wave vectors, the main
qualitative consequence of the TE-TM spin-orbit coupling is
the splitting between the TE and TM polarizations, which
grows quadratically with the wave vector. It can be interpreted
as the existence of two different effective masses for two
polarizations (mT E �= mT M ), the difference being usually of
the order of 5%. In confined structures, the TE-TM splitting
can be enhanced [55] with respect to the planar cavities. For
polariton graphene, it has already been the subject of extended
experimental and theoretical studies [36,37,40]. Therefore, we
need to take it into account in our description of Klein tunneling
in polariton graphene.

For this, we start from two coupled pillar cavities, for
which there is a difference in the tunneling coefficients for
two linear polarizations: longitudinal JL and transverse JT .
This difference stems from the difference in the effective
mass of the two orthogonal linear polarizations: lighter
particles tunnel better than the heavier ones. On the other
hand, the height of the barrier for tunneling depends on
the confinement in the transverse direction, which is also
polarization dependent. Both contributions lead to a difference
in the tunneling coefficients of the order of 5%–10%. The
Hamiltonian for a pair of coupled pillars A and B in the basis
� = (�L

A,�T
A,�L

B ,�T
B )

T
can be written as

H2 =

⎛
⎜⎜⎝

0 0 −JL 0
0 0 0 −JT

−JL 0 0 0
0 −JT 0 0

⎞
⎟⎟⎠. (4)

If we transform this Hamiltonian to the usual basis of circular-
polarized components � = (�+

A ,�−
A ,�+

B ,�−
B )

T
, we obtain a

phase in the spin-dependent tunneling coefficient, which is
determined by the spatial orientation of the two-pillar molecule

given by the angle ϕ:

H2 =

⎛
⎜⎜⎝

0 0 −J −δJ e−2iϕ

0 0 −δJ e2iϕ −J

−J −δJ e−2iϕ 0 0
−δJ e2iϕ −J 0 0

⎞
⎟⎟⎠. (5)

Here, J = (JL + JT )/2 is the polarization-independent tun-
neling coefficient, whereas δJ = (JL − JT )/2 is the SOI-
induced polarization dependent term, which can be up to
10% of J . Physically, it means that the polariton pseudospin
rotates around the effective field during the tunneling process.
This expression can be easily generalized to the infinite
honeycomb lattice by taking into account three neighbors
for each pillar with corresponding orientation angles ϕ. The
resulting Hamiltonian of the polariton graphene including the
TE-TM induced spin-orbit coupling can be written in the block
matrix shape as

Hk =
(

0 Fk

F†
k 0

)
, (6)

where the block matrices are defined as

Fk = −
(

fkJ f +
k δJ

f −
k δJ fkJ

)
, (7)

The wave-vector-dependent complex coefficients fk,f ±
k are

defined by the sum over the nearest neighbors:

fk =
3∑

j=1

exp(−ikdϕj
), f ±

k =
3∑

j=1

exp(−i[kdϕj
∓ 2ϕj ]),

One can still see in this expression the 2ϕ dependence
on the polar angle determining the spatial orientation of
each pair of pillars and the respective longitudinal and
transverse polarizations, whose difference stems from the
TE-TM splitting. Since Klein tunneling occurs in the region
of the reciprocal space close to the Dirac point, we can carry
out the series expansion of the expressions for fk,f ±

k , keeping
only linear in k terms around this point, which leads to the
following expression:

Ĥ = �vF (σ̂x k̂x + σ̂y k̂y) + �(σ̂y ŝy − σ̂x ŝx), (8)

where � = 3δJ/2 is the constant of the spin-orbit coupling,
ŝx and ŝy being the pseudospin operators acting on the
real polarization of particles. Without loss of generality, we
consider only one of the two Dirac points. The matrix form of
the Hamiltonian in this approximation can be written as

H =

⎛
⎜⎝

0 0 �vF (kx − iky) 2�

0 0 0 �vF (kx − iky)
�vF (kx + iky) 0 0 0

2� �vF (kx + iky) 0 0

⎞
⎟⎠. (9)

The four branches of the dispersion described by this
Hamiltonian are parabolic for low wave vectors because of
the spin-orbit coupling, and two of them are split off by �:

E = ±� ±
√

�2 + (�vF k)2. (10)

This result is the consequence of our approximation, valid
only at intermediate values of wave vector k relative to the
Dirac points. In fact, the spin-orbit coupling in its full form
leads to the trigonal warping of the dispersion. However, the
typical scale of the trigonal warping is so small that it can be
safely neglected [36].
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B. Emergent non-Abelian gauge field

Within the approximation of intermediate wave vectors
used above for the description of the spin-orbit coupling in po-
lariton graphene, the Hamiltonian Ĥ = �vF (σ̂x k̂x + σ̂y k̂y) +
�(σ̂y ŝy − σ̂x ŝx) can be reformulated to become mathemati-
cally similar to that of a charged Dirac particle in the presence
of a vector potential of a gauge field. This is possible thanks to
the reduced symmetry of the effective Dresselhaus spin-orbit
coupling close to the Dirac points, as compared to the TE-TM
field in the 	 point [36]. The Dirac Hamiltonian for a charged
particle reads [56]

Ĥ = �cσ̂

(
k − e

�c
A

)
, (11)

where A is the vector potential of the electromagnetic field
(B = rotA). As for the Schrödinger equation, the momentum
p is simply replaced by p − e/cA. Here, e is the electron charge
and c is the speed of light, which in the case of the effective
graphene Hamiltonian is replaced by the Fermi velocity vF ,
determined by the coupling J in the tight-binding model we
consider.

To have the analogy with the Dirac equation, we need to
define the effective vector potential as

A = −�ŝ′

�e
, (12)

where we have inverted one of the axes of the polarization
pseudospin: ŝ ′

x = −ŝx , ŝ ′
y = ŝy . In the new coordinates of

the polarization pseudospin space, the Dresselhaus field is
converted into the Rashba field. Using this vector potential, the
polariton graphene Hamiltonian can be written in the gauge
field representation:

Ĥ = �vF σ̂

(
k − e

�vF

A
)

, (13)

where the components of the vector potential Ax and Ay do
not commute with each other. Thus the gauge field is non-
Abelian [57,58]. Written in this form, the equation for bispinor
neutral particles is reduced to a usual Dirac equation for spinor
charged particles in an emergent gauge field. Since the vector
potential contains the polarization pseudospin operators ŝx,y ,
its spatial distribution depends on the current distribution of the
polarization pseudospin, determined by the polarization spinor
part of the wave function. Thus the emergent electromagnetic
field texture is defined by the polarization of polaritons.
This leads to interesting effects, such as the lensing by an
impenetrable defect, as was shown for other configurations
with polaritonic emergent gauge fields [59]. A detailed study
of the consequences of the emergence of the gauge field for
Dirac equation is a subject for future works.

III. KLEIN TUNNELING

The description in terms of the Dirac Hamiltonian for
excitations in honeycomb lattices is well established, and Klein
tunneling in graphene [60,61], as well as with atomic conden-
sates in optical lattices [62], has already been demonstrated
experimentally. Although this phenomenon is described in
many review papers [63–67], its mathematical description in

the simple case is used as a basis for the spinor case considered
in this manuscript. This is why we briefly revisit the simplest
scalar case in the subsection below.

A. Scalar case

Qualitatively, Klein tunneling for massless particles con-
sists in a perfect transmission through potential barriers
because of the particle-antiparticle conversion possible for the
Dirac equation: a particle with energy E < V turns into an
antiparticle with energy E′ = E − V , propagating in the same
direction, as shown in Fig. 1(a) by a green arrow (dispersion
is shown in red). The backscattering is suppressed because
of the pseudospin conservation: the potential cannot change
the lattice pseudospin, because it acts identically on both
components A and B. Of course, this is true only for a
particular propagation direction or in the Born approximation.

For the general description of Klein tunneling, we first need
to write the spinor solution of the Dirac equation (2) in the A,B

atom basis for an arbitrary propagation direction

� = 1√
2
eik·r

(
1

αeiφ

)
. (14)

The propagation direction with respect to the horizontal
axis is given by the angle φ with tan(φ) = ky/kx as shown on
Fig. 1(b). Let us now consider the incidence of a wave defined
by Eq. (14) on a potential barrier of height V located at x = 0
(uniform along y).

The energy of the particle given by E = �vF |k| in the
Klein tunneling regime is smaller than the barrier height V .
The incident, reflected, and transmitted wave functions can be
written as

�i = 1√
2
eiki·r

(
1

αie
iφi

)
, �r = r√

2
eikr·r

(
1

αeiφr

)
,

�t = t√
2
eikt.r

(
1

α′eiφt

)
. (15)

The continuity of the wave function in x = 0 imposes the
following constraints on the two components of the spinor:

eiki
yy + reikr

yy = teikt
yy,

αeiki
yyeiφ + rαeikr

yyeiφr = α′teikt
yyeiφt . (16)

The invariance in the y direction imposes the conservation
of the wave vector ki

y = kr
y = kt

y . Since E < V , α = 1
and α′ = −1. This allows one to determine the remaining
unknowns: φr = π − φi and −(E − V0) sin(φt ) = E sin(φi).
The equations become

1 + r = t,
(17)

eiφi − r e−iφi = −t eiφt ,

which leads to

r = eiφi + eiφt

e−iφi − eiφt
, t = 2 cos(φi)

e−iφi − eiφt
. (18)

The expressions become particularly simple for V = 2E,
giving E sin(φt ) = E sin(φi), or simply φt = φr = π − φi .
The expressions for the reflection and tunneling amplitudes
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and intensities become{
r = ei(φi+π/2) sin(φi), t = eiφi cos(φi),

R = sin2(φi), T = cos2(φi),
(19)

One can see that indeed, for normal incidence φi = 0 the
reflection is suppressed, and the transmission is T = 1. This
is the famous Klein tunneling effect, relying on the particular
shape of the dispersion.

B. Klein tunneling in the spinor case

The extra degree of freedom given by the polarization of
light allows one to define a second pseudospin, independent
from the pseudospin associated with the lattice sites A and B.
This second pseudospin corresponds to the Stokes vector of
light, and it is related to the components of the spinor in the
circular basis as

Sx = Re(ψ+ψ∗
−),

Sy = Im(ψ∗
+ψ−), (20)

Sz = (n+ − n−)
/

2.

In this section, we are going to consider the specific case
of a potential barrier present only for one of the two spin
components (say, σ+), and absent for the other spin component
(σ−), which can be realized because of the spin-anisotropic
interactions of polaritons and by using circularly polarized
resonant or nonresonant pumping to create the potential
barrier [45] (see the Appendix). Since the two wave functions
are uncoupled (we neglect the spin-orbit coupling in this
section), Klein tunneling (with the corresponding modification
of the wave function) will occur only for one component,
whereas the other will be just freely propagating. It is easy to
write the solution of the Dirac equation in this particular case,
combining the homogeneous solution for σ− with the solution
exhibiting the particle-hole transition for σ+. In the barrier
region, the action of the spin-polarized potential is qualitatively
similar to that of a magnetic field causing a Zeeman splitting
between the circular components: the linear polarization will
precess around this field.

The wave function of a linearly polarized state propagating
in a particular direction reads � = 1

2eikr(1,α eiφ,eiθ ,ei(φ+θ))
T
,

where tan φ = ky/kx as before, and θ is the relative phase
which determines the orientation of linear polarization (or the
direction of the pseudospin), while α gives the sign of energy
(particles or holes). Since the two polarization components are
essentially independent in the absence of spin-orbit coupling, it
is useful to write the corresponding spinors separately: �+ =
(�+

A ,�+
B )T; �− = (�−

A ,�−
B )T. The incident, reflected, and

transmitted wave functions for both polarization components
are given by the following expressions, based on the previous
results for the reflection and transmission coefficients in the
Klein tunneling regime for the σ+ component (still assuming
E = V/2 for simplicity; k = |k|):

�+
i = 1√

2
eik(x cos φ+y sin φ)

(
1

eiφ

)
,

�−
i = �+

i ,

�+
r = sin φ√

2
ei(k(−x cos φ+y sin φ)+φ+π/2)

(
1

−e−iφ

)
,

�−
r = 0,

�+
t = cos φ√

2
ei(k(−x cos φ+y sin φ)+φ)

(
1

e−iφ

)
,

�−
t = �+

i = 1√
2
eik(x cos φ+y sin φ)

(
1

eiφ

)
. (21)

There is no reflected wave for σ−, because the barrier is
present only for σ+. Moreover, in the case of normal incidence,
there is no reflection for σ+ as well, as can be seen from the
sin(φ) factor in �+

r . In this case, the transmission for both
polarizations is equally perfect, but a relative phase appears
between them, as can be seen comparing �+

t and �−
t : for φ =

0, �+
t /�−

t = exp(−2ikx). Since the relative phase between
the spin components is what determines the orientation of the
linear polarization, let us calculate it explicitly by analyzing
the polarization pseudospin in the general case of φ �= 0. We
have

�L = �i + �r,

�R = �t . (22)

We obtain eight pseudospin components: x and y on the A and
B sublattices to the left and to the right of the barrier:

SL,A
x = 1

2 (1 − sin φ sin(φ − 2kx cos φ)),

SL,A
y = − 1

2 sin φ cos(φ − 2kx cos φ),

SL,B
x = 1

2 (1 − sin φ sin(φ + 2kx cos φ)),

SL,B
y = 1

2 sin φ cos(φ + 2kx cos φ)),

SR,A
x = 1

2 cos φ cos(φ − 2kx cos φ),

SR,A
y = − 1

2 cos φ sin(φ − 2kx cos φ),

SR,B
x = 1

2 cos φ cos(φ + 2kx cos φ),

SR,B
y = 1

2 cos φ sin(φ + 2kx cos φ). (23)

One can easily see that these expressions verify the continu-
ity at x = 0. From them, one can plot the linear polarization de-
gree in any basis (horizontal/vertical or diagonal/antidiagonal)
for any angle of incidence, or simply plot the orientation of the
linear polarization plane η = 1/2 arctan Sy/Sx . We note that
the linear polarization for the two sublattices A and B is not the
same: the diagonal polarization can be different for φ �= 0. The
main consequence is the existence of spatial variations of the
linear polarization on both sides of the spin-polarized barrier.

In the case of normal incidence, the expressions are strongly
simplified:

SL,A
x = SL,B

x = 1
2 ,

SL,A
y = SL,B

y = 0,

SR,A
x = SR,B

x = 1
2 cos(2kx),

SR,A
y = SR,B

y = 1
2 sin(2kx). (24)

In this case, spatial oscillations of the linear polarization are
observed only to the right of the barrier, in the transmitted
wave.
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FIG. 2. Pseudospin components for normal φ = 0 [panel (a)] and
oblique φ = π/6 [panel (b)] incidence. Linear polarization always
rotates in the right half-plane (barrier region).

Figure 2 presents the results of the calculations of the
pseudospin components according to the equations (23) for
normal incidence in panel (a) and for oblique incidence in
panel (b). One can see that the polarization always rotates in
the region of the barrier, whereas in the left half-plane the
rotation depends on the angle of incidence. Panel (a) also
demonstrates the full transmission, a signature of the Klein
tunneling regime.

The above description captures the important specificity
of polariton graphene, which is the presence of two different
pseudospins, and demonstrates its consequences. Until now,
though, we have neglected the spin-orbit coupling, which can
play an important role for Klein tunneling, as shown previously
for other systems [49].

C. Suppression of Klein tunneling in the presence
of spin-orbit coupling

In this section, we consider the same configuration as
previously, namely a potential barrier acting only on one spin
component, but including the photonic spin-orbit coupling.
The corresponding dispersion obtained in Sec. II, parabolic at
small wave vectors and linear at larger wave vectors, is shown
in Fig. 3(a). The corresponding eigenvectors, numbered in
the order of increasing energy for a fixed wave vector, are as
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FIG. 3. (a) Dispersion in the vicinity of the Dirac point in the
presence of spin-orbit coupling. (b) Transmission and reflection
coefficients for normal incidence.

follows:
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eiφ
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⎞
⎟⎟⎟⎟⎠, �4 =

⎛
⎜⎜⎜⎜⎝

1
�vF k
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e−iφ

�vF k
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eiφ

1

⎞
⎟⎟⎟⎟⎠. (25)

To find analytically the reflection and transmission
coefficients we use the same approximations as before:
the potential barrier is invariant in the Y direction; the
energy is one-half of the barrier height E = V/2. Another
assumption is linked with the choice of the initial energy
branch, determining the eigenvector. One should take into
account that transitions between the branches occurring in the
presence of a potential V should conserve the polarization
in the vicinity of the barrier edge, which allows only 3 → 1
and 4 → 2 transitions. We assume that the incident wave
corresponds to the fourth branch (positive and split off). This
gives us the following system of equations:

1 + r = t,

�vF k

E
(e−iφ − reiφ) = t

�vF kt

E′ e−iφt ,

�vF k

E
(eiφ − re−iφ) = t

�vF kt

E′ eiφt . (26)

With this system we determine three parameters: r , t ,
and φt ,

r = k eiφ + kte
iφt

k e−iφ − kteiφt
, (27)

t = 2k cosφ

k e−iφ − kteiφt
, (28)

φt = π + arcsin

(
k

kt

sinφ

)
. (29)

In the case of normal incidence, the expressions can be greatly
simplified:

r = k − kt

k + kt

, t = 2k

k + kt

. (30)

We can thus determine the reflection and transmission
probabilities R = |r|2 and T = 1 − R, and analyze how
they are affected by the spin-orbit coupling �. Since Klein
tunneling is associated to the linear dispersion, it is natural to
expect the suppression of the transmission for the parabolic
part of the dispersion. The results of the calculations are
presented in Fig. 3(b) as a function of the wave vector
(plotted for � = vF = � = 1,φ = 0). Within our assumptions,

kt =
√

4�2 + 4�
√

�2 + k2 + k2.
At lower wave vectors, the transmission becomes strongly

suppressed, because Klein mechanism does not protect it any-
more. However, for higher wave vectors, where the dispersion
is linear, Klein tunneling is not suppressed, and therefore the
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results obtained in the previous subsection for decoupled spin
components remain valid. In realistic structures, the energy
difference between the split-off bands is comparable with the
TE-TM splitting magnitude at the wave vector of the Dirac
point. It depends completely on the structure geometry but
typically ranges between a few tens and 100 μeV. It is therefore
of the order of the mode linewidth in good quality samples.
We therefore expect Klein tunneling suppression to be an
observable effect, but relatively weak.

IV. KLEIN POLARIZATION ROTATOR

The rotation of polarization on a micrometer scale in
the absence of any backscattering (for normal incidence)
allows one to use the proposed structure as a polarization
rotator, which can be called “Klein polarization rotator” or
“Klein waveplate.” The deterministic control of polariton spin,
associated with the other opportunities offered by polariton
graphene structures, such as one-way surface states, makes it
a promising platform for spin-optronic applications.

To check our analytical predictions, we have performed a
numerical simulation based on a spinor Schrödinger equation
for polaritons where the honeycomb confining potential
U (x,y) is taken into account. We consider both the situation
with and without spin-orbit coupling. Without spin-orbit
coupling the equation reads

i�
∂ψ±
∂t

= − �
2

2m
�ψ± + Uψ± − i�

2τ
ψ±

+P0e
− (r−r0)2

σ2 ei(kr−ωt), (31)

where ψ(r) = ψ+(r),ψ−(r) are the two circular components
of the wave function, m is the polariton mass, and τ = 25 ps
the lifetime. Since the calculation is performed without the
tight-binding approximation, only the polarization pseudospin
remains. We have taken m = 5 × 10−5m0, where m0 is the free
electron mass. P0 is the amplitude of the pumping (identical for
both components, corresponding to horizontal polarization);
the size of the spot σ = 5 μm in the X direction and 40 μm in
the Y direction. The result of the simulation is shown in Fig. 4,
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FIG. 4. Linear polarization degree in a 2D polariton graphene.
The pump is located at the left edge of the figure; polaritons propagate
to the right. A barrier for σ+ component is located at X = 0, which
leads to the inversion of the polarization degree at X = 10 μm. Color
shows linear polarization degree ρl = (IH − IV )/(IH + IV ).

demonstrating the inversion of the linear polarization degree
just after the barrier (located at x = 0), which appears in blue
on the figure.

We see that the numerical simulations confirm the analytical
predictions. Indeed, a barrier for one polarization component
can be considered as an effective magnetic field in the Z

direction, because it creates a “Zeeman” energy splitting
between circular polarization components. This effective field
rotates the linear polarization in the plane, which is at the origin
of the observed effect, while the Klein tunneling regime pro-
vides the suppression of backscattering. The average value of
backscattered intensity, mostly due to the finite size of the beam
leading to the violation of the normal incidence condition on
the edges, did not exceed 1%.

In order to check that the operation of the “Klein waveplate”
remains possible in spite of the spin-orbit coupling existing in
all real structures, we have repeated the numerical simulations,
but with the new Hamiltonian and energy dispersion, adding
the spin-orbit couping (without applying the linear approxi-
mation required for analytical calculations). For this, an extra
term was added into the Hamiltonian of the spinor Schrödinger
equation:

Ĥψ± = Ĥ0ψ± + β

(
∂

∂x
∓ i

∂

∂y

)2

ψ∓. (32)

The TE-TM splitting [30] is described by the parameter
β = �

2(m−1
l − m−1

t )/4m, where ml,t are the effective masses
of TM and TE polarized particles respectively and m =
2(mt − ml)/mtml . The results of the simulations are presented
in Figs. 5(a) and 5(b), the difference between them being the
value of β. For Fig. 5(a) we have taken the typical value of 5%
difference between the masses, whereas for Fig. 5(b) this value
was multiplied by a factor 5, corresponding to an artificially
high value of TE-TM splitting, never achieved in real cavities.

Once again the numerical simulations confirm the ana-
lytical calculations. The typical spin-orbit coupling existing
in polariton graphene is too small to create any pronounced
effect in the configuration of our simulated experiment; the
“Klein waveplate” on Fig. 5(a) operates as expected, in spite
of the nonzero value of β and small parabolicity of the
branches: a region of inverted polarization (blue) appears
after the barrier. We did not observe any significant increase
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FIG. 5. Spatial images calculated by solving the full spinor
Schrödinger equation for the “Klein waveplate” with TE-TM split-
ting, showing the linear polarization degree with (a) normal TE-TM
splitting and (b) TE-TM splitting ×5. Color shows linear polarization
degree (same as Fig. 3).
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of the backscattered intensity (1%) with respect to the case
without spin-orbit coupling (Fig. 4). On the other hand, an
artificially enhanced value of the spin-orbit coupling β leads
to the suppression of Klein tunneling (20% of backscattering
of the circular component with barrier) and the associated
polarization rotation, as we can see in Fig. 5(b): there is no
region with pronounced inversion of polarization in the right-
hand part of the figure. Furthermore, the linear polarization
degree is not positive in the left-hand part any more, which is
the signature of a strong reflection on the barrier, together with
polarization inversion.

V. CONCLUSIONS

We have studied Klein tunneling in polariton graphene,
taking into account the spinor properties of polaritons, in-
cluding the spin-anisotropic interactions and the spin-orbit
coupling. We have shown that while the interactions allow
one to exploit the Klein tunneling effect for the creation of
a micron size polarization rotator without reflection on its
surfaces, the spin-orbit coupling might perturb its operation.
However, the effect of this coupling for realistic structures
remains negligible.
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APPENDIX

Polaritons, due to their mixed light-matter nature, exhibit an
interesting property, leading to many curious effects: strongly
spin-anisotropic interactions. Indeed, the interaction in the
triplet configuration (same spins) is based on the exchange
mechanism, and its strength is almost the same as for bare
excitons, whereas in the singlet configuration an exchange
leads to the formation of a dark exciton, whose energy is
much higher than that of a lower polariton. It is therefore a
second-order mechanism, which is strongly suppressed. This
concerns not only interaction between two polaritons, but also
between a polariton and a reservoir exciton. In both cases, the
conclusion is that different potentials can be created for the
two spin components using circular polarized optical pumping,
either resonant (creating polaritons) or nonresonant (creating
reservoir excitons).
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