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Common density-matrix functionals, the Müller and the power functional, have been benchmarked for the
half-filled Hubbard dimer, which allows us to model the bond dissociation problem and the transition from the
weakly to the strongly correlated limit. Unbiased numerical calculations are combined with analytical results.
Despite the well known successes of the Müller functional, the ground state is degenerate with a one-dimensional
manifold of ferromagnetic solutions. The resulting infinite magnetic susceptibility indicates another qualitative
flaw of the Müller functional. The derivative discontinuity with respect to particle number is not present indicating
an incorrect metal-like behavior. The power functional actually favors the ferromagnetic state for weak interaction.
Analogous to the Hartree-Fock approximation, the power functional undergoes a transition beyond a critical
interaction strength, in this case, however, to a noncollinear antiferromagnetic state.
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I. INTRODUCTION

Ab initio calculations are dominated by density functional
theory (DFT) [1,2], which provides an efficient and accurate
description of the electronic structure for most materials [3].
For materials with strong correlations, however, many of the
available density functionals yield poor results [4,5]. Most
well known is the case of transition metal oxides, for which
most density functionals produce a qualitatively incorrect
description [6]. However, elementary chemical processes such
as bond dissociation are also described poorly by currently
available density functionals [5].

There is a quest to improve the description by borrowing
from methods specifically designed for strongly correlated
materials. Among them are LDA+U [7], DFT-plus-dynamical
mean-field theory [8–10], and DFT-plus-Gutzwiller approxi-
mation [11–13]. The guiding idea behind these approaches is
to merge density functional theory with methods developed
for the study of strong correlations for model Hamiltonians
such as the Hubbard model [14–16].

We consider reduced density-matrix functional theory
(rDMFT) [17,18] to be a useful framework for a rigorous
formulation of such hybrid theories [19,20]. Reduced density-
matrix functional theory can be viewed as a relative of DFT,
which emphasizes orbital occupations rather than the density
as basic variable. Such a description seems to be natural
for correlated materials, because the latter are dominated by
orbital physics.

The link from rDMFT to many-particle wave functions has
been established by Levy’s constrained-search algorithm [18]
on the one hand. The link to many-body perturbation theory
and Green’s function, on the other hand, has been provided
recently [20] via the Luttinger-Ward functional [21].

In order to avoid the full complexity of an explicit many-
body description, most density-matrix functionals are not
extracted from the exact expressions [18,20]. Rather, one
proceeds analogously to the development of density func-
tionals, namely by searching models [22–26] for the density-
matrix functional that capture the most essential physical

effects while having an algebraic dependence on the density
matrix.

The development of such model density-matrix functionals
relies on benchmark systems that allow one to evaluate
their quality. Of particular interest are exactly solvable prob-
lems. Such studies have been performed for the Moshinsky
atom [27], the homogeneous electron gas [28], and the
Hubbard model [29,30]. Di Sabatino et al. [30] performed an
in-depth analysis of the method proposed by Sharma et al. [31]
to evaluate the spectral function of the Hubbard dimer from
the Müller density-matrix functional [22].

As pointed out by Cohen, Sanchez, and Yang [5], many
of the failures of current density functionals for correlated
materials can be traced back to the derivative discontinuities
present in a surprisingly simple system, namely the hydrogen
or helium dimer in different charge states, i.e., H+

2 , H2, He+
2 .

Therefore, the two-site Hubbard model, the Hubbard dimer,
can be considered as a model system for the correlation effects
present in a chemical bond.

The most prominent failure of density functionals occurs
during bond dissociation. If we denote the hopping parameter
between the bonded atoms with t and the on-site interaction
strength with U , bond dissociation is described by the limit
t → 0 at constant U . Thus, the system evolves from a weakly
correlated state into the strongly correlated limit U/t → ∞ as
the bond is broken. The large-interaction limit U → ∞ of the
Hubbard model differs from the bond-dissociation limit only
by the choice of the energy scale.

One of the major arguments in favor of density-matrix
functionals is that one of the most simple functionals, the
Müller functional [22], seems to provide a correct description
of the bond-dissociation problem, for which common density
functionals fail [32]. In this paper we study the performance of
a class of commonly used model density-matrix functionals for
the half-filled Hubbard dimer. We point out that, despite some
successes, also these density-matrix functionals reproduce a
number of features in a qualitatively incorrect manner. Thus,
this work sets the stage for the development of an entirely new
class of functionals [20].
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In Sec. II, we define our notation and introduce the basic
concepts of density-matrix functionals. In Sec. III, we present
the analytically exact treatment of the Hubbard dimer and
describe its relevant properties. In Sec. IV, we describe the
numerical methodology of searching for the ground state for
the model density-matrix functionals. In Sec. V, we describe
the results obtained with the Hartree-Fock approximation and
the commonly used Müller and power functionals. In Sec. VI
we study the Hubbard dimer beyond half filling, and in Sec. VII
we discuss briefly the transferability of our results to larger
systems. Our results are summarized in Sec. VIII.

II. THEORETICAL FRAMEWORK

A. General many-particle problem

The many-particle Hamiltonian for interacting electrons
can be expressed in terms of field operators ψ̂(�x) and ψ̂†(�x) in
the form

Ĥ =
∫

d4x ψ̂†(�x)

(−�
2

2me

�∇2 + vext(�x)

)
ψ̂(�x)

+ 1

2

∫
d4x

∫
d4x ′ ψ̂†(�x)ψ̂†( �x ′)

× e2

4πε0|�r − �r ′| ψ̂( �x ′)ψ̂(�x), (1)

where �x = (�r,σ ) is a combined position and spin variable. We
use the shorthand

∫
d4x =∑σ

∫
d3x for the integration over

positions and the sum over spin indices. The field operators
obey the usual anticommutator relations [ψ̂†(�x),ψ̂( �x ′)]+ =
δ(�r − �r ′)δσ,σ ′ .

A discrete, orthonormal one-particle basis set {χα(�x)}
determines the creation and annihilation operators of electrons
in the one-particle orbitals

ĉ†α =
∫

d4x χα(�x)ψ̂†(�x)
(2)

ĉα =
∫

d4x χ∗
α (�x)ψ̂(�x).

In this one-particle basis set we obtain the discrete Hamiltonian

Ĥ =
∑
αβ

hαβ ĉ†αĉβ + 1

2

∑
αβγ δ

Uαβγ δ ĉ†αĉ
†
β ĉδ ĉγ (3)

with the one-particle Hamiltonian

hα,β =
∫

d4x χ∗
a (�x)

(−�
2

2me

�∇2 + vext(�x)

)
χβ(�x). (4)

The off-diagonal elements of h are named hopping parameters,
and the diagonal elements are named orbital energies.

The interaction matrix elements are

Uαβγ δ =
∫

d4x

∫
d4x ′ e2χ∗

α (�x)χ∗
β ( �x ′)χγ (�x)χδ( �x ′)

4πε0|�r − �r ′| . (5)

B. One-particle reduced density matrix

The one-particle reduced density matrix of an ensem-
ble of fermionic many-particle wave functions |�j 〉 with

probabilities Pj is defined as

ραβ =
∑

j

Pj 〈�j |ĉ†β ĉα|�j 〉. (6)

The density matrix is often represented by the eigenvalues and
eigenstates of the corresponding one-particle operator

ρ̂ =
∑
αβ

|χα〉ρα,β〈χβ |. (7)

The eigenvalues of ρ̂ are the occupations fn and the eigenstates
|φn〉 are named natural orbitals [33]. Thus the density matrix
can be expressed by its eigenvalues and eigenstates in the form

ρα,β =
∑

n

〈χα|φn〉fn〈φn|χβ〉. (8)

Not every hermitian matrix can also be represented as the
one-particle reduced density matrix of an ensemble of many-
particle wave functions according to Eq. (6). A matrix that can
be represented by an ensemble of fermionic N -particle wave
functions is called ensemble N representable. Coleman [34]
has shown that eigenvalues of all ensemble N -representable
one-particle reduced density matrices lie between zero and one
and that all hermitian matrices with eigenvalues between zero
and one are ensemble N representable.

C. Helmholtz potential and density-matrix functional

The Helmholtz potential Aβ,μ[Ĥ ], the thermodynamic
potential for finite temperature and fixed particle number, for
a many-particle system can be expressed with the help of the
density-matrix functional F Ŵ

β [ρ] as [18,20,35,36]

Aβ,N [ĥ + Ŵ ]

= min
|φn〉,fn∈[0,1]

stat
�,μ

{∑
n

fn〈φn|ĥ|φn〉 + F Ŵ
β

[∑
n

|φn〉fn〈φn|
]

−μ

(∑
n

fn − N

)
−
∑
m,n

�m,n (〈φn|φm〉 − δm,n)

}

(9)

where ĥ =∑α,β |χα〉hα,β〈χβ |.
The reduced density-matrix functional F Ŵ

β [ρ] is universal
in the sense that it depends only on the intrinsic properties
of the electron gas, namely the interaction Ŵ , while it is
independent of the one-particle Hamiltonian ĥ. The chemical
potential μ is a Lagrange multiplier that constrains the electron
number to N . �mn are the Lagrange multipliers which enforce
that natural orbitals |φm〉 remain orthonormal. The reduced
density-matrix functional

F Ŵ
β [ρ] = EH [ρ] + Uxc,β [ρ] (10)

is the sum of Hartree energy EH and the exchange-correlation
energy Uxc.

The Hartree energy EH [ρ] is obtained from the electron
density

n(�r) =
∑

σ

∑
α,β

χα(�r,σ )ρα,βχ∗
β (�r,σ ) (11)
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as

EH [ρ] = 1

2

∫
d3r

∫
d3r ′ e2n(�r)n(�r ′)

4πε0|�r − �r ′|
= 1

2

∑
α,β,γ,δ

Uα,β,δ,γ ρδ,αργ,β . (12)

The exchange-correlation energy Uxc contains the complexity
of the many particle problem. It is the electrostatic interaction
of each electron with its exchange-correlation hole and the
entropy term −T S. It should be noted that the exchange-
correlation energy Exc of DFT also contains a contribution
from the kinetic energy, which is absent in the quantity Uxc

used in rDMFT.
We restrict the present study to zero temperature and thus

ignore the entropy term. To keep the notation simple, we
suppress the index for the inverse temperature in the remainder
of the text. Having laid down the basic concepts and our
notation, we proceed with the concept of the hole function
as a tool for the construction of approximate density-matrix
functionals.

D. Hole function and the construction
of density-matrix functionals

1. Hole function

In this section we discuss several exact properties of the
hole function, which have been central to the development of
density functionals, and in the following section we outline
its role for the construction of approximate density-matrix
functionals.

The hole function h(�r,�r ′) allows us to express the two-
particle density n(2)(�r,�r ′) in the form

n(2)(�r,�r ′) = n(�r)n(�r ′) + n(�r)h(�r,�r ′). (13)

Note that the interaction-strength averaged hole function is
used in DFT, while in rDMFT, the hole function at full
interaction strength is of interest. The hole function integrates
to minus one, ∫

d3r ′ h(�r,�r ′) = −1 , (14)

and it is always negative [37].
These conditions constrain the shape of the hole function

strongly, so that the exchange-correlation energy can be
predicted reasonably well already with simple assumptions
about the hole function. An insightful description of the
hole function, which guided the development of a number
of density-matrix functionals, has been given by Baerends and
Buijse [38,39].

In the Hartree-Fock approximation, the hole function has
the form

h(�r,�r ′) = −1

n(�r)

∑
m,n

fmfn

∑
σ,σ ′

φ∗
m(�x)φn(�x)φ∗

n( �x ′)φm( �x ′). (15)

As a consequence of the orthonormality of the natural orbitals,
the sum rule Eq. (14) is obtained as∫

d3r ′ h(�r,�r ′) = −1

n(�r)

∑
nσ

f 2
n φ∗

n(�x)φn(�x) = −1. (16)

TABLE I. Dependence of the parameters cm,n on the occupations
fn as defined in Eq. (18) for density-matrix functionals used in this
paper.

Hartree-Fock approximation cHF
m,n = fmfn

Müller functional [22] cM
m,n = f

1
2

m f
1
2

n

power functional [25] cP
m,n(α) = f α

mf α
n

The sum rule is fulfilled exactly, when f 2
n = fn that is for

integer occupations. For fractional occupations, however, the
Hartree-Fock expression violates the sum rule.

The exchange-correlation term in the Hartree-Fock approx-
imation is

UHF
xc [ρ] = −1

2

∑
m,n

fmfn

∑
αβγ δ

Uαβ,δγ

×〈χγ |φm〉〈φm|χα〉〈χδ|φn〉〈φn|χβ〉. (17)

2. Construction of density-matrix functionals

Most empirical density-matrix functionals maintain this
general form of the Hartree-Fock exchange term,

Uxc[ρ] = −1

2

∑
m,n

cm,n

∑
αβγ δ

Uαβ,δγ

×〈χγ |φm〉〈φm|χα〉〈χδ|φn〉〈φn|χβ〉, (18)

but replace the factor fnfm in Eq. (17) by coefficients cm,n

with a different dependence on the occupations.
Taking the hole function in the Hartree-Fock approximation

Eq. (15) as a starting point, Müller [22] has shown that one can
enforce the sum rule Eq. (14) also for fractional occupations
with an ansatz

h(�r,�r ′) = 1

n(�r)

∑
m,n

cM
n,m

∑
σ,σ ′

φ∗
m(�x)φn(�x)φ∗

n( �x ′)φm( �x ′) (19)

with cM
m,n = 1

2 (f
1
2 +p

m f
1
2 −p

n + f
1
2 −p

m f
1
2 +p

n ).
Müller identified p = 0 as the choice that minimizes the

violation of the positive definiteness of the hole function. This
is the value used in nearly all applications.

Later, Sharma et al. [25] invented the so-called power
functional by introducing an additional parameter α in the
dependence of the coefficients cm,n on the occupations. They
chose the form cP

m,n(α) = f α
mf α

n that smoothly interpolates
between the Müller functional with α = 1/2 and the Hartree-
Fock approximation with α = 1. The main reason for this
construction is according to Sharma et al. [25] the well known
overcorrelating behavior of the Müller functional that will be
mediated by a parameter α > 1/2. The coefficients cm,n for
the approximate density-matrix functionals considered in this
paper are summarized in Table I.

III. HUBBARD DIMER

The two-site Hubbard model, the Hubbard dimer, is the
simplest model for the covalent bond and bond breaking. The
Hubbard dimer has a one-particle basis with four spin orbitals
|χ1,↑〉,|χ1,↓〉,|χ2,↑〉,|χ2,↓〉, one for each site and spin. The only
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FIG. 1. Ground-state energy E of the half-filled Hubbard dimer
as a function of interaction strength U/t for different density-matrix
functionals. Circles: Müller functional. Squares: power functional
with α = 0.53. Triangles: Hartree-Fock approximation. Solid line:
exact ground-state energy. The Müller functional produces the correct
ground-state energy at half filling. Nonmagnetic states are indicated
by open symbols and antiferromagnetic states by filled symbols.

nonzero matrix elements of the one-particle Hamiltonian

hα,β = −t(1 − δRα,Rβ
)δσα,σβ

(20)

are those with orbitals having the same spin σα and σβ but
different centers Rα and Rβ . All nonzero elements have the
value −t , where t is positive. The orbital energies are chosen
equal to zero.

Also the interaction tensor has a simple form, namely

Uαβ,γ δ =
{
U if α = γ , β = δ and Rα = Rβ

0 otherwise
. (21)

Thus, the Hamiltonian for the Hubbard dimer is

Ĥ = −
∑

σ

t(ĉ†1,σ ĉ2,σ + ĉ
†
2,σ ĉ1,σ ) + Ŵ (22)

with the interaction

Ŵ = 1

2

2∑
i=1

∑
σ,σ ′

Uĉ
†
i,σ ĉ

†
i,σ ′ ĉi,σ ′ ĉi,σ . (23)

A. Total energy and density matrix

In Fig. 1, the total energy of the half-filled Hubbard dimer
is shown as a function of interaction strength, along with the
results obtained from approximate density-matrix functionals.
Some of these data have been presented earlier [30]. Here,
we emphasize the ground states obtained without biasing the
magnetic configuration. We follow the convention commonly
adopted in the solid state community of showing the graph
for varying interaction strength U and fixed hopping t , so
that the hopping sets the energy scale. Considering the bond
dissociation problem, the natural choice would be to keep
the interaction strength constant, while reducing the hopping
parameter.

For the noninteracting case, i.e., at U = 0, the wave
function is a Slater determinant of bonding states with opposite

spin

|�(U = 0)〉 = 1
2 (ĉ†1,↑ + ĉ

†
2,↑)(ĉ†1,↓ + ĉ

†
2,↓)|O〉 . (24)

With |O〉 we denote the vacuum state.
This wave function can be rewritten as a superposition of

two eigenstates of the interaction operator

|�(U = 0)〉 = 1
2 (ĉ†1,↑ĉ

†
1,↓ + ĉ

†
2,↑ĉ

†
2,↓)|O〉

+ 1
2 (ĉ†1,↑ĉ

†
2,↓ − ĉ

†
1,↓ĉ

†
2,↑)|O〉. (25)

The first wave function contains contributions with two
electrons on the same site, i.e., ionic states. Its interaction
eigenvalue is U . The second wave function describes two
electrons with opposite spin on different sites. Its interaction
eigenvalue is zero.

The first term describes the double occupancy, that is the
probability that two electrons are on the same site, which
is penalized by the electron-electron interaction. The second
term is attributed to left-right correlation, as it describes the
probability that the two electrons are on different sites.

As the interaction strength is increased, the contribution
of the first wave function, being responsible for double
occupancy, is suppressed. The wave function obtains the form

|�(ϑ)〉 = 1√
2

(ĉ†1,↑ĉ
†
1,↓ + ĉ

†
2,↑ĉ

†
2,↓)|O〉 cos

(
ϑ + π

4

)

+ 1√
2

(ĉ†1,↑ĉ
†
2,↓ − ĉ

†
1,↓ĉ

†
2,↑)|O〉 sin

(
ϑ + π

4

)
. (26)

With a basis set in the order (|χ1,↑〉,|χ1,↓〉,|χ2,↑〉,|χ2,↓〉), the
one-particle reduced density matrix has the form

ρα,β (ϑ) = 1

2

⎛
⎜⎝

1 0 cos(2ϑ) 0
0 1 0 cos(2ϑ)

cos(2ϑ) 0 1 0
0 cos(2ϑ) 0 1

⎞
⎟⎠.

(27)

The interaction energy is proportional to the double occupancy

〈�(ϑ)|Ŵ |�(ϑ)〉 = U cos2
(
ϑ + π

4

)
(28)

and the noninteracting energy is

〈�(ϑ)|ĥ|�(ϑ)〉 = −2t cos (2ϑ). (29)

The value of ϑ results from an equilibrium between the forces
from the interaction energy Eq. (28) and those from the one-
particle energy Eq. (29), which determines ϑ(U ) as

ϑ(U ) = arctan

(√
1 +

(
U

4t

)2

+ U

4t

)
− π

4
. (30)

The value ϑ(U ) varies from zero to π/4 with increasing
interaction strength.

The resulting optimum energy has the form

E = −2t

[√
1 +

(
U

4t

)2

− U

4t

]
. (31)

As the interaction increases, the wave function changes con-
tinuously from a Slater determinant of bonding states Eq. (25)
at U = 0 to a singlet state with antiferromagnetic correlations.
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/
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FIG. 2. Occupations fb,σ and fa,σ from Eq. (48) of the half-
filled dimer obtained with the Müller functional as a function of
interaction strength U/t . The striped regions indicate the range of
occupations in the manifold of degenerate ground states. The thick
solid lines indicate the mean values for the pair of occupations in
the corresponding striped region. It also represents the degenerate
occupations for the nonmagnetic solution of the Müller functional.
The occupations of the nonmagnetic solution of the Müller functional
coincide with those of the exact ground state of the Hubbard dimer.

During this process, the bond strength is weakened and the
covalent bond vanishes completely in the limit of infinite
interaction. This loss of covalent bonding can also be described
as localization of electrons on opposite sites, which raises the
kinetic energy as a consequence of Heisenberg’s uncertainty
principle.

What has been described here is what is called static
correlation [5]: The states for finite interaction can no more
be described by a single Slater determinant, but four Slater
determinants are required.

B. Natural orbitals and occupations

Interestingly, the natural orbitals do not depend on the
interaction strength U . They are the bonding and antibonding
states

|b,σ 〉 := 1√
2

(|χ1,σ 〉 + |χ2,σ 〉)
(32)

|a,σ 〉 := 1√
2

(|χ1,σ 〉 − |χ2,σ 〉).

Both orbitals are spread over both atoms, and the natural
orbitals are identical to those of the noninteracting system.

The loss of bonding is, however, expressed by the fact that
the occupations become fractional. The occupations are shown
in Fig. 2. Their exact values fb,σ for the bonding states and
fa,σ for the antibonding states are

fb,σ = 1
2 + 1

2 cos(2ϑ)
(33)

fa,σ = 1
2 − 1

2 cos(2ϑ).

In the noninteracting case, the occupations are integer, with
filled bonding states and unoccupied antibonding states. In the
limit of large interaction strength the occupations approach 1/2
for all four natural orbitals. In this limiting case with equally
occupied bonding and antibonding states, the net bond strength

-1

-0.8

-0.6

-0.4

-0.2

0

0 10 20 30 40 50

Ĉ

U/t

FIG. 3. Site correlation 〈Ĉ〉 as defined in Eq. (34) of the half-filled
Hubbard dimer as a function of U/t . With increasing interaction
strength U/t the site correlation shows the transition from delocalized
electrons 〈Ĉ〉 = 0 to the left-right correlated state with 〈Ĉ〉 = −1.

vanishes completely. In the context of natural orbitals, we
describe the effect as quantum fluctuations that create electron-
hole pairs. These electron-hole pairs destroy the covalent bond
with increasing interaction.

C. Correlations

In view of the following discussion, it is instructive to
investigate the correlations of the electrons. The probability for
an electron to be on one site and the other on the other site, we
name it “site correlation,” is given by the expectation value of

Ĉ = (ĉ†2,↑ĉ2,↑ − ĉ
†
1,↑ĉ1,↑)(ĉ†2,↓ĉ2,↓ − ĉ

†
1,↓ĉ1,↓). (34)

For a state where both electrons bunch on one site, the
expectation value of this operator is one, while if they localize
on opposite sites, the expectation value is minus one. If it is
zero, then the electrons are delocalized, i.e., there is no corre-
lation between the positions of both electrons. The correlation
operator Ĉ is a two-particle operator and is not accessible
from the one-particle density matrix. The exact solution for the
correlation expectation value for the ground state is given by

〈Ĉ〉 = − sin(2ϑ(U )), (35)

where ϑ(U ) is given by Eq. (30). We can see in Fig. 3
that the site correlation vanishes without interaction, while
the electrons antibunch for strong correlation so that 〈Ĉ〉
approaches minus one. A site correlation of minus one
indicates that each electron is fully localized either at one or
at the other site, while the other is always at the other site.
This is the basic notion of left-right correlation.

Of interest will also be the magnetic nature of the wave
functions. The operator for the spin on site i is

�̂Si = �

2

⎛
⎜⎜⎝

ĉ
†
i,↑ĉi,↓ + ĉ

†
i,↓ĉi,↑

−iĉ
†
i,↑ĉi,↓ + iĉ

†
i,↓ĉi,↑

ĉ
†
i,↑ĉi,↑ − ĉ

†
i,↓ĉi,↓

⎞
⎟⎟⎠. (36)

For the wave function in Eq. (26), the total spin expecta-

tion value 〈( �̂S1 + �̂S2)2〉 vanishes, and consequently the spin
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expectation value 〈 �̂Si〉 on each site vanishes as well. Never-
theless, the spins on different sites are antiferromagnetically
correlated, that is

〈�(ϑ)| �̂S1 · �̂S2|�(ϑ)〉 = − 3
8 �

2[1 + sin(2ϑ)] � 0. (37)

An antiferromagnetic correlation is already present in the
noninteracting state, which expresses the nonvanishing con-
tribution of the left-right correlated states to the Slater
determinant built from bonding orbitals. As the interaction
increases the left-right correlation doubles, which reflects in
the increase of the antiferromagnetic correlation expressed in
Eq. (37).

IV. METHODS

The natural orbitals and occupations have been optimized
in the Car-Parrinello spirit [40] using a fictitious Lagrangian
of the form

L = 1

2

∑
n

mf ẋ2
n +

∑
n

f (xn)mψ

∑
α

|ȧα,n|2

−
∑

n

f (xn)
∑
α,β

aα,nhβ,αa∗
β,n − FŴ

[∑
n

aα,nf (xn)a∗
β,n

]

+
∑
n,m

�m,n

(∑
α

a∗
α,naα,m − δn,m

)

+μ

(∑
n

f (xn) − N

)
.

(38)

The natural orbitals are given by the complex-valued coeffi-
cients aα,n = 〈χα|φn〉 as

|φn〉 =
∑

α

|χα〉aα,n (39)

and the occupations fn = f (xn) are expressed by the real-
valued dynamical variables xn with f (x) = [1 − cos(x)]/2.
The orthonormality of the natural orbitals is enforced with the
Lagrange multipliers �m,n, which form a hermitian matrix,
and the particle number is constrained with the chemical
potential μ.

In order to avoid any bias in our results, the wave functions
and occupations are initialized as random numbers between
zero and one. Then the constraints, i.e., orthonormality of the
natural orbitals and total particle number, are imposed. For
the actual minimization, the Euler-Lagrange equations for the
occupation variables xn and the coefficients aα,n are propagated
using the Verlet algorithm under the additional action of a
friction term. The constraints are enforced with the help of
Lagrange multipliers [41]. The friction term leads to energy
dissipation and monotonic decrease of the total energy until the
ground state or a metastable state is reached. The phase space
has been explored by repeating the calculation, in order to
identify the global minimum and potential degenerate ground
states.

An analytical form of the natural orbitals has been extracted
by inspection of the results obtained numerically. The resulting

ansatz for the natural orbitals has been verified by optimizing
the total energy in this subspace and comparing the energies.
While the numerical formulation is invariant under global spin
rotations, spatial reflection, or application of a phase factor,
the analytical results are given for a particular choice.

V. PERFORMANCE OF DENSITY-MATRIX FUNCTIONALS

A. Hartree-Fock approximation

After having covered the main properties of the exact
ground state of the half-filled Hubbard dimer in Sec. III,
we turn now to the results obtained from approximate
density-matrix functionals. We begin with the Hartree-Fock
approximation given in Eq. (17), which has been the starting
point for the development of other density-matrix functionals
investigated in this study as discussed in Sec. II D 2.

1. Nonmagnetic solution

If one constrains the density matrix to remain nonmagnetic,
the natural orbitals do not depend on the interaction strength.
The corresponding total energy has the form

EHF (U ) = −2t + U

2
. (40)

The energy Eq. (40) for the Hubbard dimer with two
infinitely separated atoms, that is in the limit of t → 0, results
in a nonzero energy U/2, while the correct energy vanishes,
because each isolated atom has a single electron that does not
interact with itself. This reflects the well known difficulty of
restricted, i.e., non-spin-polarized, Hartree-Fock to describe
the dissociation of chemical bonds.

While the errors caused by non-spin-polarized Hartree-
Fock calculations are severe, they are not our main concern.
Today’s electronic structure calculations should consider a
spin polarization whenever a magnetization provides a lower
energy. Allowing for spin polarization, i.e., as in unrestricted
Hartree-Fock or spin-density functional theory, improves the
description dramatically. Nevertheless, the transition from the
weakly correlated to the strongly correlated regime still differs
in many ways from the correct behavior. These differences are
of interest in the following discussion.

2. Antiferromagnetic solution

If one allows for general variations of the density matrix,
there is a crossover at U = 2t from a nonmagnetic solution
at small interactions to an antiferromagnetic solution at large
interactions.

One set of natural orbitals that describes the transition to
the antiferromagnetic solution beyond U = 2t has the form∣∣φHF

1 (γ )
〉 = +|b,↑〉 cos(γ ) + |a,↑〉 sin(γ )∣∣φHF

2 (γ )
〉 = +|b,↓〉 cos(γ ) − |a,↓〉 sin(γ )∣∣φHF

3 (γ )
〉 = −|b,↑〉 sin(γ ) + |a,↑〉 cos(γ )∣∣φHF

4 (γ )
〉 = +|b,↓〉 sin(γ ) + |a,↓〉 cos(γ ) . (41)

The first two natural orbitals are occupied and the remaining
two are unoccupied.
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The corresponding many-particle wave function,

|�HF (γ )〉 =
[
ĉ
†
1,↑ cos

(
γ − π

4

)
+ ĉ

†
2,↑ cos

(
γ + π

4

)][
ĉ
†
1,↓ cos

(
γ + π

4

)
− ĉ

†
2,↓ cos

(
γ − π

4

)]
|O〉, (42)

is a single Slater determinant in the basis of the natural orbitals. For γ = 0, we recover the ground state of the noninteracting
limit given in Eq. (24).

The many-particle wave function Eq. (42) has the one-particle reduced density matrix in the basis (|χ1,↑〉,|χ1,↓〉,|χ2,↑〉,|χ2,↓〉)

ρHF (γ ) = 1

2

⎛
⎜⎜⎜⎝

1 + sin(2γ ) 0 cos(2γ ) 0

0 1 − sin(2γ ) 0 cos(2γ )

cos(2γ ) 0 1 − sin(2γ ) 0

0 cos(2γ ) 0 1 + sin(2γ )

⎞
⎟⎟⎟⎠. (43)

The interaction energy is

〈�HF (γ )|Ŵ |�HF (γ )〉 = 1
2U cos2(2γ ) (44)

and the noninteracting energy is given by

〈�HF (γ )|ĥ|�HF (γ )〉 = −2t cos(2γ ) . (45)

Increasing the parameter γ in the wave function from 0,
i.e., the noninteracting limit, allows one to trade part of the
covalent bond, i.e., the kinetic energy, for a reduction of the
interaction energy.

The total energy is minimized by

γ (U ) =
{

0 for U � 2t
1
2 arccos

(
2t
U

)
for U > 2t .

(46)

For U � 2t , the system remains nonmagnetic and the natural
orbitals are given by bonding and antibonding orbitals as in
the case of nonmagnetic dimer. But for U > 2t , the system
becomes an antiferromagnet, whereas the exact many-particle
wave function is a singlet with antiferromagnetic correlations.
The antiferromagnetic state is a superposition of a singlet and

a triplet wave function and thus it is not an eigenstate of �̂S2.
We can paraphrase it as a violation of rotational symmetry in
the spin degrees of freedom, i.e., of SU(2) spin symmetry.

B. Müller functional

Müller’s approximation to the density-matrix functional
introduced in Sec. II D 2 leads to the exact ground-state
energy for the half-filled Hubbard dimer for all interaction
strengths [30,42]. In contrast to the Hartree-Fock approxima-
tion, there is no unphysical transition to an antiferromagnetic
state.

1. Magnetic solutions

Even though the Müller functional produces exact ground-
state energies for the half-filled Hubbard dimer, we also
detected a major flaw, namely that there is a one-dimensional
manifold of magnetic states which are degenerate to the correct
nonmagnetic solution. The infinite magnetic susceptibility
obtained with the Müller functional is in contrast to the exact
behavior: At zero temperature and finite interaction strength,
the true magnetic susceptibility vanishes because of the finite
singlet-triplet splitting [43,44].

Our unbiased optimizations using the Müller functional
result in natural orbitals equivalent to the exact ones given in
Eq. (32), namely the bonding and antibonding orbitals.

With the natural orbitals of Eq. (32), the total energy for
the half-filled dimer obtained from the Müller functional can
be expressed solely by the occupations as

EM = −2t + 1

2
U + 2t

(∑
σ

faσ

)
− 1

2
U
∑

σ

√
faσfbσ .

(47)

The first two terms, which are independent of the occupations,
are identical to the total energy Eq. (40) of the spin-restricted
Hartree-Fock approximation. If only the bonding states are
occupied, the remaining terms of Eq. (47) vanish and the
Müller functional gives the same result as the Hartree-Fock
approximation.

The occupations are obtained as the minimum of Eq. (47)
for occupations between zero and one that add up to the total
particle number of N = 2. For a given interaction strength, we
find that the minimum condition does not define a single point,
but a line of degenerate states parameterized by the parameter
s

f M
a,↑(s) = 1

1 + R2
+ s,

f M
a,↓(s) = 1

1 + R2
− s,

(48)

f M
b,↑(s) = R2

(
1

1 + R2
+ s

)
,

f M
b,↓(s) = R2

(
1

1 + R2
− s

)
,

where R = 4t/U +
√

1 + (4t/U )2.
The requirement, that the occupations remain between zero

and one, limits the parameter s to the interval

s ∈
[
− 1

R2(1 + R2)
,

1

R2(1 + R2)

]
. (49)

The range of the occupations, which minimize the total energy
Eq. (47), is shown in Fig. 2 as a function of interaction strength
U/t . In the limit of infinite interaction strengths, we have R =
1, respectively, s ∈ [−1/2,1/2] and the possible occupations
f M

a/b,σ (s) = 1/2 + σs cover the whole range from zero to one.
All solutions, except the physical one with equally occupied

bonding states and equally occupied antibonding states,
have a magnetic moment. Hence, the magnetic susceptibility
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FIG. 4. Müller density-matrix functional (dashed line) and the
exact functional (solid line) as a function of the line parameter s for
U = 4t . The density matrix ρ(s) is given by Eq. (32) and Eq. (48).
The values of the exact functional have been obtained by a constrained
search over an ensemble of many-particle wave functions. The point
s = 0, where the Müller functional and the exact functional coincide,
corresponds to the symmetric solution (mz = 0).

predicted by the Müller functional is infinite for all finite
interaction strengths.

The magnetization of each site in the ground state of the
Müller functional obtained with the occupations given by
Eq. (48) has the form

mz(s) = 1
2

[
f M

b,↑(s) − f M
b,↓(s) + f M

a,↑(s) − f M
a,↓(s)

]
μB

= (1 + R2)s μB (50)

with the Bohr magneton μB . It can assume any value with
|mz| < 1/R2 μB .

In Fig. 4, the density-matrix functional of Müller is
compared to the exact density-matrix functional in the range
of degenerate ground states of the Müller functional. The
exact density-matrix functional is obtained from a constrained
search over an ensemble of fermionic many-particle wave
functions [19] for density matrices parametrized by Eq. (32)
and Eq. (48). The enormous difference in the functionals
illustrates the severe problems of the Müller functional to
describe the magnetic structure properly and indicates a
systematic flaw in the functional.

2. Offsite interaction

The finding of an infinite magnetic susceptibility raises
the question whether this finding transfers to more realistic
systems. One of the major restrictions of the Hubbard model
is the limitation to pure on-site interactions. Therefore, we
extended the Hubbard model to include also an electron-
electron interaction V between the sites

Ŵ = 1

2

∑
i

∑
σ,σ ′

Uĉ
†
i,σ ĉ

†
i,σ ′ ĉi,σ ′ ĉi,σ

+ 1

2

∑
i �=j

∑
σ

V ĉ
†
i,σ ĉ

†
j,σ ĉi,σ ĉj,σ . (51)

Using the density matrices from the degenerate manifold
of ground states without offsite interaction, i.e., with bonding

0

1

2

3

4

5

6

7

8

-0.02 -0.01 0 0.01 0.02

10
3
·Δ

E
/V

line parameter s

FIG. 5. Energy �E = E[V,s] − E[V,s = 0] of Eq. (52) of the
Hubbard dimer obtained with the Müller functional including an
offsite interaction in first-order perturbation theory with U = 4t along
the manifold Eq. (48) of ground states. The point s = 0 indicates the
nonmagnetic solution.

and antibonding states as natural orbitals Eq. (32) and the
occupations from Eq. (48), the effect of the offsite interaction
has been explored up to first order in the offsite interaction V .
This leads to

EM [V,s] = EM [0,s] + V (R2 − 1)2

2

×
[(

2

1 + R2

)2

+ s2

]
+ O(V 2). (52)

EM [0,s] is the s-independent total energy obtained with the
Müller functional for the Hubbard dimer in the absence of an
offsite interaction. It is given by Eqs. (47) and (48).

As shown in Fig. 5, the offsite term lifts the degeneracy of
the ground states of the Müller functional. The nonmagnetic
solution with s = 0 is now favored. This indicates that this
artificial degeneracy may not be immediately apparent in real
systems.

Nevertheless, as evident from the comparison with the exact
functional shown in Fig. (4), the changes produced by the
offsite term are far too small: In order to produce an energy
difference between the maximally polarized state [see Eq. (49)]
and the unpolarized state comparable to the exact result shown
in Fig. 4, an unrealistically large offsite interaction parameter
of order V = 10t would be required.

C. Power functional

After having investigated the Hartree-Fock approximation
and the Müller functional, we consider now the power
functional invented by Sharma et al. [25], which we described
in Sec. II D 2.

The occupations of the Hubbard dimer obtained from the
power functional are shown in Fig. 6 for a value α = 0.53.
Whereas the density-matrix functional in the Hartree-Fock
approximation produces integer and pairwise identical occu-
pations, the power functional produces fractional occupations
which are not identical in pairs.
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FIG. 6. Occupations fi as a function of U/t for the power
functional with α = 0.53. Solid dots have been obtained from an
unbiased optimization of the power functional. The solid lines are
obtained from a restricted optimization using the noncollinear natural
orbitals of the ansatz Eq. (56). The diagonal crosses are obtained from
a restricted optimization using the collinear natural orbitals Eq. (55)
of the Hartree-Fock approximation.

Near U = 6t , we observe a transition. This transition
separates the Müller-like behavior at small interactions from a
Hartree-Fock-like behavior at large interactions.

(1) At small interactions, the solutions are analogous to
those of the Müller functional. However, from the manifold
of degenerate ground states of the Müller functional, the
power functional favors the state with maximal ferromagnetic
moments.

(2) At larger interactions, the ground state undergoes a
transition into a noncollinear ground state. For very large
interaction the state approaches the Hartree-Fock-like anti-
ferromagnetic state.

1. Ferromagnetic solution in the weakly interacting regime:

The occupations in the weakly interacting regime can be
understood as follows: In case of the Müller density-matrix
functional, we have shown in Sec. V B that there exists a
manifold of degenerate ground-state density matrices on the
line given by Eq. (48). If we increase the parameter α of the
power functional infinitesimally as α = 1

2 + ε where ε > 0,
and restrict ourselves to interaction strengths U/t where the
natural orbitals are bonding and antibonding states, Eq. (32),
the total energy along the line given by Eq. (48) is

EP

α= 1
2 +ε

(s) = 2t

(
2

1 + R2
− 1

)
+ U

− U

4

∑
σ=±1

(1 + R1+2ε)2

(
1

1 + R2
+ σs

)1+2ε

,

(53)

where R = 4t/U +
√

1 + (4t/U )2. The energy in Eq. (53),
shown in Fig. 7, has a negative curvature along the line
parameter s and the minima lie at the boundaries given in
Eq. (49).

At these boundaries, the extreme nonsymmetric solutions of
the Müller functional, one of the states is always fully occupied
(see Fig. 2) because this maximum occupation limits the

4.5

4.52

4.54

4.56

4.58

4.6

4.62

−0.02 −0.01 0 0.01 0.02

10
3 Δ

E
/t

line parameter s

FIG. 7. Total energy difference �E = EP
α=1/2+ε[ρ(s)] −

EP
α=1/2[ρ(s)] given by Eq. (53) for U = 4t using the power

functional approximation with ε = 10−3 as a function of the line
parameter s that parametrizes the one-particle reduced density matrix
according to Eq. (48).

range of degenerate solutions. This explains the corresponding
observation in Fig. 6.

Unfortunately, any change of the parameter α away from
the value of the Müller functional, destroys the nonmagnetic
ground state in favor of an unphysical ferromagnetic state.

2. Large-interaction regime

The Hartree-Fock approximation exhibits a transition from
a nonmagnetic state to an antiferromagnetic state at U = 2t .
This transition is absent in the Müller functional, but it is
present in the power functional for all other values of α > 1

2 .
In order to explore how the power functional interpolates

between these two extreme cases, we calculated the product

〈 �̂S1〉 · 〈 �̂S2〉 of the spin expectation values at the two sites of

the dimer. A positive value of 〈 �̂S1〉 · 〈 �̂S2〉 corresponds to a
ferromagnetic, a negative value to an antiferromagnetic spin
alignment. The maximum absolute value is �

2/4.

0.5

0.75

1

0 2 4 6 8 10

-0.25

-0.10

0.0

0.10

ˆ S
1

ˆ S
2

/h̄
2

αU/t

ˆ S
1

ˆ S
2

/h̄
2

FIG. 8. Scalar product 〈 �̂S1〉 · 〈 �̂S2〉 of the spin expectation vectors
on the two sites of the Hubbard dimer as an indicator for the
transition to the antiferromagnetic state within the power functional
approximation with the parameter α for the Hubbard dimer at various
interaction strengths. A positive value indicates a ferromagnetic state,
a negative value an antiferromagnetic state. For the Müller functional,
i.e., α = 1/2, the dashed line represents the result for the symmetric
solutions and the solid line the corresponding degenerate result for
the degenerate maximally polarized state.
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FIG. 9. Angle between the spin expectation vectors 〈�S1〉 and 〈 �S2〉
on the two sites of the Hubbard dimer as function of the interaction
strength U . Dashed line: power functional with the parameter α =
0.53; solid line: Hartree-Fock approximation. This angle is a measure
of collinearity of natural orbitals.

For the Hubbard dimer at half filling, 〈 �̂S1〉 · 〈 �̂S2〉 is shown
in Fig. 8 as a function of interaction strength U/t and the
parameter α of the power functional. For the Müller functional
discussed in Sec. V B 1, i.e., for α = 1/2, we consider the
solution with the strongest polarization, because this is the
state that continuously matches to the solutions of the power

functional. In this ferromagnetic state, 〈 �̂S1〉 · 〈 �̂S2〉 is positive.
Unfortunately, the correct nonmagnetic state is not a ground
state of the power functional for α > 1

2 .
At a critical interaction strength Uc(α) the power functional

exhibits a transition from this ferromagnetic state into a

complex noncollinear state with a mostly antiferromagnetic
spin alignment. The angle between the magnetization on the
two sites is shown in Fig. 9.

Figure 8 clearly shows the location of the transition between
the ferromagnetic and the antiferromagnetic noncollinear
regime. The critical interaction strength Uc(α) of this transition
is infinite for the Müller functional. As the parameter α is
increased, the critical interaction strength falls off rapidly
and approaches the value Uc(α = 1) = 2t of the Hartree-Fock
approximation.

Thus, the power functional exhibits a Hartree-Fock-like
transition into an antiferromagnetic ground state except for the
limiting case, the Müller functional. By choosing the parameter
α sufficiently close to 1/2, the transition can be shifted into a
regime that is physically less important.

a. Collinear approximation using the Hartree-Fock natural
orbitals. In order to get a qualitative understanding of the
asymmetric occupations (Ref. Fig. 6) and the critical value of
interaction strength Uc of the transition to antiferromagnetic
solutions (Ref. Fig. 8), we use an ansatz that covers both
extreme cases, namely the Müller functional with α = 1

2 and
the Hartree-Fock approximation with α = 1. These are, one
the one hand, the asymmetric natural orbitals Eq. (41) that
can describe the antiferromagnetic state of the Hartree-Fock
approximation. On the other hand, the ansatz allows for
fractional occupations to capture the nature of the ground state
of the Müller functional.

With this ansatz, the one-particle reduced density matrix
ρ(f1, . . . ,f4,γ ) is a function of occupations fn and the angle
γ and the corresponding total energy EP,α obtained with the
power functional is

EP
α [ρ(f1, . . . ,f4,γ )] = Ekin[ρ(f1, . . . ,f4,γ )] + FP

α [ρ(f1, . . . ,f4,γ )] (54)

where

Ekin[ρ(f1, . . . ,f4,γ )] = −t cos(2γ )(f1 + f2 − f3 − f4)

FP
α [ρ(f1, . . . ,f4,γ )] = U

4

[
(f1 + f2 + f3 + f4)2 − (f α

1 + f α
3

)2 − (f α
2 + f α

4

)2]
+ U

4
sin2(2γ )

[
(f2 + f3 − f4 − f1)2 − (f α

1 − f α
3

)2 − (f α
2 − f α

4

)2]
. (55)

An approximation, which is a strict upper bound, for the total
energy of the power functional is obtained by minimizing
Eq. (55) for a half-filled system with occupations between
zero and one.

As a characteristic example, the resulting occupations
for α = 0.53 are shown in Fig. 6. The properties of this
ansatz with regard to the description of the transition
to the antiferromagnetic state will be investigated in the
following section after a more general discussion of the
transition.

The ansatz using the collinear natural orbitals Eq. (41) and
arbitrary occupations is, however, not able to describe the true
ground state for the power functional in the strongly interacting
regime. The energy difference of the ansatz to the unbiased
solution is shown in Fig. 10. The deviation is largest near

the transition. The transition point is slightly displaced by
the collinear ansatz, which explains the sharp rise. For larger
interactions, the error due to the collinear approximation falls
off rapidly. It should be noted that the overall error due to
the restricted ansatz is apparently small. For the parameter
α = 0.53 used in Eq. (10), the maximum error in the energy
is less than 1% of the binding energy.

b. Beyond the collinear approximation. The ansatz using
the Hartree-Fock natural orbitals already gives a fairly good
description of the ground state of the power functional. How
do the natural orbitals of the power functional differ from those
of the Hartree-Fock solution?

In the large interaction region, the power functional
produces noncollinear ground states. The natural orbitals of
the power functional can be represented as superpositions of
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FIG. 10. Energy difference �E of the power functional with α =
0.53 between the density matrices obtained by a constrained and an
unbiased optimization. �E obtained from constrained optimization
with the natural orbitals from the Hartree-Fock approximation in
Eq. (41) is the solid line with circle symbols, while the �E obtained
from constrained optimization with the noncollinear natural orbitals
of Eq. (56) is the dashed line with square symbols.

bonding and antibonding states,∣∣φP
1

〉 = |b,↑〉 cos(β1) − |a,↓〉 sin(β1)∣∣φP
2

〉 = |b,↓〉 cos(β2) − |a,↑〉 sin(β2)∣∣φP
3

〉 = |b,↑〉 sin(β1) + |a,↓〉 cos(β1)
(56)∣∣φP

4

〉 = |b,↓〉 sin(β2) + |a,↑〉 cos(β2) .

The two angles β1 and β2 are free variational parameters.
The natural orbitals of the noninteracting system, respectively,
those of the Müller functional, are obtained with β1 = β2 = 0.
The values of the two parameters are shown in Fig. 11 for one
example of the power functional.

In the Hartree-Fock approximation, respectively, in the
power functional with the collinear ansatz, the pair of bonding
and antibonding orbitals that contribute to a natural orbital,
given in Eq. (41), have the same spin direction. This results in
the localization of the electron on one or the other site of the
dimer. The emerging picture is appealing because it reflects
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FIG. 11. Parameters β1 and β2 defining the natural orbitals
Eq. (56) of the power functional for α = 0.53 as a function of the
interaction strength.

the left-right correlations of the electrons. The admixture of
antibonding states to the natural orbitals for the two spin
directions is the same. Thus, there is no symmetry-breaking
charge disproportionation.

The natural orbitals Eq. (56) of the power functional are
composed of bonding and antibonding orbitals with opposite
spin directions. This leads to natural orbitals with equal weight
on both sites, but the spins on both sides have a finite angle
between them. The state has an intrinsically noncollinear, even
though still a coplanar spin structure.

The admixture of antibonding states in the two pairs is
independent in the power functional, so that the natural orbitals
contain two independent free parameters, namely β1 and β2.
The net magnetic moment of each of the four natural orbitals
points along the same direction. For the choice in Eq. (56),
this is the z direction. The parameters β1 and β2 control the
relative angles of the local moments on the two sites of the
dimer for each of the natural orbitals. This angle is 4β1 for
the orbitals |φP

1 〉 and |φP
3 〉 and it is 4β2 for the orbitals |φP

2 〉
and |φP

4 〉. The natural orbitals are pairwise antiparallel: On
any given site |φP

1 〉 and |φP
3 〉 have local moments in opposite

directions. Similarly, this holds for |φP
2 〉 and |φP

4 〉.
It seems that the ground states of the power functional

do not connect continuously to those of the Hartree-Fock
approximation, because the natural orbitals belong to different
classes. This is, however, not so: The ansatz for the natural
orbital Eq. (56) connects smoothly to those of the Hartree-Fock
approximation in Eq. (41) when the two parameters β1 and
β2 become equal, and furthermore the occupations become
integer. This limit of the ansatz Eq. (56) for the power
functional describes, however, an antiferromagnet with the
local moments aligned along the x direction, while the ansatz
of Eq. (41) for the Hartree-Fock solution is polarized along
the z direction. Thus they are related by a global spin rotation,
which is a symmetry of the Hamiltonian.

VI. BEYOND HALF FILLING

Up to now, we considered only the half filled case of the
Hubbard dimer. Here we consider also deviations from the
particle number N = 2.

To avoid mathematical complications, we define E(N )
thermodynamically consistent as the zero-temperature limit of
the Helmholtz potential β → ∞, which in turn is constructed
from the grand potential by a Legendre-Fenchel transform

E(N ) = lim
β→∞

max
μ

[
− 1

β
ln(Tr e−β(Ĥ−μN̂ )) + μN

]
. (57)

The trace is performed over the fermionic Fock space.
It can be shown that the total energy E(N ) consists of

piecewise linear segments between integer particle numbers.
Thus the slope of the total energy E(N ), the chemical potential
μ = dE/dN , is usually [45] discontinuous at integer occupa-
tions. This derivative discontinuity gives the fundamental band
gap which is defined as the difference of electron affinity and
ionization potential. The band gap is relevant, not only as an
estimation related to optical spectra, but, more importantly, for
the response functions and chemical equilibria. Therefore, we
investigate whether the derivative discontinuities are properly
described by the approximate density-matrix functionals.
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FIG. 12. Ground-state energy E(N ) of the Hubbard dimer with
U = 5t in units of the hopping parameter t as a function of
particle number N . The critical power functional parameter for
the transition to an antiferromagnetic state lies at α ≈ 0.54 for
the given interaction strength. Dashed line: exact solution, crosses:
Hartree-Fock approximation, open circles: power functional with
α = 0.7, filled circles: power functional with α = 0.58, triangles:
power functional with α = 0.53, squares: Müller functional.

The total energy E(N ) of the exact solution and several
power functionals is shown in Fig. 12 and the corresponding
chemical potential in Fig. 13. For the Hubbard dimer, the
derivative discontinuity at N = 2 is due to a combination
of the one-particle gap and the interaction. The derivative
discontinuity at N = 1 is, however, entirely due to the
interaction. These features are clearly visible for the exact
calculation shown in Fig. 12.

In the Hartree-Fock approximation, the energy for frac-
tional occupations has a negative curvature for 1 < N < 3.
As a result, the derivative discontinuities are larger than in
the exact solution. It reflects the well known observation
that Hartree-Fock calculations overestimate band gaps. This
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FIG. 13. Chemical potential μ(N ) of the Hubbard dimer with
U = 5t in units of the hopping parameter t as a function of
particle number N . The behavior of the power functional with
1/2 < α < 1 close to half filling is shown in the inset. Dashed line:
exact solution, crosses: Hartree-Fock approximation, open circles:
power functional with α = 0.7, filled circles: power functional with
α = 0.58, triangles: power functional with α = 0.53, squares: Müller
functional.

observation can be rationalized with a lack of screening in
the Hartree-Fock approximation that reduces the effective
interaction strength.

The Müller functional, however, fails to give any derivative
discontinuity. It is surprising that a functional that performs as
well as the Müller functional for N = 2 is completely unable
to capture the correct physics beyond half filling. It adds
to the simplified picture that the Müller functional behaves
very metal-like: It does not have a band gap and its magnetic
susceptibility is infinite.

Except for the Hartree-Fock limit, also the power functional
lacks a derivative discontinuity. This is apparent from Fig. 13.
For small α, that is the Müller-like regime, the power
functional behaves analogous to the Müller functional itself.
In the parameter regime of the antiferromagnetic ground state,
however, the chemical potential makes a continuous transition
between two distinct linear functions of the particle number.
This behavior of the power functional for the Hubbard dimer
is analogous to that observed earlier for finite [46,47] and
extended systems [25,48].

In order to extract values for the band gap despite the ab-
sence of a derivative discontinuity, Sharma et al. [25] proposed
the extrapolation method, which exploits the behavior of E(N )
further away from the Fermi level. Sharma et al. exploit that
the chemical potential makes a transition between two linear
functions. The extrapolation of these linear functions to the
integer particle number yields an offset which is identified
with the band gap. This method yields finite band gaps in the
appropriate parameter range of the power functional, where
the Müller functional incorrectly predicts a vanishing band
gap [25]. Surprisingly, the band gaps obtained using the
extrapolation method from the power functional agree well
with experimental results even for nonmagnetic calculations.

Our results for the Hubbard dimer shown in Fig. 13 indicate
that the band gap obtained with the extrapolation method [25]
can be tuned between zero and the Hartree-Fock value by
adjusting α. Signatures of this behavior have been observed
in studies that investigated the dependence on the power
functional parameter α for realistic systems [25,47].

The absence of a true derivative discontinuity using the
power functional and the tunability of the band gap deter-
mined with the extrapolation method is not limited to the
antiferromagnetic ground state. As shown in Fig. 14, the
Hubbard dimer behaves qualitatively similar, when the spin
polarization is suppressed. In the nonmagnetic calculations,
the onset of a finite band gap obtained by the extrapolation
method is delayed to larger power parameters α. This finding
is analogous to that observed for NiO, for which nonmagnetic
calculations find a metallic ground state for α < 0.65 [49],
whereas noncollinear calculations find an insulating ground
state already for α = 0.56 [50].

VII. BEYOND THE DIMER

The question remains whether the findings for the Hubbard
dimer persist in larger systems with more degrees of freedom.
This is relevant for calculations of more complex systems
having large unit cells. For this purpose we performed
calculations for the power functional for Hubbard rings and
Hubbard chains.
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FIG. 14. Chemical potential μ(N ) of the Hubbard dimer with
U = 5t in units of the hopping parameter t as a function of particle
number N , when the density matrix is restricted to be nonmagnetic.
The behavior of the power functional with 1/2 < α < 1 close to
half filling is shown in the inset. Dashed line: exact solution, crosses:
Hartree-Fock approximation, open circles: power functional with α =
0.95, filled circles: power functional with α = 0.9, triangles: power
functional with α = 0.85, squares: Müller functional.

Figure 15 shows the occupation numbers for a half-filled
Hubbard ring at an intermediate interaction strength of U =
5t , which like the Hubbard dimer, has an antiferromagnetic
ground state in the Hartree-Fock approximation. For the Müller
functional we obtain fractional occupations as for the dimer.
While the fractional occupations deviate from the exact result,
their deviation from integer occupations are of the same order
of magnitude as in the exact solution. The power functional
exhibits abrupt transitions to an antiferromagnetic state around
αc ≈ 0.58 very analogous to the Hubbard dimer.

For a six-site Hubbard chain with seven electrons, i.e., one
electron more than half filling, the pattern of transitions is even
more complex: This behavior is shown in Figure 16. There are
now three transitions:
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FIG. 15. Occupations of the half-filled six-site Hubbard-ring with
U = 5t for the power functional as a function of the parameter α

(solid lines). The dashed horizontal lines indicate the occupations of
the exact many-electron description. Evident are the rather abrupt
transitions from fractional to integer occupations.
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FIG. 16. Occupations of the six-site Hubbard-chain with seven
electrons and U = 5t for ground states of the power functional as
function of the parameter α spanning the range from the Müller
functional (α = 1/2) to the Hartree-Fock approximation (α = 1).
Evident are the rather abrupt transitions from fractional to integer
occupations.

(1) A continuous transition between α ≈ 0.567 and α ≈
0.569 from the nonmagnetic Müller ground state to a state
with collinear spins in the pattern ↑↓↑↑↓↑, which is only
stable in a small window of parameters.

(2) Around α ≈ 0.576 there is a nonsmooth transition to a
state with an antiferromagnetic spin structure, i.e., ↑↓↑↓↑↓.

(3) Beyond α ≈ 0.75, the antiferromagnetic structure
breaks up and evolves into the HF-ground state having a spin
structure given by ↑↓↑↑↓↑.

These examples demonstrate that the power functional can
generate a variety of magnetic states even for simple systems.

VIII. CONCLUSION

The popular density-matrix functionals, the Müller func-
tional [22], the Hartree-Fock approximation and the power
functional [25], which continuously interpolates between the
other two, have been benchmarked for the Hubbard dimer.
The Hartree-Fock approximation is, for the Hubbard model
[14–16], analogous to hybrid density functionals [51], that
admix a portion of exact exchange to the exchange-correlation
energy. The local interaction of the Hubbard model acts
analogous to the range separation [52,53], which suppresses
the long-ranged Coulomb interaction in the Fock term. In
this respect, the Hartree-Fock approximation also captures the
main effects of the LDA+U method [7].

Particular emphasis has been given to left-right correlation,
the dominant correlation effect for bond dissociation, which
is not captured in local density functionals [5]. Left-right
correlation describes that electrons localize on opposite sites
of the dimer. This electron correlation, which increases with
the interaction strength, avoids the energetic cost of the
Coulomb repulsion due to double occupancy of a site. In the
Hartree-Fock approximation, this left-right correlation leads
to an antiferromagnetic state with a spin-up electron mostly
localized on one side and the spin-down electron on the
other. This so-called broken-symmetry state disagrees with
the exact solution, which is a singlet state, having no local mo-
ments, but nevertheless antiferromagnetic correlations similar
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to the broken symmetry state. More importantly, however,
the antiferromagnetic transition is an abrupt one and not a
continuous buildup of antiferromagnetic correlations as in the
exact solution. The result is a qualitatively incorrect shape of
the total energy during bond dissociation.

The Müller functional [22] establishes left-right correlation
in a fundamentally different manner: while the natural orbitals
are mostly—in the Hubbard dimer exactly—independent of
the interaction, the occupations become fractional, which
reflects the creation of electron-hole pairs that screen the
interaction. One of the main successes of the Müller functional
besides being able to produce fractional occupations correctly
is that it captures the continuous nature of the transition to the
left-right-correlated state.

Our calculations avoid any bias and allow for arbitrary
noncollinear spin-polarized states. This strategy shall bring
all potential problems to the surface that would be present
in large scale electronic structure calculations using these
density-matrix functionals.

Our first observation is that the ground state for the
Müller functional, which does not have local moments, is
degenerate with a one-dimensional manifold of ferromagnetic
states. Thus the dimer has infinite magnetic susceptibility
when described with the Müller functional, in contrast to the
vanishing zero-temperature susceptibility of the exact solution
of the Hubbard dimer. This large magnetic polarizability is
likely to cause severe problems in extended electronic structure
calculations.

When turning to the power functional [25], we find that
the system behaves analogous to the Müller functional for
small interactions, while it exhibits a transition to a Hartree-
Fock-like antiferromagnetic state for large interactions. The
critical interaction, where this transition occurs, drops rapidly
with increasing α from infinity in the Müller functional to
the Hartree-Fock value Ucrit = 2t . In the small-interaction
regime the system is weakly pinned in the ferromagnetic
state corresponding to the largest moment of the ground-state
manifold of the Müller functional.

Our calculations indicate a major deficiency in the descrip-
tion of magnetic properties for this class of density-matrix
functionals. The problems persist in modified form also for
more general Hamiltonians, which include offsite Coulomb
interactions, and for more extended systems.

Besides the bond-dissociation problem, we investigated
the derivative discontinuity [5,54] with changing the number
of electrons. A balanced description of the electron affinity
and ionization potential is essential for a qualitatively correct
description of charge transfer. We find that the metal-like
behavior of the Müller functional persists: The discontinuity
of the exchange-correlation energy even offsets the one of the
kinetic energy. The Müller functional describes the Hubbard
dimer with vanishing fundamental gap.

The power functional inherits many of the problems of
the Müller functional: There is no derivative discontinuity
in the entire parameter range of the power functional except
for the Hartree-Fock limit. In the low-interaction regime the

solutions are weakly ferromagnetic. Like the Hartree-Fock
approximation, the power functional exhibits an artificial
abrupt magnetic transition with increasing interaction towards
an antiferromagnetic configuration, albeit at a larger critical
interaction. These states are intrinsically noncollinear.

The absence of any derivative discontinuity also for insulat-
ing materials is expected to produce an artificial charge transfer
between the constituents of large-scale electronic structure
calculations. This cast severe doubt on the performance of
such density-matrix functionals for complex systems.

While the power functional lacks a derivative discontinuity,
its chemical potential undergoes a continuous transition
between two linear functions, which has been exploited to
extract a band gap from data obtained further away from the
integer particle number [25,46–48].

Our calculations indicate, however, that the band gap
obtained from this extrapolation can be tuned by the free
parameter α of the power functional between zero and the
Hartree-Fock result. The band gap opens in noncollinear
calculations only when in the antiferromagnetic regime, while
it vanishes in the Müller-type regime at low interactions. The
opening of a band gap obtained by the extrapolation method
and its tunability are features that persist in nonmagnetic
calculations, while the gap opens at a larger value of the
power parameter than in the magnetic calculation. These
problems or signatures of them can be observed in previous
calculations [25,31,47,49,50].

The tunability of the band gap is similar to other methods
such as LDA+U [7] and hybrid density functionals [51]. How-
ever, the latter methods exhibit a true derivative discontinuity
and their band gap does not shrink below the Kohn-Sham band
gap, which is analogous to the noninteracting band gap of the
Hubbard dimer.

Approximations for ionization potentials [55] and spectral
functions [31] have been introduced on top of rDMFT. The
latter method on the one hand yields spectra that agree well
with experimental results for transition metal oxides [31,49,50]
for particular choices of the power functional parameter. On the
other hand investigations on the Hubbard dimer [30] suggest
caution and claim that the underlying physics is not correctly
treated.

The problems presented here demonstrate potential funda-
mental flaws of the class of density-matrix functionals of this
study. We hope that this study provides a useful reference point
for the development of new density-matrix functionals. We
believe furthermore that our findings call for new approaches
for the construction of density-matrix functionals that make
closer contact to the many-particle description of the electronic
system [20].
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