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Temperature dependence of enhanced spin relaxation time in metallic nanoparticles:
Experiment and theory
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We study the enhanced spin relaxation time of Au nanoparticles in nanopillar-shaped double-barrier junction
devices with a stacked Fe/MgO/Au-nanoparticle/MgO/Fe structure. The size of Au nanoparticles located in a
current path is deduced from a transmission electron micrograph and the Coulomb blockade behavior in the
current-voltage characteristics of the devices. A finite tunnel magnetoresistance (TMR) is observed above a
critical current and is attributable to spin accumulation in Au nanoparticles. Based on a simple model of TMR
due to spin accumulation in a nanoparticle, the spin relaxation time τs is estimated from the magnitude of the
critical current. The temperature and bias-voltage region where TMR appears are determined from systematic
observations, showing that the appearance of TMR is not associated with the Coulomb blockade but with spin
accumulation. We find that the obtained τs is anomalously extended (∼800 ns) at low temperatures and abruptly
decreases above a critical temperature. Interestingly, the critical temperature strongly depends on the size of
the Au nanoparticles and is much lower than the effective temperature corresponding to the discrete energy
spacing. A theoretical analysis for the spin relaxation of electrons with discrete energy levels shows that not
only the anomalously extended spin relaxation time, but also the strong temperature dependence of τs arise from
the broadening of discrete energy levels due to coupling with phonons in the surrounding matrix. Numerical
calculations using reasonable parameter values well reproduce the observed temperature and size dependence of
the spin relaxation time in Au nanoparticles.
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I. INTRODUCTION

Spin relaxation of electrons plays a crucial role in spin-
related phenomena of hybrid nanostructures, such as lateral
spin valve devices [1]. Spin relaxation phenomena in nanopar-
ticles is particularly interesting because it strongly influences
the spin-dependent transport in ferromagnetic double tunnel
junctions via a nonmagnetic nanoparticle [2,3]. When the spin
relaxation time τs in a nanoparticle is longer than the time
interval between successive tunneling events between the top
and the bottom ferromagnetic electrodes, nonequilibrium spin
accumulation occurs in the nanoparticle for the antiparallel
configuration of the electrode magnetization. The splitting
of the spin-dependent chemical potentials due to spin ac-
cumulation suppresses the tunneling current of the junction
in comparison with that of the parallel configuration, and
therefore the difference in the tunneling currents between
the two-magnetization configurations can be measured as
the tunnel magnetoresistance (TMR). Several groups have
found that the spin relaxation time is anomalously extended
in various metallic nanoparticles [4–9], including not only
for ferromagnetic materials (Co [4] and MnAs [8]), but also
for nonmagnetic materials (Al [5], Au [6,7], and Cr [9]).
In these studies, τs was evaluated by numerical fitting of
current-voltage (I-V) characteristics using theoretical models
based on spin-dependent single-electron tunneling. Another
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(or alternative) method for estimating τs is to use the relation
between the τs and the current needed for the appearance of
TMR [6]. The values of τs evaluated by the numerical fitting
and the simple method are in fairly good agreement with each
other [4]. In this simple method, τs is estimated from the
measurement of the bias voltage dependence of MR curves
using the equation τs = |e|/ITMR

C [7,9], where e is the electron
charge and ITMR

C is the critical current corresponding to the
voltage V TMR

C for the appearance of TMR. Below V TMR
C ,τs

exceeds the time interval between successive tunneling events,
and TMR appears. The time interval τtunnel between successive
tunneling events is inversely proportional to the magnitude
of the current, i.e., τtunnel = |e|/I , and can be controlled by
changing bias voltage Vb.

It has been surmised that the discreteness of electronic
energy levels is the main cause for large enhancement of
τs [4,8]. The value of τs measured in MnAs nanoparticles,
for example, is 10 μs, which is seven orders of magnitude
longer than that in the bulk. In the paper about MnAs
nanoparticles [8], it has been argued that the origin of the
enhancement originates from the enhanced g factor induced
by the discreteness of electronic energy levels although no
direct evidence was provided. Here, we report on the origin of
the mechanism of the enhancement of spin relaxation time; in
addition, a satisfactory theoretical approach for τs is presented.

In this paper, the spin relaxation time τs in Au nanoparticles
embedded in a MgO matrix was studied with varying the
temperature and size of nanoparticles using a ferromagnetic
double tunnel junction of Fe/MgO/Au nanoparticle/MgO/Fe.
Our study reveals that τs is abruptly decreased at size-
dependent critical temperatures, whereas it is extended up to
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around 800 ns at low temperatures. A theoretical model is
developed for the enhanced τs in a nonmagnetic nanoparticle
and shows that the broadening of the discrete energy level due
to coupling with phonons in the surrounding MgO matrix plays
a key role in extending τs and its temperature dependence,
leading to an understanding of spin relaxation mechanism in
nanoparticles in an insulating matrix.

II. SAMPLE PREPARATION AND STRUCTURAL
CHARACTARIZATION

The device structure for characterizing the electronic
transport properties is schematically shown in Fig. 1(a).
Ferromagnetic double tunnel junctions with Au nanoparticles
embedded in a MgO tunnel barrier were prepared using
molecular-beam epitaxy on polished MgO (100) single-crystal
substrates with a base pressure below 1.0×10−7 Pa. Each layer
was grown at room temperature. By adjusting each layer thick-
ness, deposition conditions and postannealing temperatures,
etc., the growth procedures in which the Au nanoparticles
exhibit both the Coulomb blockade (CB) and the TMR were
determined. In the devices examined, Au nanoparticles were
grown on the first MgO barrier (1.5-nm thick) with a nominal
thickness of 0.01 nm [7] and then were covered with the second
MgO barrier (3.0-nm thick). Epitaxial growth was confirmed
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FIG. 1. (a) Device structure of a ferromagnetic double tunnel
junction with Au nanoparticles grown on the first MgO barrier.
(b) Aberration corrected high-resolution TEM micrograph of Au
nanoparticles in a MgO tunnel barrier.

by in situ reflection high-energy electron diffraction. Over
100 pillars with the size of 200×400 nm2 were fabricated
on a substrate by electron-beam lithography and argon-ion
etching techniques. The long axis of the pillars was set
parallel to the Fe [100] direction, i.e., the easy magnetization
axis. Electronic transport, e.g., current-voltage (I-V) curves, at
temperatures ranging from 7 to 220 K was measured by using
the two-terminal method. MR curves were measured in the
configuration in which a magnetic field of up to 500 Oe was
applied parallel to the long axis of the pillar. It is noted that
specific I-V curves reflecting the Coulomb blockade effect
were observed for a limited number of devices with a yield
rate as low as ∼10%, showing that the windows of the film
growth conditions are definitely narrow. This fact suggests that
natural thickness fluctuation and/or roughness of layers almost
accidentally cause the restriction of the current paths needed to
observe the Coulomb blockade behavior. Despite the difficulty
in preparing the appropriate structure, the first observation
of the Coulomb blockade using devices of a micron scale
was reported in Al/SiO2/Au or Ag nanoparticles/SiO2/Al
structures [10]. In the present study, selected films and devices
(Samples A–C) were examined in detail.

A transmission electron microscopy (TEM) image of the
Au nanoparticles embedded in a MgO tunnel barrier is shown
in Fig. 1(b). The dark contrasts in the MgO barrier likely
correspond to the Au nanoparticles. They are considered to
be due to lattice strain between Au and MgO. The lattice
image confirms the epitaxial growth of Au on the MgO barrier.
The dark contrasts are seen with ellipsoidal shapes with an
approximate diameter and height of 1 to 2 nm.

III. TEMPERATURE AND SIZE DEPENDENCE
OF SPIN-DEPENDENT TRANSPORT

The I-V curves and their derivatives at various temperatures
for a device (Sample A) are shown in Figs. 2(a) and 2(b).
In the temperature range, single-electron tunneling behavior
appears in the device due to a significant increase in charging
energy when an electron tunnels into the nanoparticle [11].
The threshold voltage (Vth) for the Coulomb blockade shows
almost identical values of about 100 mV in the temperature
range. Here, Vth was defined as the voltage where the I-V curve
starts to deviate from the linear background due to a small
ohmic leak current. The Au nanoparticles were estimated to
be 1.5 nm in nominal diameter from Vth by using the relation
Vth = |e|/(4πε0εrdCB) in the spherical shape approximation.
Here, ε0, εr , and dCB are the permittivity of a vacuum, the
dielectric constant of the tunnel barrier (9.8 for MgO), and the
nominal diameter of the nanoparticle, respectively. The volume
of the nanoparticle estimated from dCB was similar to that esti-
mated from the TEM observation. Moreover, sudden changes
in the slope of the dI/dV curve at around 250 and 400 mV
are observed in Fig. 2(b); these steps correspond to Coulomb
staircases [2]. These results suggest that the device has a well-
restricted electric current path including a single nanoparticle,
even though there are several hundred Au nanoparticles in
the pillar [7]. As mentioned above, the thinnest tunnel barrier
area resulting from the surface roughness of the MgO layer
is likely to function as the dominant current path because
tunnel conductance exponentially decreases with increasing
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FIG. 2. (a) Current-voltage (I-V) curve of a microfabricated pillar with various temperatures. (b) dI/dV voltage of microfabricated pillar
curves with various temperatures. (c) I-V curves of different samples fabricated on a substrate at 7 K. (d) Temperature dependence of the CB
voltage of different samples fabricated on a substrate.

the thickness. In addition, the situation of the restricted current
path is presumably unchanged within the temperature range
of measurement since no significant variation was observed
in the magnitude and shape of the I-V curves and their
derivatives. Figure 2(c) shows three I-V curves of devices
(Samples A–C) fabricated from the same substrate. These
devices show single-electron tunneling behavior with the
different Coulomb blockade voltages. The Vth values for
Samples B and C can be determined to be roughly 60 and 40
mV, giving the dCB of 1.9 and 2.2 nm, respectively, whereas
the dCB value is a measure in diameter that may include certain
ambiguity and errors. The difference of the Au nanoparticle
sizes estimated on the same substrate is considered to be due
to the size distribution of Au nanoparticles grown through
the natural character of the physical vapor deposition [12]. It
should be noted that Vth in the I-V curve for Sample C is less
clear than those for the others. Thus, we estimated the plausible
threshold voltage for Sample C by taking into account the
oscillation period of the dI/dV curve. It is unlikely that multiple
major current paths are formed in Sample C because the tunnel
current is the same order of magnitude as those in Samples A
and B. We also show the temperature dependence of the CB
voltage in Fig. 2(d). The threshold temperature for the appear-
ance of the CB for the samples increased with the threshold
voltage of the CB, suggesting that the estimated sample sizes
reflect the relative size difference of the samples although the
background charge generally affects the CB voltages.

Figure 3(a) shows the MR curves of sample A
(dCB=1.5 nm) at different bias voltages and temperatures.
At 7 K, TMR does not clearly appear when Vb � 150 mV,

whereas it definitely emerged when Vb exceeds 180 mV.
Since τtunnel decreases with increasing Vb and, consequently,
current I of a ferromagnetic double tunnel junction, τtunnel

may become shorter than the spin relaxation time between
150 mV < Vb � 180 mV, leading to the appearance of TMR
due to the spin accumulation in the nanoparticle. It should
be noted that the spin accumulation in the Au nanoparticle
increases gradually with the bias voltage and TMR appears
stochastically when the electron in the Au nanoparticle tunnels
before the spin has relaxed. Our theoretical calculation also
shows the same order of magnitude in the spin relaxation time
as discussed later, indicating that the simple method for the
estimation of spin relaxation time captures the essential feature
of the physics of spin relaxation in nanoparticles. It was also
found that the bias voltage for the appearance of TMR (defined
as V TMR

C ) increases with temperature as the spin relaxation time
decreases with increasing temperature, resulting in a higher
current required for the appearance of spin accumulation.
Here, it should be noted that the anisotropic magneto-Coulomb
(AMC) effect can be ruled out in the present sample. The
origin of AMC is due to the anisotropy of the electrochemical
potential of the ferromagnetic electrode, which is related to the
magnetic anisotropy [13]. Since our sample grew epitaxially
and the direction of the applied magnetic field was along the
easy magnetization axis of the top and bottom Fe electrodes,
the electrochemical potential of the Fe electrodes does not
change with the applied magnetic field.

We also point out that those resistance changes did not
correspond to the magneto-Coulomb blockade (MCB) shift.
MCB is caused by the interaction between the ferromagnetic
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FIG. 3. (a) Bias voltage dependence of MR curves measured at 7, 20, 40, and 100 K in a device with Au nanoparticles with nominal
diameters of 1.5 nm. (b) Mapping of the MR ratio as a function of temperature and bias voltage. The bias voltage V TMR

C for the appearance of
TMR calculated theoretically is shown by the dashed curve. The vertical dashed lines stand for the threshold bias voltage V CB

th for the Coulomb
blockade.

electrode and the nanoparticle in the double tunnel junction.
The interaction causes the monotonic reduction in conductance
with the magnetic field and the sudden decrease corresponding
to the magnetization reversal of the ferromagnetic electrodes
as explained in Ref. [14]. In addition, we confirm that the
temperature dependence of the Coulomb blockade shows a
different behavior compared to that of a resistance change

caused by a magnetic field. Note that the MCB also cannot
explain the bias voltage dependence of the MR curve in
our experimental results because the MCB appears above
the voltage of the Coulomb blockade. Those support our
assumption that the resistance change is due to the tunnel
magnetoresistance induced by the spin accumulation in the
Au nanoparticle.
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FIG. 4. Temperature dependence of the spin relaxation time of
Au nanoparticles with nominal diameters of 1.5, 1.9, and 2.2 nm
(blue, green, and red closed circles, respectively). The spin relaxation
time τs at various temperatures was estimated using the equation
τs = |e|/ITMR

C , where ITMR
C is the current at the bias voltage for

the appearance of TMR. Error bars define the range of τs given by
the uncertainty of the bias voltage at which the MR appears in the
resistance vs field measurements.

The mapping of the MR ratio as a function of temperature
and bias voltage in Fig. 3(b) indicates the systematic variation
of V TMR

C with increasing temperature. The dashed curve for
V TMR

C is derived from the analysis of temperature dependence
of the spin relaxation time based on a theoretical model
presented in the next section. An important feature found in
the mapping is that the behavior of V TMR

C is clearly different
from that of the Coulomb threshold voltage V CB

Th . In addition,
TMR is not observed over around 130 K whereas the Coulomb
blockade is still clearly observable, indicating that the charge
transport itself does not change in this temperature range and
that single-electron tunneling has no specific relation with τs

evaluated from ITMR
C at V TMR

C . It should be pointed out that
the systematic variation of V TMR

C enables us to evaluate τs .
The temperature dependence of τs evaluated for the Au

nanoparticles of nominal diameters 1.5, 1.9, and 2.2 nm (blue,
green, and red closed circles, respectively) is shown in Fig. 4.
The solid curves are the results of the theoretical calculation
in Sec. IV. The τs for the nominal diameters of 1.9 and 2.2 nm
were estimated using the same method as that of 1.5 nm.
Below 60 K, the 1.5-nm-size Au nanoparticle shows an almost
constant τs of about 800 ns, which is much longer than that
for Au bulk (the order of several hundreds of femtoseconds
or shorter) [15]. It decreases rapidly with a further increase in
temperature. It is not possible to estimate the spin relaxation
time above 130 K because the TMR did not appear in the
bias voltage range examined. In other words, τs above 130 K
is expected to be significantly shorter and closer to that for
the bulk. For the larger Au nanoparticles (i.e., dCB = 1.9 and
2.2 nm), the temperature range in which the TMR appears
is significantly reduced, that is, the critical temperature of
the extended τs increases with the decreasing size of Au
nanoparticles. In this study, some assumptions, such as the

single current path and simplifications, such as the use of
τs = |e|/ITMR

C are made based on the previous studies [7,9].
The systematic results against the change in temperatures and
the sizes shown in Figs. 3(b) and 4 supports the validity of the
assumptions and simplifications.

IV. THEORETICAL DESCRIPTION

The obtained particle size lies within the range of large
splitting of discrete electronic energy levels comparable to
the thermal energy at the measurement temperatures [16,17].
A theoretical model for spin relaxation in nonmagnetic
nanoparticles with discrete energy levels based on a standard
approach is proposed, and an interpretation of the experimental
results is presented as follows.

The spin-orbit Hamiltonian is written in the form

HSO =
∑
σ ′σ

∑
mn

〈mσ ′|HSO|nσ 〉a†
mσ ′anσ , (1)

where a
†
nσ (anσ ) is the creation (annihilation) operator of an

electron in state |nσ 〉 with discrete energy εn and spin σ and
〈mσ ′|HSO|nσ 〉 is the scattering amplitude of an electron from
state |nσ 〉 to state |mσ ′〉.

The spin relaxation time τs is calculated using the relaxation
time approximation, (

∂s

∂t

)
SO

= − s

τs

, (2)

where s is the spin density accumulated in a nanoparticle,
(∂s/∂t)SO is the spin relaxation rate due to spin-orbit scatter-
ing, and τs is the spin relaxation time. The spin density is given
by

s = 1

2

∑
n

[fn↑ − fn↓], (3)

where fnσ = 〈a†
nσ anσ 〉 is the distribution function of an

electron with discrete energy εn and spin σ and is given by the
Fermi function with chemical potential μσ ,

fnσ = 1

e(εn−μσ )/kBT + 1
. (4)

The spin relaxation rate (∂s/∂t)SO is calculated using second-
order perturbation with respect to the spin-orbit interac-
tion [18],(

∂s

∂t

)
SO

= −2π

�

∑
n,m

|〈m↓|HSO|n↑〉|2[f (εn − μ↑)

− f (εm − μ↓)]
1

π

γε

(εn − εm)2 + γ 2
ε

, (5)

where the δ function representing the energy conservation in an
isolated system is replaced by the Lorentzian with damping γε,
which corresponds to the broadening of discrete energy levels
caused by the coupling to thermal phonons of the surrounding
insulating matrix.

When the discrete energy levels have equal spacing
εm = mδ, the spin relaxation time is calculated in the
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form

1

τs

= 2

π

δ

τ ∗
SO

∞∑
m=1

(�/τε)

ε2
m + (�/τε)2

= 1

τ ∗
SO

(
τεδ

π�

)[
(π�/τεδ)

tanh(π�/τεδ)
− 1

]
, (6)

where 1/τ ∗
SO ≡ (4π/�δ)|〈m↓|HSO|n↑〉|2 is the characteristic

spin relaxation time introduced by Kawabata [19] (the overbar
denotes an average over states near the Fermi level) and
τε(=�/γε) is the electron lifetime of the discrete energy
levels [20]. Noting that τ ∗

SO and δ are nearly temperature
independent, the observed temperature dependence of τs may
be explained mainly by a temperature dependence of τε in the
discrete energy levels of the nanoparticles.

A strong temperature dependence of the electron lifetime τε

originates from the coupling of electrons in the nanoparticles
with phonons in the surrounding insulating matrix (heat bath)
and may be given by

1

τε

= 1

τ 0
ε

+ 1

τe-ph(T )
, (7)

where τ 0
ε is the residual electron lifetime at low temperatures

presumably due to weak coupling of the nanoparticles to the
outer electrodes through the insulating barriers and τe-ph(T ) is
the temperature-dependent lifetime due to the electron-phonon
interaction between electrons in the nanoparticles and phonons
in the surrounding matrix. Reflecting the population of thermal
phonons in the matrix, τe-ph is proportional to kBT at high
temperatures [21] and exp(−δ/kBT ) at low temperatures due
to the presence of the minimum excitation gap δ, resulting in
strong temperature and size dependences of τε. Extending the
calculation of the electron lifetime in a bulk system [17,18,22]
to that in a nanoparticle with a discrete electron energy
spectrum, we obtain

1

τe-ph(T )
= 2π

�

mD∑
m=1

α2F (εm)

sinh(εm/kBT )
, (8)

where α2 is the effective electron-phonon coupling, F (εm)
is the effective phonon density of states, and the summation
over the discrete levels is cut off by the Debye energy ωD

(mD ∼ ωD/δ). Here, we assume the Debye temperature of
MgO as 1000 K [23]. Using (7) and (8), we can calculate
the temperature dependence of the spin relaxation time in

Eq. (6). Furthermore, we can calculate the size dependence
by assuming that the physical parameters depend on nanopar-
ticle size d,δ ∝ d−3, |〈m↓|HSO|n↑〉|2 ∝ d−4 [24,25], 1/τ ∗

SO ∝
d−1 [26], and α2F (εm) = ηSε2

m ∝ d−4 [27] in which η is
a proportionality constant and the surface-area dependence
(S ∝ d2) is taken into account in F (εm).

The numerical values of τε calculated from Eqs. (7)
and (8) are used to derive the temperature dependence of
the τs of the nanoparticles for the three different sizes as
shown in Fig. 4. Here, the parameters of δ = 30.0, 14.8, and
4.7 meV and τ 0

ε = 2.2×10−10 s for d = 1.5, 1.9, and 2.2 nm
were used. At very low temperatures (T � 0 K) where the
level broadening is much smaller than the energy spacing
(�/τε  δ), τs ≈ (τεδ/�)τ ∗

SO is much longer than τ ∗
SO. As the

temperature increases and level broadening becomes compa-
rable to energy spacing h/τε > δ, τs rapidly decreases down
to τ ∗

SO. Furthermore, the temperature range of the enhanced
τs greatly depends on the nanoparticle size as shown with the
solid curves in Fig. 4. The theoretically calculated dependence
of τs on temperature and size qualitatively reproduces the
experiment.

V. CONCLUSIONS

We systematically investigated the temperature and size
dependence of extended τs in Au nanoparticles embedded
in a MgO matrix. We revealed that the estimated spin
relaxation time in Au nanoparticles showed about 800 ns at
low temperatures, which is much larger than that in the bulk.
We found the critical temperature above which τs decreased
rapidly. In addition, the critical temperature also shows strong
dependence on size. Our theoretical model reveals that the
broadening of discrete energy levels due to coupling with
phonons in the surrounding MgO matrix plays a key role in
extending τs and its temperature dependence.
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