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Güemes 3450, 3000 Santa Fe, Argentina.

(Received 3 November 2015; revised manuscript received 15 January 2016; published 4 February 2016)

The ground-state electronic configuration of three coupled bidimensional electron gases has been determined
using a variational Hartree-Fock approach, at zero magnetic field. The layers are Coulomb coupled, and tunneling
is present between neighboring layers. In the limit of small separation between layers, the tunneling becomes
the dominant energy contribution, while for large distance between layers the physics is driven by the Hartree
electrostatic energy. Transition from tunneling to Hartree dominated physics is shifted towards larger layer
separation values as the total bidimensional density of the trilayers decreases. The interlayer exchange stabilizes
a “balanced” configuration, where the three layers are approximately equally occupied; most of the experiments
are performed in the vicinity of this balanced configuration. Several ground-state configurations are a consequence
of a delicate interplay between tunneling and intersubband exchange.
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I. INTRODUCTION

Single-layer quasi-two-dimensional electron gases (2DEG)
such as those formed at the interface between two dissimilar
semiconductors can be routinely driven to a many-body
interaction regime by application of a strong magnetic field
of several Teslas perpendicular to the 2DEG layer [1]. By
increasing the magnetic field, the 2DEG first enters in the
integer quantum Hall regime and then in the fractional quantum
Hall regime [2].

Multilayer coupled 2DEG’s like trilayer systems offer much
more possibilities for the theoretical [3–5] and experimen-
tal [6–12] search of the involved physics, even at zero magnetic
field. New single-particle effects like layer (site) energies,
tunneling coupling between layers, and many-body effects as
the interlayer Coulomb coupling should be included, with the
two later effects being strongly dependent on the separation
between layers.

We provide in this paper an exhaustive theoretical study of
trilayer systems at zero-magnetic field, within the framework
of a Hartree-Fock mean field approximation, already used for
bilayer systems [13] and also for a simplified version of the
trilayer system considered here [4]. The model, schemati-
cally illustrated in Fig. 1, includes intralayer and interlayer
(hopping) kinetic energies (not considered in Ref. [4]), site
(layer) energies (also not considered in Ref. [4]), intralayer
and interlayer exchange energies, and the usually dominant
Hartree electrostatic energy. An additional external parameter
is the total density of the system: We will see that as the density
decreases, the trilayer system is driven to a single-particle
tunneling dominated regime.

By doing a numerical minimization of the total energy
of the system over all the internal variables, we have found
a zero-temperature extremely rich phase diagram for the
possible ground-state configurations. These full numerical
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results may be qualitatively understood as resulting from the
diverse scaling properties of the different energy contributions
to the total energy of the system, with respect to the external
variables like the total density or the distance between layers.
Interestingly, we have found that at zero magnetic field and
for close enough layers the physics of the trilayer system
becomes dominated by single-particle effects both in the
high-density limit (dominated by the intralayer kinetic energy)
and in the low-density limit (dominated by the hopping or
tunneling and site energies). The interaction dominated regime
is then restricted to intermediate densities (exchange) and large
separations between layers (Hartree). The wide ground-state
exploration in the available parameter space (distance between
layers, total electronic density, tunneling coupling) provided
in this paper may serve as a qualitative guide for the design of
experimental trilayer systems.

The rest of the paper is organized in the following way: In
Sec. II we explain the model and introduce the variational
Hartree-Fock method we use to obtain the expression for
total energy of the system. Analytical and numerical ground
states resulting from the minimization of the system total
energy are presented in Sec. III. Section IV is devoted to the
conclusions. In the two appendices we discuss some limits and
the physics beyond the interlayer exchange energy contribution
(Appendix A), and we explain how to model the hopping
parameter dependence with the layer separation (Appendix B).

II. MODEL

Typically, a semiconductor trilayer system is realized
experimentally by confining three GaAs quantum wells among
AlAs or AlxGa1−xAs barriers of variable width and height,
which gives a control on the tunneling coupling t among
layers. Usually, the central GaAs quantum well is designed
with a larger width than the two side wells with the purpose of
populating the central well, which tends to be less populated
than the two side wells [14,15]. In our model of Fig. 1,
we can simulate this feature by imposing, for instance, that
ε2 < ε1 = ε3.
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FIG. 1. Schematic view of the three layer system. Each layer of
area A has a two-dimensional electronic number density given by n1,
n2, and n3. Charge neutrality is provided by two positively charged
layers located at z = ± h (not shown), with h � d . The layers are
coupled by the hopping t and the Coulomb interaction. ε1, ε2, and ε3

are the site or layer energies.

The model for our Coulomb and tunneling coupled trilayer
system is represented schematically in Fig. 1 and defined
through the corresponding Hamiltonian in Eq. (1). It consists
of three strictly two-dimensional metallic layers, at a distance
d between them. Two other layers, located at z = ± h along
the z axis (h � d) provide the compensating positive charge
densities. Neighboring metallic layers are coupled through
the tunneling term t (hopping), while all layers are Coulomb
coupled through the interlayer Coulomb interaction.

In detail, the Hamiltonian of our model is as follows,

Ĥ =
∑
jkσ

εjkc
†
jkσ cjkσ − t

∑
j1j2kσ

(
c
†
j1kσ cj2kσ + c

†
j2kσ cj1kσ

)

−
∑
jkσ

∑
m

Vjm(0) pm c
†
jkσ cjkσ + A

2

∑
mn

Vmn(0) pmpn

+
∑

j1k1σ1
j2k2σ2

q

Vj1j2 (q)

2A
c
†
j1k1+qσ1

c
†
j2k2−qσ2

cj2k2σ2cj1k1σ1 , (1)

with A denoting the area of each layer. Here, c
†
jkσ (cjkσ )

is a creation (annihilation) operator for an electron in layer
j (j = 1,2,3), with two-dimensional momentum k and spin
σ (↑ or ↓). Each one of the five terms in the Hamiltonian
represents a different physical contribution to the total energy.
The first corresponds to the sum of the layer and kinetic
energy of electrons in each layer, with εjk = εj + �

2k2/2m∗
(m∗ being the electron effective mass of the well-acting semi-
conductor). The second term represents the quantum tunneling
of electrons among different layers, with a hopping amplitude
parametrized by t (>0); j1 �= j2, and the sum is restricted to
neighboring layers. The last three Coulomb-related terms rep-
resent the attractive ion (positive layer)-electron interaction,
the ion (positive layer)-ion (positive layer) interaction, and the

repulsive electron-electron interaction, respectively. pm (m =
L,R) denotes the uniform density of the two layers located at
the left and right of the three central layers. The system fulfills
a global neutrality condition, N = n1 + n2 + n3 = pL + pR ,
where N represents the total two-dimensional number density,
and nj (j = 1,2,3) are the number densities of each metallic
layer. Finally, Vij (q) = 2πe2

εq
e−qdij , with dij = 0,d,h; ε is the

dielectric constant of the well-acting semiconductor (∼12.5
for GaAs). For t = 0 and ε1 = ε2 = ε3, the model reduces
to the one studied previously in Ref. [4]. The layer energies
are changed at will in real samples by the application of
back and front gates, which in our case are represented by
the two positively charged layers at ±h. In this paper we
consider only the symmetric configurations, i.e., pL = pR ,
and ε1 = ε3 > ε2.

The presence of the last electron-electron interaction term
in Eq. (1) implies that no exact solution is available for the
model and forces us to attempt its approximate solution. For
this, we will employ a Hartree-Fock variational approximation,
widely used for the bilayer case, either at zero [13] or with
magnetic field [16–18], and also used in the previous trilayer
zero-tunneling and zero-site energy study [4]. But before that,
we find it convenient to perform an exact transformation of the
Hamiltonian, by defining the following operators:

a
†
kσ = cos2

(
θ

2

)
e−iφ c

†
1kσ +

√
2 sin

(
θ

2

)
cos

(
θ

2

)
c
†
2kσ

+ sin2

(
θ

2

)
eiφ c

†
3kσ ,

b
†
kσ = − sin θ√

2
e−iφ c

†
1kσ + cos θ c

†
2kσ + sin θ√

2
eiφ c

†
3kσ , (2)

c
†
kσ = sin2

(
θ

2

)
e−iφ c

†
1kσ −

√
2 sin

(
θ

2

)
cos

(
θ

2

)
c
†
2kσ

+ cos2

(
θ

2

)
eiφ c

†
3kσ ,

with 0 � θ � π , and 0 � φ < 2π . The new operators satisfy
fermion anticommutation relations {αkσ ,α

†
k′s ′ } = δk,k′δσ,σ ′ ,

while all other anticommutators vanish. The transformation to
the “subband” basis a

†
kσ , b

†
kσ , c

†
kσ from the “layer” basis c

†
1kσ ,

c
†
2kσ , c†3kσ is defined by the two angles θ and φ. For θ = φ = 0,

both basis are the same. For θ = π/2,φ = 0, a†
kσ , b†kσ , and c

†
kσ

are creation operators for electrons in the ground (symmet-
ric, no nodes), first-excited (antisymmetric, one node), and
second-excited (symmetric, two nodes) subband states of the
trilayer system. The canonical transformation of Eq. (2) may
be considered as a general rotation in a three-dimensional
pseudospin Hilbert space of a pseudospin spinor pointing
in the n̂ = (sin θ cos φ, sin θ sin φ, cos φ) direction, with the
layer index j playing the role of the pseudospin components.
In the ground state, the direction of n̂ is determined by the total
energy minimum. The coefficients in the 3 × 3 transformation
matrix in Eq. (2) are obtained from the eigenstates of the 3 ×
3 matrix n̂(φ,θ ) · S = nx(φ,θ )Sx + ny(φ,θ )Sy + nz(φ,θ )Sz,
with Sx , Sy , and Sz being the components of the 3 × 3 angular
momentum matrices corresponding to unit pseudospin (or
angular momentum) [19]. Write in the a,b,c basis, the hopping
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term in Eq. (1) becomes diagonal for the choice φ = 0,θ =
π/2, but our variational ansatz given by Eq. (3) below is
more flexible and allows φ and θ to take any value within
their permissible range. On the other side, the transformation
of Eq. (2) is not the more general one, considering that the
angles φ and θ may be, in principle, σ and k dependent. For
simplicity, we have not included these dependences in our
calculations.

After expressing the Hamiltonian in Eq. (1) in term
of the subband operators, we have taken the expectation
value of the transformed Hamiltonian with the follow-
ing Hartree-Fock variational ansatz for the ground state
vector [20],

|
0〉 =
k6�kc↓∏

k6

c
†
k6↓

k5�kc↑∏
k5

c
†
k5↑

k4�kb↓∏
k4

b
†
k4↓

k3�kb↑∏
k3

b
†
k3↑

×
k2�ka↓∏

k2

a
†
k2↓

k1�ka↑∏
k1

a
†
k1↑|0〉. (3)

Here, kaσ , kbσ , and kcσ are the Fermi wave vectors for electrons
with spin σ in subbands a, b, and c, respectively. If any of the
six kασ = 0, this means that the corresponding subband is
empty. We obtain, after a lengthy calculation

〈
0|Ĥ |
0〉
Ry∗ N

= 2

r2
s

[E0(ηa↑,ηa↓,ηb↑,ηb↓,ηc↑,ηc↓,θ,φ)],

= 2

r2
s

[
E K

0 + E T
0 + E H

0 + E X-intra
0 + E X-inter

0

]
,

(4)

where

E K
0 =

∑
ασ

η2
ασ + r2

s

2

{
ε∗

2

[
(ηa + ηc)

sin2 θ

2
+ ηb cos2 θ

]

+ ε∗
1

[
ηa cos4

(
θ

2

)
+ ηb

sin2 θ

2
+ ηc sin4

(
θ

2

)]

+ ε∗
3

[
ηa sin4

(
θ

2

)
+ ηb

sin2 θ

2
+ ηc cos4

(
θ

2

)]}
, (5)

E T
0 = − r2

s√
2

t∗ (ηa − ηc) sin θ cos φ, (6)

E H
0 = −2d∗

{
ηb(ηa + ηc) + 2ηaηc

+ sin2 θ

2

[
(ηa − ηc)2 + 2η2

b − ηb(ηa + ηc)
]

− sin4 θ

8
(ηa − 2ηb + ηc)2

}
, (7)

E X-intra
0 = −8 rs

3π

∑
ασ

η3/2
ασ , (8)

and

E X-inter
0 = rs sin2 θ

∑
σ

∫ ∞

0
dq(1 − e−2d∗q/rs )

× (Iaaσ + 2Ibbσ + Iccσ − 2Iabσ − 2Icbσ )

− rs sin4 θ

8

∑
σ

∫ ∞

0
dq(3 − 4e−2d∗q/rs + e−4d∗q/rs )

× (Iaaσ + 4Ibbσ + Iccσ + 2Iacσ − 4Iabσ − 4Icbσ ).

(9)

Here, rs = 1/(a∗
0

√
πN ) is the dimensionless two-dimensional

density parameter, a∗
0 = ε�

2/e2m∗ is the effective Bohr radius
of the well-acting semiconductor, and Ry∗ = m∗e4/(2ε2

�
2)

is the effective Rydberg. For GaAs as well-acting material,
m∗ 
 0.067m0 with m0 denoting the bare electron mass, and
ε 
 12.5, resulting in Ry∗ 
 5.83 meV, and a∗

0 
 98.7 Å.
Also, ηα = ∑

σ ηασ , ηασ = ∑
k〈α†

kσαkσ 〉/AN are the total and
spin-discriminated subband occupation factors, d∗ = d/a∗

0 is
the distance from the central layer to the two lateral layers
(in units of the effective Bohr radius a∗

0 ), t∗ = t/Ry∗, and
ε∗
i = εi/Ry∗. The expression for the quantities Iαβσ (q) is

given in Appendix A. These exchange integrals correspond
to the overlap area between two Fermi circles, with radius
kα,σ and kβ,σ , with the circles’ centers separated by a distance
q. The overlap area is maximum for q = 0, and decreases
as q increases; when q � kα,σ + kα,σ the superposition area
(and the associated exchange integral) becomes zero. All
energies in Eq. (4) are given in units of N Ry∗, i.e., in units of
energy per unit area. As defined above, all 0 � ηασ � 1, and∑

ασ ηασ = 1.
EK

0 corresponds to the sum of the intralayer kinetic and
layer energy contributions. For the case ε∗

1 = ε∗
2 = ε∗

3 , the layer
energy contribution reduces to an uninteresting constant term,
which only depends on the total electron density [4]. ET

0 is
the tunneling or interlayer kinetic energy and is the only term
where the angle φ appears. EH

0 is the Hartree electrostatic
energy, and E X-intra

0 and E X-inter
0 are the intrasubband and

intersubband exchange-energy contributions, respectively. For
a given set of external parameters (rs , d∗, t∗, ε∗

1 , ε∗
2 , ε∗

3), the
ground-state energy E0 depends on eight variational param-
eters: ηa↑,ηa↓,ηb↑,ηb↓,ηc↑,ηc↓,θ,φ. However, the neutrality
condition ηa + ηb + ηc = 1 allows us to eliminate one of
the six subband occupation factors. Regarding the hopping
term, since sin θ � 0 for 0 � θ � π , for having ET

0 � 0, the
condition is that (ηa − ηc) cos φ � 0. As noted above, the total
energy in Eq. (4) is invariant under the exchange of the subband
labels “a” and “c”, and as the angle φ only enters through
the hopping term ET

0 , its value is just determined by the
sign of ηa − ηc. For example, by assuming that we restrict
ourselves to the configurations with ηa � ηc, the optimum
value for φ is φ = 0. Having assumed instead that ηa � ηc for
all possible configurations, the optimum value for φ will be
φ = π . Both choices are equivalent, and we have adopted here
the first one: ηa � ηc,φ = 0. Under these constraints, E0 has
been minimized numerically with respect to the remaining six
variational parameters: five occupation factors and the layer
mixing angle θ . The corresponding results are presented in
Figs. 2–7 and Tables I–III.

The scaling with rs and d∗ of the different energy contri-
butions deserves some discussion. In the low-density limit,
rs grows since it is inversely proportional to the square root
of the density, and the physics is dominated by the tunneling
and layer contributions, which are single-particle effects. On

085305-3



D. MIRAVET, C. R. PROETTO, AND P. G. BOLCATTO PHYSICAL REVIEW B 93, 085305 (2016)

FIG. 2. Ground-state phase diagram, in the rs − ε∗
2 plane, for

d∗ = t∗ = 0. The meaning of the different symbols is given in Table I.

the other side, in the high-density limit rs is small, and the
main contributions to the total energy come from the intralayer
kinetic and Hartree terms. For large enough d∗, on the other
side, the system always becomes dominated by the Hartree
term, which favors an effective bilayer configuration with the
central well empty and with electrons distributed equally in the
two side layers [14,15]. The intralayer exchange interaction of

FIG. 3. Ground-state phase diagram, in the rs − t∗ plane, for d∗ =
ε∗

2 = 0. The meaning of the different symbols is given in Table II.

FIG. 4. Ground-state phase diagram, in the rs − t∗ plane, for d∗ =
0, and ε∗

2 = − 0.5. For t∗ � 0.2, all configurations are the same as
in Fig. 3. For 0 < t∗ � 0.2, the configurations A, B, and F are the
same as in Fig. 2. The three remaining configurations C, D, and E
are similar to the corresponding ones in Fig. 2 regarding the subband
occupancies, but with θ �= 0.

FIG. 5. Ground-state phase diagram, in the rs − d∗ plane, for
ε∗

2 = 0 and with the layer separation dependent hopping t∗(d∗),
as explained in the text. For small values of d∗, the ground-state
configurations are the same as Fig. 3. For large values of d∗, the
meaning of the different symbols is given in Table III. The straight line
corresponds to the approximation given in Eq. (13) for the boundary
between α and β configurations.
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FIG. 6. Ground-state configurations in the parameter space rs −
d∗, for ε∗

2 = − 0.8. The new configurations P 3′ and P 3′′ are
as follows: P 3′, ηa↑ = ηc↑ = x, ηb↑ = 1 − 2x,θ = 0; P 3′′, ηa↑ =
x, ηb↑ = y, ηc↑ = 1 − x − y, θ = π/2. The two empty circles cor-
respond to the experimental sample of Ref. [8] (see text).
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FIG. 7. Layer occupation factors for a trilayer with d∗ = 2,
ε∗

2 = − 0.8, and t∗(d∗ = 2) = 0.05. In the upper (lower) panel spin
discriminated (undiscriminated) occupation factors are shown. At
the tiny dashed vertical lines, there is a change in the ground-state
configuration.

TABLE I. Ground-state configurations for d∗ = t∗ = 0. In all
cases θ = 0. Note that for φ = θ = 0, the subband occupation factors
are the same as the layer occupation factors. The symbol “sp” is used
to identify spin-polarized states, while “ml,” “bl,” and “tl” represent
monolayer, bilayer, and trilayer configurations, respectively.

Configuration ηa↑ ηa↓ ηb↑ ηb↓ ηc↑ ηc↓

A: sp, ml 0 0 1 0 0 0
B: ml 0 0 1

2
1
2 0 0

C: bl 1 − 2x 0 x x 0 0
D: bl 1−2x

2
1−2x

2 x x 0 0
E: tl y y x x 1 − 2x − 2y 0
F: tl 1−2x

4
1−2x

4 x x 1−2x

4
1−2x

4

Eq. (8) scales linearly with rs , is always negative, and is im-
portant in favoring spin-polarized ground-state configurations.
Regarding the interlayer exchange contribution of Eq. (9), its
scaling with rs and d∗ is less trivial, mainly due to the presence
of the ratio d∗/rs in the arguments of the exponentials. As
discussed in Appendix A, in the limit d∗/rs � 1, and by
expanding the exponentials this term acquires a leading linear
dependence in d∗, like the Hartree electrostatic contribution. In
the opposite limit d∗/rs � 1, the exponential terms are small
and the interlayer exchange scales linearly with rs . According
to our numerical evidence, this term is always positive and,
in consequence, its optimum configuration is either θ = 0
or the spin-balanced case ηaσ = ηbσ = ηcσ , as in both cases
E X-inter

0 = 0.

III. RESULTS

The total energy in the 6-parameter space is plagued
by local minima, that makes the task of finding the global
minimum a difficult numerical challenge. We also have
to minimize fulfilling the constraint 0 � ηi � 1, with the
minimum being just at the boundary in some cases. To carry
out the minimization we have partitioned the 6-parameter
space in (typically) 106 regions. Starting from a central point
for each region, we find a local minimum using a Simplex
algorithm [21]. Then we found the global energy minimum
as the minimum among all regions. That procedure is easy to
parallelize; in particular we have implemented it using MPI
(Message Passing Interface) facilities [22].

Before discussing the full numerical results, we find it
convenient to analyze some particular limits of the trilayer
system, which admits either analytical or semianalytical

TABLE II. Ground-state configurations for d∗ = ε∗
2 = 0. In all

cases θ = π/2.

Configuration ηa↑ ηa↓ ηb↑ ηb↓ ηc↑ ηc↓

α: sp, tl 1 0 0 0 0 0
β: tl 1

2
1
2 0 0 0 0

γ : tl x x 1 − 2x 0 0 0
δ: tl x x 1−2x

2
1−2x

2 0 0
ε: tl x x y y 1 − 2x − 2y 0
ζ : tl x x y y

1−2x−2y

2
1−2x−2y

2
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TABLE III. Ground-state configurations for ε∗
2 = 0, with the

layer separation dependent hopping t∗(d∗), and for large values of
d∗. Configuration P3 is present between P4 and P5, but not visible
in the figure because it is very narrow. The symbol “sp*” is used to
indicate that this configuration is degenerated with a nonpolarized
configuration obtained flipping the spin of a component.

Configuration ηa↑ ηa↓ ηb↑ ηb↓ ηc↑ ηc↓ θ

P 2’: sp, tl x 0 1 − x 0 0 0 π/2
P2: sp*, bl 1

2 0 0 0 1
2 0 0

P3: bl x 1 − 2x 0 0 x 0 0
P4: bl 1

4
1
4 0 0 1

4
1
4 0

P5: tl x x 1 − 4x 0 x x 0
P6: tl x x 1−4x

2
1−4x

2 x x 0

solutions. Most of the ground-state configurations will appear
already in these simple limits, helping the understanding of
the general cases discussed later.

A. d∗ = 0 limit

In the limit of small distance between layers, the expression
for the ground-state energy simplifies greatly,

E0(d∗ = 0)

2/r2
s

=
∑
ασ

(
η2

ασ − 8 rs

3π
η3/2

ασ

)
− t∗ r2

s√
2

(ηa − ηc) sin θ

+ ε∗
2 r2

s

2

[
(ηa + ηc)

sin2 θ

2
+ ηb cos2 θ

]
, (10)

having made the choice ε∗
1 = ε∗

3 = 0, ε∗
2 �= 0. We display in

Fig. 2 the ground-state phase diagram which results from the
numerical minimization of Eq. (10), for the case t∗ = 0 [23].
The more prominent feature here is the growing of configura-
tion B (ηb↑ = ηb↓ = 1/2) with respect to all configurations at
lower values of rs , as − ε∗

2 increases. This is clear physically:
as θ = 0, the configuration B is equivalent to η2↑ = η2↓ = 1/2,
and a negative value of ε∗

2 favors the central well filling. The
boundary between configurations A and B does not depend on
ε∗

2 , since the energy of the term proportional to ε∗
2 is the same

in both configurations [see Eq. (10)]. The value rs = 2.011,
which is the boundary between A and B is determined then
by the balance between the intralayer kinetic energy and
the intralayer exchange term. Indeed, for ε∗

2 = 0 we can
apply the analytical considerations from Ref. [4], according
to which the critical density at which a transition occurs from
a configuration with p equally occupied components to another
configuration with p + 1 equally occupied components is
given by r (0)

s (p,p + 1) = 3π (1/
√

p + 1/
√

1 + p)/8. We ob-
tain: r (0)

s (1,2) 
 2.011, r (0)
s (2,3) 
 1.513, r (0)

s (3,4) 
 1.269,
r (0)
s (4,5) 
 1.116, and r (0)

s (5,6) 
 1.008. These analytical
results are exactly the transition points at ε∗

2 = 0 in Fig. 2,
obtained numerically. For t∗ = 0 (the case analyzed in Fig. 2),
exists the symmetry ηa ↔ ηc. This means, for example, that
configuration C, corresponding to ηb↑ = ηb↓ = x, and ηa↑ =
1 − 2x, is degenerate with the configurations ηa↓ = 1 − 2x,
or ηc↑ = 1 − 2x, or ηc↓ = 1 − 2x. For finite t∗, we will see
how some of these degeneracies are broken. Configurations
A and B are the only cases that we have found in the
present paper where the trilayer is actually a single layer

from the point of view of the electronic distribution, with all
electrons located in the central layer. The fully spin-polarized
configuration A is preferred over the unpolarized configuration
B at densities such that rs � 2.011 by the action of the
intrasubband exchange term in Eq. (10), which always favors
spin-polarized configurations. As most of the transitions in
this paper, at the boundary between A and B configurations,
the occupation factors change abruptly.

As a way to understand the effect of the hopping parameter
t∗, we display the ground-state configurations in the parameter
space rs − t∗, for d∗ = ε∗

2 = 0 in Fig. 3. From Eq. (10) with
ε∗

2 = 0, the tunneling energy attains its minimum value with
the choice θ = π/2, ηa > ηc. In the low-density limit rs � 1,
the tunneling term is the dominant contribution and all the
electrons are in the a-type subband (either in the α or β

configurations). In the high-density limit rs � 1, the physics
is dominated by the intrasubband kinetic energy term, whose
energy is optimized (lower) by spreading electrons among
the three subbands a, b, and c. The intrasubband exchange
energy contribution, scaling linearly with rs and favoring spin
and pseudospin polarized states, plays an important role at
intermediate densities, by favoring spin-polarized configura-
tions over spin-unpolarized configurations as rs increases (i.e.,
β → α, δ → γ , ζ → ε). For increasing t∗, the configuration β

becomes more stable and gains area in the parameter space at
the expense of the remaining configurations at higher densities.
In other words, at constant rs , the occupancy of the bonding
a-type subband increases with t∗, for all rs < r (0)

s (2,3) =
1.513, until the system falls into β configuration.

At first sight it is not clear why the ground-state configu-
rations for d∗ = t∗ = ε∗

2 = 0 displayed in Figs. 2 and 3 are
not the same. The point here is that in Fig. 2 (3) we display
the configurations which are the ground states for finite values
of ε∗

2 (t∗). The case where the three external parameters d∗,
t∗, and ε∗

2 strictly vanish is somehow ill defined, as the total
energy then reduces to just the first two terms in Eq. (10)
that left the angle θ undetermined. Since any value of θ is
allowed, the ground-state configuration is not unique. The
same consideration applies to the results displayed in Fig. 2 of
Ref. [4].

The competition between the tunneling strength parameter
t∗ and the central layer energy ε∗

2 is shown in Fig. 4. For
0 < t∗ � 0.2, the ε∗

2-driven configurations of Fig. 2 are the
ground-state ones; for larger values of the tunneling parameter,
the t∗-driven configurations of Fig. 3 are the ones with
lower energies. The boundary between configurations A and α

may be easily determined from Eq. (10), and found to be
t∗ = − ε∗

2/(2
√

2). For ε∗
2 = − 0.5, this gives t∗ 
 0.18, in

agreement with the numerically calculated boundary in Fig. 4.
The boundary does not depend on rs , due to the equivalent
occupation factors in configurations A (one fully occupied
spin-polarized layer) and α (one fully occupied spin-polarized
subband), and the identical quadratic scaling with rs of both
tunneling and ε∗

s energy contributions. For the same reason,
the boundary between the B and β configurations does not
change with rs .

Considering configurations C, D, and E, they are similar to
the ones found in Fig. 2 regarding the occupancies, but with
θ �= 0. The minimizing angle θ may be found from Eq. (10),
as follows. Calling s = sin θ , and given the simplicity of the
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s dependence in the last terms, E0(d∗ = 0) may be optimized
analytically with respect to s,

dE0(d∗ = 0)

ds
= 0 → sopt =

√
2 t∗(ηa − ηc)

ε∗
2 (ηa − 2ηb + ηc)

. (11)

This is quite reasonable: for t∗ �= 0, and given that in
configurations C, D, and E, ηa �= ηc, the system gains some
tunneling energy by allowing that θ �= 0, although it is found
numerically in all cases that the value of the minimizing angle
is small.

It is worth emphasizing that at the (A,α) boundary crossing,
the trilayer system suffers an abrupt reaccommodation of the
electronic charge. This is easily seen from the following set
of equations relating the occupation densities in the layer and
subband basis:

η1σ = cos4

(
θ

2

)
ηaσ + sin2 θ

2
ηbσ + sin4

(
θ

2

)
ηcσ ,

η2σ = sin2 θ

2
(ηaσ + ηcσ ) + cos2 θ ηbσ ,

η3σ = sin4

(
θ

2

)
ηaσ + sin2 θ

2
ηbσ + cos4

(
θ

2

)
ηcσ . (12)

Since in the A configuration ηb↑ = 1 and θ = 0, this means
in real space that η2↑ = 1. In the α configuration, since
instead ηa↑ = 1 and θ = π/2, this translates in real space
to the distribution η1↑ = η3↑ = 1/4, η2↑ = 1/2. In words, at
the (A,α) transition the system passes from a monolayer to a
trilayer configuration, as tunneling increases. It is interesting
to note that a “balanced” configuration in the {1,2,3} layer
space is also a “balanced” configuration in the {a,b,c} subband
space.

B. Numerical results for the full model

In Fig. 5 we display the numerical results for the ground-
state configurations, in the rs − d∗ plane, with the layer
distance dependent hopping t∗(d∗), as given by Eq. (B2) in
Appendix B. For d∗ � 1, the hopping is sizable (t∗(0) 
 1),
and the ground-state configurations are the same as in Fig. 3.
For d∗ � 1, the Hartree term instead becomes predominant,
and the zero-tunneling and zero-site energy ground-state con-
figurations of Ref. [4] are obtained. The quadratic scaling of ET

0
with rs , however, stabilizes the tunneling-driven configurations
as rs increases. In other words, for enough large values of
rs , the trilayer system always enter in a tunneling dominated
regime. The configuration labeled P 2′, which is different
from the spontaneous interlayer coherent state P1 configu-
ration found previously (ηb↑ = 1,θ = π/2) [4], results from a
competition between the hopping and intersubband exchange
contributions. The P 2′ configuration may be understood as a
compromise between the tunneling stabilized β configuration,
and the Hartree induced P2 configuration. In passing from β

to P2, θ vanishes and the system looses tunneling energy. In
P 2′, on the other side, the system keeps the gain in tunneling
energy by allowing θ �= 0, but at the same time minimizes to
some extent the intersubband exchange energy contribution by
inducing a more “balanced” subband space configuration (one
subband is occupied in β, two subbands are occupied in P 2′).

Another interesting feature of the phase diagram in Fig. 5
is the behavior of the frontier between the α (spin-polarized)
and β (non-spin-polarized) configurations. For d∗ = 0, the
limit is in the expected value of rs = 2.011 (as in Fig. 3).
However, when d∗ grows and the associated d∗-dependent
hopping t∗(d∗) diminishes, the frontier between polarized and
nonpolarized configurations is moved to lower densities. Even
for the lowest density considered (at rs = 3.0), it is possible
to find a situation with the trilayer in a paramagnetic config-
uration. This is due to the d∗ dependence of the intersubband
exchange contribution. As explained in Appendix A, in the
limit d∗/rs → 0, one gets a linear dependence with d∗ for this
term, as shown in Eq. (A5). Considering that the tunneling
and Hartree energies are the same in α and β configurations,
the boundary between both can be found by imposing the
condition that the sum of the intrasubband kinetic energy, and
the intra- and intersubband exchange energies be the same in
both cases. In the limit d∗/rs → 0, one can use the expansion
in Eq. (A5) for the intersubband exchange energy and obtain
the equation for the boundary

rαβ
s (d∗) = 3π

8

(
1 + 1√

2

)(
1 + 3d∗

4

)

 2.011

(
1 + 3d∗

4

)
,

(13)

valid to linear order in d∗. The important point here is
that the gain in energy of the β configuration comes from
the intersubband exchange interaction, which in turn is a
consequence that the tunneling between layers is finite,
allowing a subband mixing angle θ �= 0. For even higher d∗’s,
the β configuration turns into P 2′. When the layers are more
separated, the angle θ flips from π/2 to 0, the system lost
tunneling energy and configuration P2 becomes the one with
the lowest energy.

The only difference between Fig. 5 and Fig. 6 is that in
the former ε∗

2 = 0, while in the latter ε∗
2 = − 0.8. The main

consequences are the disappearance of configurations P2 and
P4 of Fig. 5 in Fig. 6, being replaced by configurations P 3′
and P 3′′, and the growing stability of the tunneling-driven
configurations on the left-hand side of the diagram. This last
feature is easy to understand: By doing ε∗

2 < 0 the occupation
of the central layer increases, and this favors the stability of
the α and β configurations particularly, that when translated to
layer space have a central layer with twice the occupancy of the
two side layers. This effect is also reflected in configurations
γ , δ, ε, ζ , although somehow in a less strength, due to
the decreasing influence of tunneling and layer energies for
decreasing rs .

Regarding the disappearance of the P2 and P4 configura-
tions which are present in Fig. 5 but not in Fig. 6, this is due
to the fact that both configurations have zero occupancy of the
central layer, and this is in direct conflict with the fact that
ε∗

2 < 0. The new stable configurations P 3′ and P 3′′, on the
other side, have a finite occupancy of the central layer.

As in the ε∗
2 = 0 case, the non-spin-polarized configuration

β is still present even at low densities (rs > 2.0) and low and
medium interlayer distances. However, when d∗ increases (and
consequently, the hopping decreases) the configuration A is
stabilized. This configuration implies that all the electrons are
in the central layer with the same spin projection. It is stabilized
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by the exponential decay of the tunneling parameter with d∗,
that somehow recreates the situation in Fig. 2, in the limit
of low densities. For larger d∗, the Hartree energy becomes
important and a situation with the three layers occupied, like
P 3′, is preferred.

Finally, we display in Fig. 7 the layer occupancies as
function of rs , for fixed d∗ (
2), t∗ (
0.05), and ε∗

2 (
 −
0.8) [8]. For rs → 0, the layer occupancies in the figure are
well reproduced by the analytical estimates given in Ref. [4],
according to which the layer occupation factors in the P6
configuration are given by

ηa = ηc = 1

3

(
1 + ξ

2

)
ηb = 1

3
(1 − ξ ), (14)

with ξ (d∗) = (1 + 3/4d∗)−1. Evaluating these expressions at
d∗ = 2, we obtain that ηa = ηc = 5/11 
 0.45, ηb = 1/11 

0.09, in good agreement with the numerical values at rs = 0 in
Fig. 7. To obtain these analytical estimates, only the intralayer
kinetic and Hartree energy contributions to the total energy
are considered, as dictated by the scaling behavior of the total
energy in the high-density limit. This abrupt redistribution of
charge among the layers is reminiscent of the abrupt charge
transfer between the ground- and first-excited subbands of a
single semiconductor quantum well, observed experimentally
in Ref. [24] and discussed theoretically in Ref. [25].

For increasing rs , the sequence of transitions is as follows:
P6 → P5 → P 3′ → P 3′′ → P 3′ → A. The transitions P6
→ P5, P5 → P 3′, and P 3′ → A are clearly discontinuous,
as at each one of them a given layer occupation factor
abruptly passes from a finite value to zero. The interesting
“re-entrant” sequence P 3′ → P 3′′ → P 3′, on the other side,
involves only smooth occupation changes at the boundaries.
The full sequence can be understood as a consequence of
the progressive filling of the central well as rs increases. The
quadratic scaling with rs of the term proportional to ε∗

2 in
Eq. (5) makes this term to become dominant for large rs ,
culminating with the stabilization of the A configuration, where
all electrons are in the central layer and fully spin polarized.
The “re-entrant” sequence P 3′ → P 3′′ → P 3′ is interesting,
since it reflects once more the importance of the interlayer
exchange energy contribution EX-inter

0 and its competition with
the tunneling energy ET

0 . In the P 3′ configuration, θ = 0, as
this is one of the two possible ways to cancel the positive
contribution of EX-inter

0 , although that leads to a vanishing of
the gain in tunneling energy too. But for 1.68 � rs � 2.05, the
P 3′′ “balanced” configuration becomes the one with the lowest
energy. Here, since η1↑ 
 η2↑ 
 η3↑, EX-inter

0 is minimized
using the second option available for making it as small as
possible: equal occupancy of all the subbands. This allows
that θ �= 0 and leads to a gain of the tunneling energy. As rs

increases further, the equal occupancy constraint cannot be
maintained anymore, and the system returns to the unbalanced
P 3′ ground-state configuration but now with a preferential
occupancy of the central layer.

It should be noted that the three parameters d∗, t∗, and
ε∗

2 used in Fig. 7 were directly obtained from the triple
semiconductor quantum well system studied experimentally
in Ref. [8], as explained in Appendix B. After adjustment
of these parameters, our model reproduces qualitatively the

main features of the more elaborated calculations reported in
Ref. [8], using density-functional theory in the local density
approximation. Due to the associated computational cost,
these types of calculations are usually restricted to a given
particular set of parameters. In particular, it is reported in
Ref. [8] that η1 
 η2 
 η3 
 1/3 at N 
 10.8 × 1010 cm−2

(rs 
 1.74, corresponding to the upper empty white circle in
Fig. 6), and that η1/η2 
 η3/η2 
 2 at N 
 16.7 × 1010 cm−2

(rs 
 1.4, corresponding to the lower empty white circle in
Fig. 6) [26]. These LDA determined layer occupation factors
are in good qualitative agreement with the ones from our
model, as shown in Fig. 7. This gives us some confidence
that our simple model is able to reproduce the results of more
elaborate calculations, and that it may be useful for the design
of real samples and for understanding the physics of trilayer
semiconductor systems.

One may wonder how much of the findings of this paper
can be extrapolated to other apparently similar 2DEG’s,
as for example those formed at the interface between two
band insulators, such as SrTiO3 and LaAlO3 [27]. These are
fascinating systems, showing evidence of superconducting and
ferromagnetic properties, simultaneously [28]. Unfortunately,
our simple theoretical model is not suitable for capturing the
main physics needed for describing these 2DEG’s at oxide in-
terfaces. In the first place, the experimental results suggest the
presence of two type of carriers at the interface [29]: one type
is mobile, and presumably responsible for the superconducting
features, and the other type of carriers seems to be localized,
and responsible for the magnetic (ferromagnetic) features. Our
model has only mobile carriers, which are the ones that gives all
the possible ground states presented above. Another important
difference is that we have assumed from the very outset that
our semiconductor-based 2DEG has translational invariance
in the x-y plane, an assumption that seems to be not justified
in the case of the 2DEG at oxide interfaces [28]. Lastly, all
the evidence in this latter case points to the importance of
correlation effects in describing their physics [30], beyond the
reach of our variational HF approximation, which on the other
side is reasonable for the treatment of the weakly-correlated
semiconductor systems discussed here.

IV. CONCLUSIONS

The possible ground-state configurations of a trilayer
system have been determined, within the framework of a
variational Hartree-Fock approximation. The metallic layers
are Coulomb coupled through the interlayer Hartree and
exchange interactions and also due to the tunneling between
the neighboring layers. At high density the system becomes
quite simple, as the only remaining terms in the total energy
in this regime are the intralayer kinetic energy and the Hartree
classical contribution. The low-density regime is dominated
by two single-particle effects introduced in this paper: the
tunneling between layers and the site energies. The interlayer
exchange interaction is found to play an important role, helping
in the stabilization of the balanced configuration, in whose
vicinity most of the experimental samples are designed. It is
expected that the results presented in this paper for a wide
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range of parameters may serve as a qualitative guide for the
design of experimental samples and also be useful for the
understanding of the physics of trilayer semiconductor systems
at zero magnetic field.
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APPENDIX A: SOME ANALYTICAL RESULTS FOR THE
INTEREXCHANGE ENERGY CONTRIBUTION

Considering that EX-inter
0 is the only contribution to the total

energy whose dependence with rs and d∗ is not fully explicit
from its definition in Eq. (9), we find it convenient to analyze
here some limits for it, where analytical results are available.
In the first place, the integrals Iαβσ (q) in Eq. (9) are given by

Iαβσ (q) = ηασ�(
√

ηβσ − √
ηασ − q) + ηβσ�(

√
ηασ − √

ηβσ − q) + π−1�(
√

ηασ + √
ηβσ − q)�(q − |√ηασ − √

ηβσ |)

×
⎧⎨
⎩ηασ

⎡
⎣cos−1

(
q + K0

2
√

ηασ

)
−

(
q + K0

2
√

ηασ

)√
1 −

(
q + K0

2
√

ηασ

)2
⎤
⎦

+ ηβσ

⎡
⎣cos−1

(
q − K0

2
√

ηβσ

)
−

(
q − K0

2
√

ηβσ

)√
1 −

(
q − K0

2
√

ηβσ

)2
⎤
⎦

⎫⎬
⎭ , (A1)

and Iαβσ (q) = Iβασ (q). Here, K0 = (k̄2
ασ − k̄2

βσ )/q, with k̄ασ = kασ /kF , and kF = √
4πN . For α = β, the expression simplifies

to

Iαασ (q) = 2ηασ

π
�(2

√
ηασ − q)

⎡
⎣ cos−1

(
q

2
√

ηασ

)
−

(
q

2
√

ηασ

)√
1 −

(
q

2
√

ηασ

)2
⎤
⎦. (A2)

In the limit d∗/rs → 0, and to the first order in d∗/rs , the term E X-inter
0 can be calculated explicitly:

E X-inter
0

(
d∗

rs

→ 0

)

 2d∗ sin2 θ

∑
σ

∫ ∞

0
dq q(Iaaσ + 2Ibbσ + Iccσ − 2Iabσ − 2Icbσ )

− d∗ sin4 θ

2

∑
σ

∫ ∞

0
dq q(Iaaσ + 4Ibbσ + Iccσ + 2Iacσ − 4Iabσ − 4Icbσ ). (A3)

Using the relation [13]

2
∫ ∞

0
(Iαασ + Iββσ − 2Iαβσ )dq q = (ηασ − ηβσ )2, (A4)

it follows from Eq. (A3) that

E X-inter
0

(
d∗

rs

→ 0

)

 d∗ sin2 θ

(
1 − sin2 θ

2

) ∑
σ

[(ηaσ − ηbσ )2 + (ηcσ − ηbσ )2] + d∗ sin4 θ

4

∑
σ

(ηaσ − ηcσ )2. (A5)

From the above expression it is easy to see that since in this
limit E X-inter

0 is always positive, it is minimized either for
θ = 0 or when all subbands are equally occupied. Assuming
the case θ �= 0, the equally occupied situation may be realized
in two different ways: (i) spin-polarized, with ηa↑ = ηb↑ =
ηc↑ = 1/3 and all spin-down occupancies equal to zero, and (ii)
spin-unpolarized situation with all subband occupancies for
both spins equally occupied and having the value 1/6. Owing
to the presence of the remaining contributions to the total
energy, the spin-polarized situation is more stable in the low-
density limit, while the spin-unpolarized situation is preferred
in the high-density limit.

APPENDIX B: DERIVATION OF THE TUNNELING
PARAMETER t∗(d∗)

In a tight-binding-like approximation, the hopping pa-
rameter between two neighboring semiconductor quantum
wells separated by a distance d may be estimated from the
expression [1]

t(d) =
∫

φloc(z − d) Vb(z) φloc(z) dz. (B1)

Here, φloc(z − d) and φloc(z) are the envelope normalized
wave functions corresponding to the left and right quan-
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tum wells, respectively, and Vb(z) is the potential barrier
between the two wells. Consistently with our trilayer model
in Fig. 1, we have approximated each quantum well by
an isolated attractive delta potential of strength α. Within
this model, φloc(z) = √

α∗/(2a∗
0 ) exp (−α∗|z|/2a∗

0 ), Vb(z) =
−α[δ(z) + δ(z − d)], with α having units of energy times
length, and α∗ = α/(a∗

0 Ry∗). Replacing in Eq. (B1), and
imposing the constraint that t∗(0) 
 1 (a reasonable physical
choice), we obtain

t∗(d∗) = exp

(
−α∗d∗

2

)
. (B2)

The free parameter α∗ can be fixed now by imposing the second
condition that for a given value of d∗, the hopping parameter

should be equal to some convenient value, usually taken from
a more elaborate calculation. Solving equation above for α∗,
it yields

α∗ = −2 ln(t∗)

d∗ . (B3)

As an example of the use of these equations, using Eq. (3.6) in
Ref. [3], the value of t∗ may be estimated from the electronic
subband structure of a particular trilayer. For instance, using
the local-density-approximation theoretical results in Ref. [8]
corresponding to a trilayer with d∗ 
 2, we obtain that
t∗ 
 0.05. Replacing in Eq. (B3), α∗ 
 2.97. This gives us
the dependence of the hopping parameter with the distance
between layers employed in Fig. 6. The parameter ε∗

2 was
estimated by following the considerations of Hanna and
MacDonald in Ref. [3] for the same trilayer system.
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