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Linewidths in excitonic absorption spectra of cuprous oxide
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We present a theoretical calculation of the absorption spectrum of cuprous oxide (Cu2O) based on the general
theory developed by Y. Toyozawa. An inclusion not only of acoustic phonons but also of optical phonons and
of specific properties of the excitons in Cu2O like the central-cell corrections for the 1S exciton allows us to
calculate the experimentally observed linewidths in experiments by T. Kazimierczuk et al. [T. Kazimierczuk,
D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Nature (London) 514, 343 (2014)] within the same order of
magnitude, which demonstrates a clear improvement in comparison to earlier work on this topic. We also discuss
a variety of further effects, which explain the still observable discrepancy between theory and experiment but
can hardly be included in theoretical calculations.
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I. INTRODUCTION

Ever since the first formulation of their concept by
Frenkel [1–3], Peierls [4], and Wannier [5] in the 1930s,
and their experimental discovery in cuprous oxide (Cu2O)
by Gross and Karryjew in 1952 [6], excitons have been
of great physical interest, because they are the quanta of
the fundamental optical excitations in both insulators and
semiconductors in the visible and ultraviolet spectrum of light.
Excitons are so-called quasiparticles composed of an electron
and a positively charged hole. Wannier excitons extend over
many unit cells of the crystal and can be treated within a
very simple approach as an analog of the hydrogen atom. The
corresponding Schrödinger equation, which describes these
excitons, is the so-called Wannier equation [7–9].

Very recently, the hydrogenlike series could be observed
experimentally for the so-called yellow exciton in Cu2O for
the first time up to a large principal quantum number of n =
25 [10]. This detection has brought new interest to the field of
excitons [11–14]. However, the linewidths detected in Ref. [10]
differ from earlier theoretical calculations on this topic [15],
which leads us to a new investigation of the main parameters
describing the shape of the excitonic absorption lines.

The main features which make Cu2O one of the most
investigated semiconductors relating to excitons are the large
excitonic binding energy of Rexc ≈ 86 meV [11] and the
nondegeneracy of its uppermost valence band justifying the
simple-band model with a hydrogenlike exciton spectrum,

EnK = Egap − Rexc

n2
+ �

2 K 2

2M
. (1)

Besides the band-gap energy Egap, we also include the energy
due to a finite momentum �K of the center of mass. By
M we denote the mass of the exciton in the effective-mass
approximation. Beyond the simple-band model, one often
has to account for a variety of further effects of the solid.
Possible corrections of this model include, e.g., central-cell
corrections [16], a coupling of the uppermost valence band to
other valence bands [13,17], and especially the interaction with
phonons, which are the quasiparticles of lattice vibrations. This
interaction is, besides the effect of impurities in the crystal,
the main cause for an asymmetric broadening and shifting
of the excitonic lines observed in absorption spectra [8]. The

general theory for the effect of phonons on excitonic spectra
was developed by Toyozawa in the late 1950s and early
1960s [15,18–20].

In the following we apply the formulas of Toyozawa to
the yellow nP excitons considering several corrections. This
allows us to calculate the observed linewidths within the same
order of magnitude when compared to the experiment [10]. In
Sec. II we present the main results of Toyozawa’s theory. In
contrast to earlier works on this topic, we perform calculations
including all exciton states and no approximations as regards
the phonon wave vector [15,21]. In Sec. III A we calculate
the effect of both acoustic phonons and optical phonons as
well as the central-cell corrections of the 1S-exciton state [16]
on the linewidths in the absorption spectrum. Furthermore,
we present a detailed list of a variety of effects explaining
the remaining differences between theory and experiment in
Sec. III B. Finally, we give a short summary and outlook in
Sec. IV.

II. THEORY

We do not present the complete theory of exciton-phonon
coupling here, but only present the main results of Toy-
ozawa’s theory. Readers interested in this topic are referred
to Refs. [15,18–20,22].

In general, the exciton couples to two different kinds of
phonons: to longitudinal acoustic phonons (LA) via deforma-
tion potential coupling [23] and to longitudinal optical phonons
(LO) via the Fröhlich interaction [24]. For both interactions
the interaction Hamiltonian is of the same form in second
quantization:

Hexc-ph = i
∑

q

∑
νν ′ K

λs(q, νν ′)[as (q) − a†
s (−q)]B†

ν K Bν ′ K−q .

(2)

By a
(†)
s (q) we denote the operators annihilating (creating) a

phonon in the mode sq. The operators B
(†)
ν K annihilate (create)

excitons with momentum �K in the state |ν〉 = |nlm〉. Since
we make use of the simple hydrogenlike model, we treat the
quantum numbers n, l, and m as known from atomic physics as
good quantum numbers; although this is generally not the case
due to the cubic symmetry of the solid [11,13]. We discuss this

2469-9950/2016/93(8)/085203(8) 085203-1 ©2016 American Physical Society

http://dx.doi.org/10.1038/nature13832
http://dx.doi.org/10.1038/nature13832
http://dx.doi.org/10.1038/nature13832
http://dx.doi.org/10.1038/nature13832
http://dx.doi.org/10.1103/PhysRevB.93.085203
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problem in Sec. III B. The coupling matrix elements are given
by

λLA(q, νν ′) = fLA(q)[Deqe(q, νν ′) − Dhqh(q, νν ′)], (3a)

with

fLA(q) =
√

�

2cLAρV
q

1
2 (3b)

for LA phonons with the dispersion ωLA(q) = cLAq including
the velocity of sound cLA, and by

λLO(q,νν ′) = fLO(q)[qe(q,νν ′) − qh(q,νν ′)], (4a)

with

fLO(q) =
√

�e2ωLO

2V ε0

(
1

εb
− 1

εs

)
1

q
(4b)

for LO phonons with the dispersion ωLO(q) = const. These
matrix elements include the mass density ρ and the volume V

of the solid, the deformation coupling potentials De/h of the
conduction band and the valence band, the dielectric constants

above (εb) and below (εs) the optical resonance, and the
effective charges as defined by Toyozawa [18]:

qe(q, νν ′) =
∫

d r ψ∗
ν (r)ψν ′ (r)ei

mh
M

qr , (5a)

qh(q, νν ′) =
∫

d r ψ∗
ν (r)ψν ′ (r)e−i me

M
qr . (5b)

By me/h we denote the effective masses of the electron and the
hole.

The interaction with phonons leads to peaks with asym-
metric Lorentzian shape in the absorption spectrum. The
absorption coefficient depending on the frequency of light is
given by [15,18]

α(ω) =
∑

ν

α0

ω
F̃ν(ω)

�	̃ν0(ω) + 2Ãν(ω)[�ω − Ẽν0(ω)]

[�ω − Ẽν0(ω)]2 + [�	̃ν0(ω)]2
,

(6)
with the energy shift


̃ν0(ω) = Ẽν0(ω) − Eν0 = 
νν0(ω) +
∑
ν ′ �=ν

|
νν ′0(ω)|2 − |	νν ′0(ω)|2
Eν0 − Eν ′0

, (7)

the line broadening

	̃ν0(ω) = 	νν0(ω) +
∑
ν ′ �=ν

2 Re

(

νν ′0(ω)	ν ′ν0(ω)

Eν0 − Eν ′0

)
, (8)

the scaling of the constant amplitude α0

F̃ν(ω) = ∣∣Mνg

∣∣2 +
∑
ν ′ �=ν

2 Re

(
M∗

νg
νν ′0(ω)Mν ′g

Eν0 − Eν ′0

)
+

∑
ν ′ �=ν

∑
ν ′′ �=ν

2 Re

(
M∗

νg[
νν ′′0(ω)
ν ′′ν ′0(ω) − 	νν ′′0(ω)	ν ′′ν ′0(ω)]Mν ′g

(Eν0 − Eν ′0)(Eν0 − Eν ′′0)

)

+
∑
ν ′ �=ν

∑
ν ′′ �=ν

Re

(
M∗

ν ′g[
ν ′ν0(ω)
νν ′′0(ω) − 	ν ′ν0(ω)	νν ′′0(ω)]Mν ′′g

(Eν0 − Eν ′0)(Eν0 − Eν ′′0)

)
, (9)

and the asymmetry Ãν(ω), which can be calculated from

Ãν(ω)F̃ν(ω) =
∑
ν ′ �=ν

Re

(
M∗

νg	νν ′0(ω)Mν ′g

Eν0 − Eν ′0

)
+

∑
ν ′ �=ν

∑
ν ′′ �=ν

2 Re

(
M∗

νg[
νν ′′0(ω)	ν ′′ν ′0(ω) + 	νν ′′0(ω)
ν ′′ν ′0(ω)]Mν ′g

(Eν0 − Eν ′0)(Eν0 − Eν ′′0)

)

+
∑
ν ′ �=ν

∑
ν ′′ �=ν

Re

(
M∗

ν ′g[
ν ′ν0(ω)	νν ′′0(ω) − 	ν ′ν0(ω)
νν ′′0(ω)]Mν ′′g

(Eν0 − Eν ′0)(Eν0 − Eν ′′0)

)
. (10)

The quantity Mνg denotes the transition matrix element between the ground state |0〉 of the solid and the exciton state |ν〉 with
K = 0 due to the electron-photon interaction. In cuprous oxide the transition is parity forbidden, which results in [8]

Mνg = c
n2 − 1

n5
δl,1δm,0. (11)

Since in both Eqs. (9) and (10) Mνg appears quadratically, the asymmetry Ãν(ω) will be independent of the proportionality
constant c. The main difficulty in the implementation of the formulas given above is the calculation of the quantities [15,18]

	ν2ν10(ω) =
∑
sq

∑
ν3

π

�
λ∗

s (q,ν3ν2)λs (q,ν3ν1)
[
(ns(q,T ) + 1)δ

(
Eν3q + �ωs(q) − �ω

) + ns(q, T )δ
(
Eν3q − �ωs(q) − �ω

)]
(12)
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and


ν2ν10(ω) =
∑
sq

∑
ν3

λ∗
s (q,ν3ν2)λs (q,ν3ν1)

[
[ns(q,T ) + 1]P

(
1

�ω − Eν3q − �ωs(q)

)
+ ns(q,T )P

(
1

�ω − Eν3q + �ωs(q)

)]
.

(13)

The symbol P denotes the principal value. We can write

P
(

1

x

)
= P

∫
dE

1

E
δ(E − x) lim

ε→0+

(∫ −ε

−∞
dE

1

E
δ(E − x) +

∫ ∞

ε

dE
1

E
δ(E − x)

)
. (14)

The average thermal occupation of phononic states at a
temperature T is given by [22]

ns(q, T ) = 1

e�ωs (q)/kBT − 1
. (15)

The evaluation of 	ν2ν10(ω) and 
ν2ν10(ω) and their appli-
cation to Cu2O are presented in the Appendix.

III. RESULTS AND DISCUSSION

A. Contributions to the linewidths

In the following we discuss the different contributions
to the linewidths 	̃ν0(ω) in Eq. (8) for Cu2O at the very
low temperature of T = 1.2 K [10]. The relevant material
parameters are listed in Table I. Although the unit cell of Cu2O
comprises six atoms, which amounts to 15 optical phonon
modes, there are only 2 LO phonon modes with 	−

4 symmetry
contributing to the Fröhlich interaction [16].

For our discussion we especially consider the line parame-
ters of the 2P exciton since it has always been wondered which
effects lead to the large broadening of this line [18,28–30].
We discuss the contributions to these parameters in several
steps.

Step 1. We start with the most simple case, in which we
neglect the optical phonons, set the frequency ω to Eν0/�, and
neglect the so-called intraband contributions [18]; i.e., we only
include those parts of Eqs. (7)–(10) which do not contain sums
over ν ′. The approximation of setting ω ≈ Eν0/� is justified

TABLE I. Material parameters of Cu2O used in our calculations.
m0 denotes the free electron mass. All values are taken from Ref. [25]
unless otherwise stated.

Parameter Value

Lattice constant a = 4.27 × 10−10 m
Mass density ρ = 6.09 g

cm3

Band-gap energy Eg = 2.17 eV
Effective masses [26] me = 0.99m0

mh = 0.58m0

Dielectric constants εs1 = 7.5, εb1 = 7.11
εs2 = 7.11, εb2 = 6.46

Sound-wave velocity cLA = 4.5405 × 103 m
s

Energy of 	−
4 -LO phonons [16] �ωLO, 1 = 18.7 meV

�ωLO, 2 = 87 meV
Deformation potentials [27] De = 2.4 eV

Dh = 2.2 eV
Rydberg energy [11] Rexc = 86 meV

since 	̃ν0(ω) is a slowly varying function with ω [15,28]. The
formula (12) includes a sum over all excitonic states. In order
to calculate the quantity 	ν2ν10(ω) within a reasonable time,
we have to restrict the infinite sum to a finite one via

∑
ν3

→
nmax∑
n3=1

n3−1∑
l3=0

l3∑
m3=−l3

, (16)

with nmax � 7. As it has also been done by Toyozawa [18],
one may at first include only states having the same principal
quantum number as the one considered. This means for the 2P

exciton that the sum reads

∑
ν3

→
2∑

n3=2

1∑
l3=0

l3∑
m3=−l3

. (17)

This yields very small values for the linewidth and the energy
shift:

	̃210 0(E210 0/�) ≈ 1.70 × 10−9 eV, (18a)


̃210 0(E210 0/�) ≈ −9.72 × 10−6 eV. (18b)

Step 2. An obviously better approach is to evaluate the
complete sum (16) with different nmax and extrapolate the
values obtained for 	̃210 0 and 
̃210 0 to the final value for
nmax → ∞. To this aim we fit a function of the form f (nmax) =
a/n2

max + b to our values. We depict this procedure in Fig. 1.
This approach yields

	̃210 0(E210 0/�) ≈ 9.87 × 10−7 eV, (19a)


̃210 0(E210 0/�) ≈ −2.32 × 10−5 eV. (19b)

This already shows that the 1S exciton state has a large
influence on the linewidth of the 2P state.

Step 3. At very low temperatures only a few LA phonons
are thermally excited. We therefore expect the optical phonons
to increase the linewidth considerably, especially since the
energy of one of these phonons (�ωLO, 1 = 18.7 meV) is
of the same magnitude as the energetic difference between
two exciton states (E210 0 − E410 0 ≈ 17.25 meV). Including
optical phonons, we obtain

	̃210 0(E210 0/�) ≈ 3.45 × 10−5 eV, (20a)


̃210 0(E210 0/�) ≈ −8.39 × 10−3 eV. (20b)

Step 4. Up to now we have assumed that the linewidth
	̃210 0(ω) is a slowly varying function of the frequency of light.
For this reason we have set ω ≈ Eν0/�. In the literature it has
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FIG. 1. In order to evaluate the quantities 	ν2ν10(ω) and 
ν2ν10(ω),
one has to cut the infinite sums over ν in the formulas at a finite value
nmax of the principal quantum number n [cf. Eq. (16)]. Here we
show the values obtained for 
̃210 0 in dependence on nmax for Step
2. The final value 
̃210 0 = −2.32 × 10−5 eV (dashed line) is then
calculated from an extrapolation. We used f (nmax) = a/n2

max + b as
a fitting function for nmax � 3 (solid line).

been discussed that it is necessary to account for the frequency
dependence in order to describe the asymmetry of the lines
correctly [28]. On the other hand, Toyozawa already stated
in Ref. [15] that the line shape would not be of asymmetric
Lorentzian shape if 	̃210 0(ω) varied strongly with ω. We see
that the energy shift 
̃210 0 is several meV large. Since the
absorption peak is centered around Ẽν0(ω), we evaluate the
line parameters within the range ωmin � ω � ωmax with

�ωmin = E210 0 − 2|
̃210 0(E210 0/�)| (21)

and

�ωmax = E210 0 (22)

to determine their frequency dependence. It is found that
	̃210 0(ω) increases slowly with ω while 
̃210 0(ω) decreases
strongly:

	̃210 0(ωmin) ≈ 3.30 × 10−5 eV, (23a)

	̃210 0(ωmax) ≈ 3.45 × 10−5 eV, (23b)


̃210 0(ωmin) ≈ −6.97 × 10−3 eV, (23c)


̃210 0(ωmax) ≈ −8.39 × 10−3 eV. (23d)

The effect on the linewidth may be more important in
external fields, which would mix different excitonic states
[18,31].

Step 5. An important effect concerns the 1S exciton of
the yellow series of Cu2O. The mean distance between the
electron and the hole is so small that this exciton can hardly be
treated as a Wannier exciton. The corrections that have to be
made due to this small distance are known as the central-cell
corrections. They lead to a higher mass of the 1S exciton of
M̃ ≈ 3m0 and to a smaller excitonic Bohr radius of ãexc ≈ 0.53
nm [16]. These corrections are now included in the excitonic

wave function ψ100 and in the excitonic energies

E100 K = Egap − R̃exc

n2
+ �

2 K 2

2M̃
. (24)

The binding energy R̃exc ≈ 153 meV of the 1S exciton differs
much from the excitonic Rydberg constant of the rest of
the yellow exciton series. The central-cell corrections have
a significant influence on the linewidth and increase it by a
factor of about 17 to

	̃210 0(ωmin) ≈ 6.12 × 10−4 eV, (25a)

	̃210 0(ωmax) ≈ 5.53 × 10−4 eV, (25b)


̃210 0(ωmin) ≈ −6.98 × 10−3 eV, (25c)


̃210 0(ωmax) ≈ −8.18 × 10−3 eV. (25d)

Step 6. We now investigate the influence of intraband
scattering. Therefore, we also consider the sums of the form∑

ν ′ �=ν in Eqs. (7)–(10), where we also cut these sums at
the same value of nmax. In contrast to the expectation of
Toyozawa [15], the effect of this type of scattering on the
linewidth is quite small. We obtain

	̃210 0(ωmin) ≈ 4.04 × 10−4 eV, (26a)

	̃210 0(ωmax) ≈ 4.94 × 10−4 eV, (26b)


̃210 0(ωmin) ≈ −7.14 × 10−3 eV, (26c)


̃210 0(ωmax) ≈ −8.57 × 10−3 eV. (26d)

Nevertheless, the asymmetry of the lines can be explained only
by intraband scattering. The value of

Ã210(ωmin) ≈ −3.67 × 10−2, (26e)

Ã210(ωmax) ≈ −3.69 × 10−2, (26f)

however, is very small in comparison with the large asymmetry
of the lines observed in Ref. [10]. We discuss this discrepancy
in Sec. III B.

Step 7. In the literature a large asymmetry has also been
assigned to a coupling of the bound exciton states to the
continuum states [28,32–34], whose energies are given by

Ek K = Egap + �
2k2

2μ
+ �

2 K 2

2M
(27)

in analogy to the hydrogen atom. However, an effect of the
continuum states can be excluded via a simple calculation:
For the average occupation of the phonon modes one obtains
nLO, 1(q, T ) = 0 for T � 25 K and nLO, 2(q, T ) = 0 for T �
100 K; i.e., only scattering processes with the emission
of phonons can take place at T = 1.2 K. Furthermore, the
emission process can only take place if the arguments of the
δ functions in Eqs. (12) and (13) are positive. This means for
acoustic phonons

�
2k2

2μ
<

1

2
Mc2

LA − Rexc

n2
(28a)
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TABLE II. The final values for the linewidths 	̃ν0 and the energy
shifts 
̃ν0 including all of the corrections discussed in Sec. III A.
The values are given at �ω = En10 0 − 
̃n10 0(En10 0/�) (cf. Step 4
of Sec. III A). In the last column the experimental linewidths are
listed [10].

ν 	̃ν0[meV] 
̃ν0[meV] 	̃ν0 (Expt.)[meV]

210 0.453 −7.737 1.581
310 0.201 −7.574 0.511
410 0.144 −6.551 0.237
510 0.108 −6.560 0.142

and for optical phonons

�
2k2

2μ
< −�ωLO − Rexc

n2
. (28b)

Therefore, only LA phonons play a role and only for the
line shapes of excitons with n > 32. A contribution of the
continuum states is therefore impossible.

The final results including all of the corrections discussed
above are listed in Table II. We also list the experimental
linewidths, which have been obtained by fitting Elliott’s for-
mula or Lorentzians to the experimental absorption spectrum
(cf. Fig. 2). It can be seen that we obtain the correct behavior of
the line parameters with increasing principal quantum number:
The linewidths decrease with increasing quantum number.

In Fig. 2 we compare the predicted line shapes with the
measured ones. It is obvious that our calculation cannot
reproduce quantitatively the large asymmetry. However, the
linewidths differ only by a factor of ∼3.5 or even ∼1.3,
which means that they are of the same order of magnitude.
The observable difference in the position of the lines can
be explained on the one hand by small inaccuracies of the
material constants used and on the other hand in terms of
the complex valence band structure of Cu2O. These facts and
further possible reasons for deviations from the experimental
spectrum are discussed in Sec. III B.

 0

 0.5

 1

 2.14  2.145  2.15  2.155  2.16

-hω [eV]

α 
[a

rb
. u

ni
ts

]

(b)

 0

 0.5

 1
(a)

n=2 n=3 n=4

FIG. 2. Comparison of (a) the experimental spectrum [10] with
(b) the calculated line shapes using Eq. (6) and the values listed in
Table II. Since we do not know the proportionality constant c in
Eq. (11), we chose arbitrary values for the amplitudes F̃ν(ω). We
shifted the experimental values by an amount of −6 meV for a better
comparison. The experimental values have been fitted by Lorentzians
to obtain the experimental linewidths (red dashed line).

A quantitative comparison of the calculated linewidths with
the results of previous works is not possible. In Ref. [18] it is
reported that the calculated linewidth of the 2P exciton is
several times smaller than the experimentally observed one
but no value is given. In Ref. [21] the calculated linewidths are
several times larger than the experimental ones, indicating
the inappropriateness of the many approximations in that
publication.

B. Further discussion

In the above calculation we made some assumptions, which
are discussed in the following. We also discuss possible causes
for a further broadening of the lines, which may be difficult to
be considered in theory.

We have assumed that the dispersion of LA phonons is
linear according to ωLA = cLAq and that the dispersion of LO
phonons is constant. If we perform the q integration according
to Eq. (A1b) only up to a value of qmax < qD, our results do not
change for 1

2qD < qmax < qD; i.e., we can always set the upper
boundary of the integral to 1

2qD. Since the assumption of the LA
dispersion relation to be linear in q holds for q < 1

2qD [35–38],
its usage is retroactively justified. Furthermore, the change
of the energy of the LO phonons within this limit is very
small [39].

We have treated l and m as good quantum numbers in
the above calculations. This is in general not the case due
to the cubic symmetry of the crystal. Nevertheless, since
Oh is the point group with the highest symmetry, it may
be justified to treat l approximatively as a good quantum
number [11,13]. However, one would still have to calculate the
correct linear combinations of states with different m quantum
number, which then transform according to the irreducible
representations of the cubic group Oh [13]. This has not been
done since we expect no effect from this rearrangement of
states.

The asymmetry of the lines calculated in Step 6 are
considerably smaller than the experimental values. The large
asymmetries can be explained in terms of Fano resonances
and phonon replicas. Phonon replicas describe, in particular for
luminescence, the scattering of a polariton from the excitonlike
branch of its dispersion relation to the photonlike branch with
the simultaneous emission of LO phonons, or more simply the
decay of an exciton with the emission of one photon and LO
phonons. In luminescence spectra the line shape then shows a
square-root-like energy dependence due to the exciton density
of states. While LO phonon replicas appear on the low-energy
side in luminescence spectra, they can also appear on the
high-energy side in absorption spectra [40]. In the case of Cu2O
the 	−

3 LO phonon assists the 1S-exciton formation and causes
the square-root-like frequency dependence of the absorption
coefficient, on which then absorption of the other exciton reso-
nances is superimposed (see, e.g., Refs. [21,41,42]). Since the
transition amplitudes interfere destructively or constructively
on the lower- or higher-energy side of the resonance with the
continuum of the 	−

3 LO phonon, one obtains asymmetric
line shapes of the exciton resonances in accordance with the
theory of Fano resonances [43]. Since the formulas of Sec. II
do not account for the phononic background, we could not
determine correct asymmetries of the lines. Note that the
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FRANK SCHWEINER, JÖRG MAIN, AND GÜNTER WUNNER PHYSICAL REVIEW B 93, 085203 (2016)

phononic background has been subtracted from the results
of Ref. [10]; an absorption spectrum including it can be found,
e.g., in Ref. [44]. For further information on this topic, see also
Refs. [40,45] and further references therein.

The Rydberg energies Rexc of excitonic spectra are gener-
ally obtained from fits to experimental results. Therefore, the
value of Rexc for the yellow series of Cu2O varies between
86 meV [11] and 97.2 meV [46] in the literature. The same
argument holds for the band-gap energy Egap. One reason
for the deviations in the line positions in Fig. 2 is thus the
uncertainty in these constants.

We have also assumed that the simple band model holds.
Indeed, the results in Ref. [10] show that this approximation
is reasonable; but one could also include the complete
valence band structure in the theory [13,17]. This makes
an investigation of linewidths almost impossible since the
energies Eν K have to be determined first of all, and a separation
of relative motion and the motion of the center of mass is
not possible [47,48]. The calculations in Ref. [47] on the
linewidths of the 1S-exciton states of different semiconductors
already show the main problems if one would have to extend
the theory to principal quantum numbers of n � 2. On the
other hand, an inclusion of the complete valence band structure
results in a coupling of the yellow and green exciton series,
especially to the green 1S-exciton state [17]. Since we found
out that the yellow 1S-exciton state has a significant influence
on the linewidth of the 2P -exciton state, we expect that the
coupling to the green 1S-exciton state will lead to a further
broadening of this line. The coupling to the (energetically
higher located) green series may also be a reason for the large
degree of asymmetry of the lines.

The complex valence band structure is sometimes treated
in a simple approach in terms of quantum defects [10,11].
However, the results of Ref. [11] show that this approach works
well only at high quantum numbers (n � 7). Therefore, we did
not consider quantum defects in our calculations.

The complex valence band structure also facilitates a
coupling of excitons to transversal acoustic (TA) phonons
[22,47,49]. However, the effect of TA phonons is reported
to be half as large as the effect of LA phonons [35,50], which
is already very small in our case. The coupling to TA phonons
may be more important if external strains are applied to the
crystal [51].

Impurities, especially point defects, in the crystal can lead
to a broadening of exciton linewidths [52]. The effect of
an increase in the defect concentration has, according to
Toyozawa [18], the same effect as a raising of the temperature.
However, it has been discussed in the literature that a large
concentration of impurities will lead to a more Gaussian or
Voigt line shape [47,53,54]. This cannot be seen in the line
spectrum measured in Ref. [10], for which reason we have to
assume that the concentration of defects is low. Certainly, one
could also estimate the concentration of defects experimentally
by an extrapolation of the linewidth to T → 0 K [55].
Furthermore, the effect of a movement of defects being caused
by phonons is said to be negligible [47].

The Fröhlich coupling constant is defined as [22]

αF = e2

8πε0�ωLO

(
2MωLO

�

) 1
2
(

1

εb
− 1

εs

)
. (29)

For Cu2O we obtain αF
1 ≈ 0.24 and αF

2 ≈ 0.20. Since these
values are clearly smaller than 1, we can neglect polaron
corrections to the energy and the mass of the excitons [22,31].

In the unit cell of Cu2O there are always four copper atoms
arranged in tetragonal symmetry [56], but only in every second
tetragon is an oxygen atom located at its center. Since the
oxygen atoms are very small, there is a chance that there
are sometimes more than two oxygen atom in one unit cell.
The excess atoms will then occupy the free positions in the
lattice and act as acceptors. This results in small charges and
in small internal electric fields, which will influence the exciton
and lead to a line broadening. However, it is hard to account
for these fields in theory.

The coupling between excitons and phonons is linear; i.e.,
there is always only one phonon being involved in a scattering
process. In the literature, multiphonon processes are said to
be important in connection with piezoelectric coupling [28].
Sometimes, they are even said to be negligible [53]. Since
piezoelectric coupling is symmetry forbidden in Cu2O, we do
not consider multiphonon processes.

In general, there are no excitons in crystals but there
are polaritons due to the coupling to light [8]. In materials
other than Cu2O the excitonic 1S ground state is often
dipole allowed. The resulting large polariton coupling mainly
changes the contribution of LA phonons to the linewidths
but changes the contribution of the LO phonons only weakly
(see Ref. [31] and further references therein). Since the LA
phononic contribution is small for Cu2O, we expect that the
polariton effect will not change our results significantly, so
that it can even be neglected [35].

We have shown that the central-cell corrections have a major
influence on the linewidth of the 2P -exciton state. Besides the
central-cell corrections, which lead to an increase in the mass
of the 1S exciton, there exists also a K -dependent exchange
interaction, which results in a K -dependent effective mass
M̃(K ) of this exciton [57]. We expect the influence of the K -
dependency of the mass M̃ to be small for the following reason:
We have proven that the effect of interband coupling on the
linewidth is unimportant. For this reason the main contribution
to the linewidths comes from the region with K ≈ 0 and it
is sufficient to take the value M̃(0) (cf. the illustrations of
intraband and interband scattering in Ref. [8]).

IV. SUMMARY AND OUTLOOK

We have calculated the main parameters describing the
shape of the excitonic absorption lines for the yellow exciton
series of Cu2O and compared our results to the experimentally
observed lines of Ref. [10]. Especially the calculated linewidth
for yellow 2P excitons lies within the same order of magnitude
as the experimental one and differs only by a factor of ∼3.5,
which is a significant improvement on the result of Ref. [15].
Furthermore, we have discussed possible reasons for the large
broadening and the large asymmetry of the lines. Of course,
some of these special properties of Cu2O could eventually be
included in theory, but only with huge effort.

Recently, it has been shown that the yellow excitonic line
spectrum of Cu2O in an external magnetic field shows the
statistics of a Gaussian unitary ensemble (GUE) [12]. This line
statistics has been explained in terms of the exciton-phonon
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coupling in the crystal. Therefore, it will be worthwhile to
extend our calculations by including a magnetic field in order
to prove the GUE statistics theoretically.
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APPENDIX: EVALUATION OF �ν2ν10(ω) AND �ν2ν10(ω)

We now present the evaluation of Eqs. (12) and (13) as well
as their application to Cu2O.

Due to periodic boundary conditions, the values of the
phononic wave vector q are generally discrete [22]. If we
apply the continuum approximation, in which the number of
atoms N of the solid goes to infinity and the lattice constant
alat between the atoms goes to zero while the ratio Na3

lat = V

is kept constant, we can treat q as a continuous quantity and
replace the corresponding sums by integrals:

∑
q

→ V

(2π )3

∫
dq, (A1a)

with ∫
dq =

∫ qD

0
dqq2

∫ π

0
dqϑ sin qϑ

∫ 2π

0
dqϕ. (A1b)

The upper boundary qD of the q integral is given by the
boundary of the first Brillouin zone and can be calculated
from the Debye model [22]. In order to evaluate the integral
over q, the dependence of the effective charges on the angles
qϑ and qϕ has to be determined. To this end we substitute the
variable r in the integrals of Eqs. (5a) and (5b) by u = ATr
with a rotation matrix A, for which ATq = q êz holds. By êz

we denote the unit vector in the z direction. If we denote by
Rn̂ϕ the rotation matrix describing the rotation about an axis
n̂ by an angle ϕ, we can express A as

A = Rêz(−qα ) Rêy (−qϑ ) Rêz(−qϕ) (A2)

with an arbitrary angle qα . The hydrogenlike wave functions
ψν of the exciton read

ψν(r) = Rnl(r)Ylm(ϑ, ϕ) (A3)

with the spherical harmonics Ylm(ϑ, ϕ). For the radial part
Rnl(r) we take the well-known functions of the hydrogen
atom [58], but replace the Bohr radius a0 by the excitonic
Bohr radius aexc, which is given by [22]

aexc = a0
Ry

εs1Rexc
≈ 1.116 nm, (A4)

with the Rydberg energy Ry and the dielectric constant
εs1, which is given together with all of the other material
parameters of Cu2O in Table I.

After the substitution, we make use of the special properties
of the spherical harmonics under rotations [59]:

ψν(Au) = e− i
�

qα êz Le− i
�

qϑ êy Le− i
�

qϕ êz Lψν(u)

= D(qα,qϑ,qϕ)ψν(u)

= Rnl(u)
l∑

m′=−l

Ylm′ (uϑ,uϕ)

×Dl
m′m(qα,qϑ,qϕ). (A5)

The complex factors Dl
m′m(qα, qϑ , qϕ) are the matrix elements

of the operator D(qα, qϑ , qϕ) corresponding to the spherical
harmonics, i.e.,

Dl
m′m(qα, qϑ , qϕ) = 〈lm′|D(qα, qϑ , qϕ)|lm〉. (A6)

Since the final expressions do not depend on qα , it is possible
to include an additional integral 1

2π

∫
dqα . Making use of the

properties of the matrices Dl
m′m [8], we can easily evaluate

the integrals over qϑ and qϕ .The arising matrix elements of
the form

〈nlm|eiaz|n′l′m〉 =
∫

d rRnl(r)Rn′l′ (r)eiar cos ϑ

×Y ∗
lm(ϑ, ϕ)Yl′m(ϑ, ϕ) (A7)

are calculated using MATHEMATICA.
The evaluation of the integral over q is straightforward.

At first, we interchange the integral over q with the integral
belonging to the principal value in Eq. (13). Then we treat the
arguments of the δ functions in Eqs. (12) and (13) as functions
of q and use the relation

δ[f (q)] =
∑

i

∣∣∣∣∣ ∂f

∂q

∣∣∣∣
q=qi

∣∣∣∣∣
−1

δ(q − qi), (A8)

where the sum is over all roots qi of f (q).
The final task is the evaluation of the integral with the

principal value in 
νν ′0(ω). This will be done numerically
using Hartree units. One can read from the δ functions obtained
by using Eq. (A8) for which energies E there will be a
contribution to the integral. According to the values of the
material parameters of Cu2O the maximum and minimum
values of E are given by

Emax = Rexc + �ωLO, max > 0, (A9a)

Emin = −Emax − �
2q2

max

2M
< 0, (A9b)

where �ωLO, max denotes the energy of the LO phonon mode
with highest energy. Since |Emin| > Emax holds, we can replace
the upper value of the integral by −Emin and rewrite the
principal value integral as an improper integral,

P
∫ −Emin

Emin

dEf (E) = lim
ε→0

∫ −Emin

ε

dE[f (E) + f (−E)],

(A10)

which is then evaluated using Gaussian quadrature and a
standard algorithm for improper integrals.
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