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Manganites are famous mostly for the colossal magnetoresistive effect, which involves the phase separation
between ferromagnetic phase and charge-ordered CE-type antiferromagnetic phases. Furthermore, manganites
contain some typical magnetic ferroelectrics, e.g., E-type antiferromagnetic o-HoMnO3. Here we re-examined
these zigzag-winding antiferromagnetic phases (CE-type and E-type antiferromagnets) from the topological
perspective. Our theoretical analysis proved that the E-type phase is a weak topological insulator belonging
to the Z class. In momentum space, we classify the symmetries of this phase, and find the three symmetry
operators for the chiral, particle-hole, and time-reversal symmetry. The CE-type phase can be described by the
Duffin-Kemmer-Petiau algebra, implying that it is a different class of topological insulator and hence extends
the existing classification. The corresponding topological end states are demonstrated via numerical calculations,
which may implicate the experimental observed ferromagnetic edge states in manganite strips [Nat. Commun. 6,
6179 (2015)] and may play a crucial role in the colossal magnetoresistive effect.
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I. INTRODUCTION

In recent years, topological matters have become one of
the most attractive topics in condensed-matter physics [1–3].
Protected by the bulk’s topological invariants, robust edge (or
surface) states can persist against weak perturbations, which
may be utilized in power-saving topological electronic devices.
Among various topological matters, transition-metal oxides
with correlated electronic characteristics have drawn more and
more attention not only for their prior properties but for their
physical significance beyond the single-electron scenario [4,5].
For example, recent theoretical studies have predicted Chern
insulator or Z2 topological insulators in various perovskite
(111) bilayers [6–10], as well as Weyl semimetal in pyrochlore
iridates [11].

Manganites are typical correlated oxides owning many
emergent properties, such as the famous colossal magnetore-
sistance (CMR). In the past 20 years, enormous theoretical and
experimental studies were devoted to understand the physics of
manganites [12–16]. It has been widely accepted that the phase
competition between ferromagnetic metallic phase and charge
ordered phase should be responsible to CMR [16–18]. Phase
separation, in the scale from nanometers to submicrometers,
usually exist in various manganites [13–15]. The charge
ordered phase involved in phase competition and phase
separation are mostly the so-called CE-type antiferromagnetic
one or its variants [16]. The antiferromagnetic pattern of
CE phase is constructed by antiferromagnetically coupled
ferromagnetic zigzag chains [19], as shown in Fig. 1(b).
Other magnetic phases with similar zigzag chains, e.g.,
the E-type antiferromagnetic one and C1−xEx phase, also
exist or have been predicted [20,21]. The E-type phase, as
shown in Fig. 1(a), was experimentally confirmed in undoped
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narrow-band-width manganites, e.g., o-HoMnO3 [22], which
is a multiferroic phase [23,24].

In this paper, we will prove that both the E-type and
CE-type antiferromagnets are also topological insulators.
According to the famous tenfold way classification of topo-
logical insulators [25,26], the E-type ferromagnetic chain is
a topological insulator belonging to the Z class, while for the
CE-type ferromagnetic chain, we reveal that it is a different
kind of topological insulator beyond the present classification
of topological insulators, since its effective Hamiltonian can be
expressed using a three-dimensional matrix representation of
the Duffin-Kemmer-Petiau algebra which is used to describe
relativistic spin-0 and spin-1 particles. A numerical study can
simply demonstrate the end (edge) states of both the E-type
and CE-type phases. For ideal one-dimensional zigzag chains,
the end states are well localized for the E-type phase and
quasilocalized for the CE-type one.

Although Hotta et al. once proposed the winding number
as a real-space topological fingerprint of CE-type and E-type
phases to explain their stability [27,28], the topology discussed
here is somewhat different which is defined in the moment
space and associates with the end (edge) state.

II. MODEL

In the following, the standard two-orbital double-exchange
model will be studied, which have been repeatedly verified
to be a successful model to describe physics of mangan-
ites [13,14,28]. Given the oxygen-octahedral symmetry of
the crystalline field, the 3d orbitals of Mn split into two
groups: the low-lying t2g triplets and the high-lying eg doublets.
Considering the valence of Mn(3+x)+ and the high-spin factor
due to the strong Hund coupling, the spin-up channel of t2g

orbitals are fully occupied while the spin-up channel of the eg

orbitals are partially filled (average eg electron density: 1 − x).
The spin-down channels are fully empty for all 3d bands. Then
the minimal model Hamiltonian without electronic-lattice
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FIG. 1. The spin patterns of t2g background. (a) The E-type
antiferromagnetic phase, which can be stabilized in undoped limit
(one eg electron per site). (b) The CE-type antiferromagnetic phase,
which can be stabilized around half-doping region (half eg electron
per site).

coupling can be written as

H = −
∑

i,r,γ γ ′
�i,i+rt

r
γ γ ′c

†
i,γ ci+r,γ ′ + JAF

∑
〈i,j〉

Si · Sj , (1)

where tr
γ γ ′ is the nearest-neighbor hopping amplitude between

orbital γ on site i and the orbital γ ′ on site i + r. In partic-
ular, for two-dimensional lattices, txaa = t

y
aa = 3txbb = 3t

y

bb =
−√

3txab = −√
3txba = √

3t
y

ab = √
3t

y

ba = 3t0/4, where a and b

are orbitals x2 − y2 and 3z2 − r2, respectively. t0 is taken as the
energy unit all though this work. JAF is the antiferromagnetic
superexchange between the nearest-neighbor t2g spins (Si and
Sj ). �i,i+a is a Berry phase coefficient arising from the spin
angles in the infinite Hund coupling limit [14,29]:

�i,j = cos

(
θi

2

)
cos

(
θj

2

)
+ sin

(
θi

2

)
sin

(
θj

2

)

× exp[−i(φi − φj )], (2)

in which (θi , φi) are the t2g spin polar and azimuthal angles.
For both the ideal E-type and CE-type antiferromagnetic

phases, as sketched in Fig. 1, the t2g spin backgrounds are
constructed by zigzaglike quasi-one-dimensional chains, with
ferromagnetic coupling within each chain and antiferromag-
netic coupling between nearest-neighbor chains. Then one
has the maximum hopping (�ij = 1) along the zigzag chain
and the interchain hopping is forbidden (�ij = 0). In other
words, theoretically, both the E-type and CE-type phases can
be treated as isolated ferromagnetic zigzag chains, as done in
previous studies [21,27,30–32].

By comparing the analytic energies calculated using Eq. (1)
of several candidate phases, a ground-state phase diagram
(Fig. 7 of Ref. [33]) can be obtained straightforwardly, which
agrees with the experimental phase diagram very well despite
the simplification of model. Both the CE-type and E-type
phases emerge in the right areas of parameter space, e.g.,
undoped and narrow-bandwidth limit for the E-type one and
half-doped condition for the CE-type one. Thus, the current
work, based on this successful model, will also lead to a
practical implication for real materials, instead of the pure
theoretical meaning of a toy model.

III. RESULTS: SYMMETRIES AND TOPOLOGY

We see that txμ,ν = −t
y
μ,ν for μ �= ν. This difference in sign

is important. The phase change makes the E-type and CE-type
phases topological insulators. To make it clear, we make a
unitary transformation [28]:(

αi

βi

)
= 1√

2

(
1 i

1 −i

)(
ci,γ

ci,γ ′

)
. (3)

Then the kinetic energy [the first term in Eq. (1)] for an
isolated zigzag chain becomes

Hk = − t0

2

∑
i,r

(α†
i αi+r + β

†
i βi+r + eiφrα

†
i βi+r

+ e−iφrβ
†
i αi+r). (4)

The phase φr depends on the hopping direction: −φx = φy =
φ = π/3. In the following, the symmetries and the topology
will be discussed based on Eq. (4).

A. Symmetries of the E-type chain

For the E-type chain, the transformed unit cell consists
of two nearest-neighbor sites, labeled 1 and 2. In momentum
space, the effective Hamiltonian features a four-band (two
orbitals × two sites) bilattice structure. Before solving this
four-band Hamiltonian, let us analyze the symmetry first.

First, the interchange of two sublattices in the following
way will not change the Hamiltonian [Eq. (4)]:

⎛
⎜⎝

α1

β1

α2

β2

⎞
⎟⎠ →

⎛
⎜⎝

α2

β2

α1

β1

⎞
⎟⎠. (5)

This indicates that the system has a sublattice symmetry,
representing either a particle-hole exchange or a chirality.
Another solution is to make a complex conjugate plus an
interchange between orbital α and β. The operation will
not change the Hamiltonian, which indicates that the system
overall has a (generalized) time-reversal symmetry.

By choosing a set of proper bases [
±
1 = (α1 ± β1 ± α2 +

β2)/2, 
±
2 = (α1 ∓ β1 ± α2 − β2)/2], the Hamiltonian matrix

in the moment space can be written in a block diagonalized
form, as Hotta did [28]:

h(k) = − t0

2

(
h+(k) 0

0 h−(k)

)
, (6)

in which

h+(k) = cos k · I + 2 cos k · σz +
√

3 sin k · σx,
(7)

h−(k) = − cos k · I + 2 cos k · σz −
√

3 sin k · σx.

The momentum k is defined along the zigzag direction.
The chiral symmetry operator can be expressed as

S = σx ⊗ σx =
(

0 σx

σx 0

)
, (8)

which satisfies SS† = 1 and S2 = 1. It is straightforward to
verify that the Hamiltonian [Eq. (6)] has the chiral symmetry
Sh(k)S−1 = −h(k). This symmetry means that if there is
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an eigenstate ψ(k) with energy ε(k), there must be another
eigenstate Sψ(k) with energy −ε(k). Hence, the energy
spectrum is symmetrical with regard to the line of energy
zero.

Similarly, the particle-hole symmetry operator can be
defined as

P = σx ⊗ σy =
(

0 σy

σy 0

)
, (9)

which satisfies PP † = 1 and P T = −P . Then the particle-
hole symmetry of the Hamiltonian can be proved:
Ph(k)P −1 = −h(−k). Such a particle-hole symmetry means
that the spectrum is symmetrical to the zero energy � point
(k = 0).

If a system has both the particle-hole and chiral symmetries,
then it must have the (generalized) time-reversal symmetry.
Here the (generalized) time-reversal symmetry operator is
defined as T = I ⊗ σzK ,

T =
(

σz 0
0 σz

)
K, (10)

which satisfies T T † = 1 and T T = 1. K is complex conjugate.
The (generalized) time-reversal symmetry can be confirmed as
T h(k)T −1 = h(−k).

According to the famous tenfold way classification of
topological insulators [25,26], the E-type antiferromagnet
consisted by one-dimensional zigzag chains is a Z topological
insulator belonging to the BDI class.

In the σx − σz plane, direction vectors 
n± can be defined
according to Eq. (7): 
n± = (±√

3 sin k,2 cos k) for h±(k),
respectively. These direction vectors rotate in the momen-
tum space. For h+(k), the orientation of vector 
n+ rotates
clockwise through 2π ; for h−(k), 
n− rotates counterclockwise
through 2π .

B. Topology of C E-type chain

A similar procedure can be applied to treat the CE-type
chain. After some simple transformations based on Hotta’s
review [28], the Hamiltonian in momentum space can be
written as

h(k) = −t0

⎛
⎝02×2 0 0

0 M1 0
0 0 M2

⎞
⎠, (11)

where the momentum k is also defined along the zigzag
direction. The submatrices are

M1 =

⎛
⎜⎝

0
√

3 cos k 0√
3 cos k 0 sin k

0 sin k 0

⎞
⎟⎠,

M2 =

⎛
⎜⎝

0 −i
√

3 sin k 0

i
√

3 sin k 0 −i cos k

0 i cos k 0

⎞
⎟⎠. (12)

Thus the Hamiltonian decouples into two independent 3 × 3
blocks (M1 and M2) plus the 2 × 2 zero matrix (02×2).

A more compact expression of M1 and M2 can be
written as

M1 =
√

3 cos kβ1 + sin kβ2,
(13)

M2 =
√

3 sin kβ ′
2 − cos kβ ′

1,

with

β1 =

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠, β2 =

⎛
⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎠,

(14)

β ′
1 =

⎛
⎜⎝

0 0 0

0 0 i

0 −i 0

⎞
⎟⎠ β ′

2 =

⎛
⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎠.

By defining two more β’s:

β0 = β ′
0 =

⎛
⎜⎝

0 0 −1

0 0 0

1 0 0

⎞
⎟⎠, (15)

then it is clear that β0,β1,β2 and β ′
0,β

′
1,β

′
2 form three-

dimensional matrix representations of the Duffin-Kemmer-
Petiau algebra since

βμβνβσ + βσ βνβμ = βμηνσ + βσ ηνμ,
(16)

(βμ)3 = ημμβμ,

where ημν is the Minkowski metric such that Diag[ημν] =
(−1,1,1); there is no summation rule on repeated indices. This
algebra is a generalized Clifford algebra, which is associated
with the Duffin-Kemmer-Petiau theory describing relativistic
spin-0 and spin-1 particles.

As done in the above E-type case, the coefficients of Pauli
matrices can define a vector direction in the virtual space,
then the topology of Hamiltonian can be intuitively judged by
observing the windings of this vector direction with changing
momentum k. In particular, for the CE-type zigzag chain,
the employed algebra is extended from the Clifford algebra to
the Duffin-Kemmer-Petiau algebra. For h1(k) and h2(k),two
vector directions are defined as 
n1 = (

√
3 cos(k), sin(k)) in the

β1 − β2 plane and 
n2 = ( − cos(k),
√

3 sin(k)) in the β ′
1 − β ′

2
plane. By continuously changing momentum k through the
Brillouin zone, the vector 
n1 rotates counterclockwise through
2π , and the vector 
n2 rotates clockwise through 2π .

Besides, Eq. (13) proves that the topology of the CE-type
zigzag chain is actually decided by three effective orbitals.
We can map the CE-type zigzag chain to a topological
equivalent chain by making sure that they have the same form
in momentum space. For instance, in momentum space, the
following Hamiltonian has the same form as M1:

HM1 = −t0
∑

i

[
√

3(a†
i bi+1 + b

†
i ai+1) − i(b†i ci+1 + c

†
i bi+1)

+ H.c.], (17)

in which a,b,c are orbital indexes. The wave function of the
electron get a minus sign after hopping along such a loop:
bi−1 → ci → bi+1 → ai → bi−1, which make the system
topologically nontrivial. The Hamiltonian [Eq. (17)] supports
the physical argument of the topology of the CE-type chain.
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IV. TOPOLOGICAL END STATES

A significant feature of a topological insulator is the ap-
pearance of an edge state (or an end state for one-dimensional
cases). In Sec. III, it has been revealed that the zigzag chains
of E-type and CE-type antiferromagnets are both topological
insulators. Here the end state will be calculated to further
confirm the topology.

A. End states of E-type antiferromagnet

Figure 2(a) shows the band structures of the E-type zigzag
chain without boundary (i.e., with periodic boundary condi-
tions). To simulate the end state, chains containing even and
odd numbers (e.g., 100 and 101) of sites with open boundary
conditions are adopted. The numerical calculation finds no
physical difference regarding the end states between even and
odd numbers of sites. As shown in Fig. 2(b), the midgap states
at zero energy (circled in red) are double degenerated end
states, which do not appear in the calculation with periodic
boundary conditions. The edge fact of these two states can be
further visualized by calculating their distributions [Figs. 2(c)
and 2(d)], which are exactly localized at the two ends of the
chain. These end states are orbital related, with different orbital
weights. As topological protected end states, their properties
(including the energy and distribution) are independent of the
length of chains, as confirmed in our numerical calculation
(not shown here).

FIG. 2. Electronic structure for E-type antiferromagnetic chain.
(a) Energy bands without boundary. (b) Energy spectrum with open
boundary conditions. Here the chain length is 100. i: the eigenenergy
index. The zero energy point (in red rectangle) corresponds to the end
states. Red dot lines in (a) and (b) denote the Fermi levels for undoped
manganites. (c),(d) Orbital-resolved electron density distribution for
the two end states. Orbital a: dx2−y2 ; orbital b: d3z2−r2 ; j : the site
index.

For the ideal E-type antiferromagnet (AFM) without
boundary, the chemical potential locates between t0 and
−t0 (corresponding to undoped manganites), rendering an
insulator. Upon the open boundary, the chemical potential (at
zero temperature) is fixed to be 0, just at the energy level of
double-degenerate end states. Thus, the end state will be active
to affect the physical properties.

B. End states of C E-type antiferromagnet

The end states of CE-type antiferromagnet are more
interesting. There are two kinds of sites in the CE-type zigzag
chain: the corner one and the bridge one [32], as shown in
Fig. 3(a). The original band structure without boundary is
shown in Fig. 3(b). The energy region can be partitioned into
different sections: A: below −t0, B: at zero; C: above t0; D:
from 0 to −t0; E: from 0 to t0. For the bulk situation (i.e., with
periodic boundary conditions), states appear only in the A, B,
and C regions, while the D and E are empty (i.e., forbidden
bands).

Depending on the odevity of chain length, there are several
kinds of situations with open boundary conditions. Since a CE

unit consists of four sites, the length of open boundary chain,
which can be expressed as 4N + x where both N and x (<4)
are integers, can be commensurate to the period of the CE unit
(if x = 0), or not (if x > 0). In the following, we will analyze
these situations one by one.

First, for any odd x with two bridge ends, the end
states are clearly seen in the energy spectrum. As shown
in Fig. 3(c), there are two isolated energy levels (∼±0.8t0,
like shallow impurity levels) which do not show up in the
periodic boundary conditions [Fig. 3(b)]. These energy levels
are double degenerate, giving four states in total. These states
are indeed end states, confirmed by their spatial distribution
[Fig. 3(d)]. Different from the fully localized end states in the
E-type antiferromagnet, here the end states are quasilocalized.

Second, for any odd x with two corner ends, the energy
spectrum seems to be trivial, without visible “impurity levels”
as the end states. However, by analyzing the structure of
spectrum (see Table I for more details), it is interesting to
find there are overmuch zero energy states. More precisely,
there are four more zero energy states compared with the
above two-bridge-end case. Thus, it is possible that the end
states hide in the zero energy levels by accident or due
to intrinsic symmetry, even though these end states can be
distinguished from zero energy bulk levels by imposing an
additional hopping term between the two ends. With increasing
amplitude of this hopping term, four branches migrate out from
the zero energy position, while the rest of the 4N zero energy
levels are unaffected. The wave function distribution of these
end states are indeed quasilocalized.

Third, for any even x, there must be one bridge end plus one
corner end. As expected, there are two visible “impurity levels”
from the bridge end while there are two hidden zero energy
levels from the corner end. There is no qualitative physical
difference between the x = 0 (commensurate chain length)
and x = 2 (incommensurate chain length). The distribution of
the end states is just a simple superposition of the two bridge
case and the two corner case.
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FIG. 3. Electronic structure of the CE-type chain. (a) The corner
and bridge sites. (b) Energy bands without boundary. (c)–(h) Results
with open boundary conditions. The chain length is 100 + x. (c),(d)
x = 1 with two bridge ends. (c) The energy spectrum. The isolated
levels (in red rectangles) are double degenerate and correspond to the
end states. (d) The orbital-resolved electron density distribution for
one end state, while another end state shows symmetric distribution
at another end (not shown). Inset: a magnified view near the end.
(e)–(g) x = 1 with two corner ends. (e) Energy bands with open
boundary condition. (f) To distinguish the bulk energy states and
end states, an imaginary (orbital-dependent) tiny hopping term (here
t ′
aa = t ′

bb = 0.2t0, t ′
ab = t ′

ba = 0.1t0 for a better visual effect) is added
between two ends. The isolated levels (in red rectangle) correspond
to the end states. Inset: a magnified view. (g) The orbital-resolved
electron distribution for one of the end states with an imaginary tiny
hopping term (here t ′

aa = t ′
bb = 0.0002t0, t ′

ab = t ′
ba = 0.0001t0 to get

a more precise end state). Inset: a magnified view near the end. (h) The
energy spectrum for x = 0 (one bridge end plus one corner end). Each
isolated level (in red rectangles) is singlet. Red dot lines in (b), (c),
(e), (f), and (h) denote the Fermi levels for half-doped manganites.

TABLE I. Energy spectrum of CE-type zigzag chain with open
boundary conditions. The length of chain is 4N + x where N and x

are integers. The energy region is partitioned into five sections. A:
below −t0, B: at zero; C: above t0; D: from 0 to −t0; E: from 0 to t0.
There is symmetric correspondence between A and C, D and E.

x Bridge Corner A or C B D or E

0 1 1 2N − 1 4N 1

2 0 2N − 1 4N 2
1

0 2 2N 4N + 2 0

2 1 1 2N 4N + 2 1

2 0 2N 4N + 2 2
3

0 2 2N + 1 4N + 4 0

In summary, one corner end will induce two symmetrical
end states with zero energy, which are related to the nontrivial
zero energy band. One bridge end will induce two symmetrical
shallow impurity levels, which are related to the nontrivial bulk
energy band. Thus, totally, there are four end states in one CE

chain with open boundary conditions. All these end states are
quasilocalized around the end.

For the ideal CE-type zigzag chain (of 4N length), the
Fermi level is located between 0 and −t0 for the no-boundary
case (corresponding to the half-doped manganites), making
the CE phase an insulator too. While for the open boundary
conditions, the Fermi level is just between the energy level
of lowest energy end states and 0 for even x. For odd x, the
expected electron density is a half-integer, and the Fermi level
(at zero temperature) is just located at the energy level of the
lowest energy end states, despite the end type (corner site or
bridge site). In this sense, the lowest energy end states are
always the topmost valence levels and thus mostly active to
determine the physical properties.

C. Robustness of edge states

All the above studies are based on the Hamiltonians
in the ideal limit. However, for real manganites there are
other important interactions (e.g., electron-lattice couplings,
Hubbard-type Coulombian repulsion, next-nearest-neighbor
hoppings, etc.), which deserve careful analysis to check their
effects to end states.

In the following, we will simply check the robustness
of the edge state upon Jahn-Teller distortion (a kind of
electron-lattice coupling), which is very prominent in real
manganites. Due to the shortening of lattice axis along the
c axis [16], the energy levels of x2 − y2 and 3z2 − r2 orbitals
will be split, which can be described using the following
Hamiltonian [14,32]:

HJT = λ
∑

i

Q3,iτ
z
i . (18)

For simplicity, here only the Jahn-Teller Q3 model is
considered, which is uniform for all sites (Q3,i = Q3) (a
reasonable assumption). The orbital pseudospin operator τ z is
c
†
aca − c

†
bcb. Then the coefficient λQ3 determines the energy

splitting.
For the E-type zigzag chain with such a Jahn-Teller

distortion, the typical results are shown in Figs. 4(a) and 4(b).
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FIG. 4. Electronic structures of E-type and CE-type antiferro-
magnetic chain against perturbations. The perturbation is in the form
of (a)–(c) uniform Jahn-Teller Q3 mode distortion (λQ3 = −0.2t0)
and (d) extra on-site potential (Vi = −0.2t0) applied on two end
sites. (a) Energy spectrum for E-type chain with open boundary
conditions. (b) Orbital-resolved electron distribution of one end state
for E-type chain. (c),(d) Energy spectrums for CE-type chain with
open boundary conditions. The length of chain is 100 with one corner
end plus one bridge end. Insets of (b) and (d) are magnified views
near the ends. The red rectangles highlight energy levels of some end
states.

Comparing with Fig. 2(b), the energy spectrum is no more
symmetrical to 0, which means that HJT actually breaks the
particle-hole symmetry and time-reversal symmetry. Even so,
the topology will not be lost and the degeneracy of end states
remain near 0. The electron distribution of the end state is
shown in Fig. 4(b), which becomes quasilocalized.

Such a Jahn-Teller distortion can also tune the energy
spectrum of the CE-type chain, as shown in Fig. 4(c). Even
so, the end states are still present.

Besides, another perturbation is also tested by applying a
chemical potential at the end of a chain [34]. Our numerical
calculation confirms the existence of end states for both E-type
and CE-type chains [Fig. 4(d)].

In summary of this subsection, the end states show
reasonable robustness against some perturbations, such as the
Jahn-Teller Q3 distortion and chemical potential at the end of
the chain. Of course, more further studies are needed to verify
other interactions/perturbations.

V. DISCUSSION: IMPLICATION TO MATERIALS

In the above sections, the symmetry and topology of E-type
and CE-type antiferromagnetic chains has been discussed. For

real manganites (two-dimensional layers or three-dimensional
lattices), the E-type and CE-type magnetic orders consist
of many independent one-dimensional chains. In this case,
the edge/surface state of manganites is a weak topological
state. In real materials, more realistic terms, e.g., lattice dis-
tortions, next-nearest-neighbor hoppings, spin-orbit coupling,
noncollinear spin canting, and Hubbard-type correlation, will
certainly affect the electronic structure. It is interesting to
know whether these interactions will modify the topology
of CE-type and E-type phases, which needs further careful
studies. Considering the complexity of manganites, not only
theoretical investigations, but also experimental evidences
are needed to clarify the possible topology. Intuitively, the
topological end/edge state will probably exist as long as
perturbations are small, which was also partially verified in
the above sections, at least for some kinds of perturbations.
Here, it would be helpful to have a brief discussion about the
implication of these end/edge states to real materials with a
CE-type phase. The aim of our discussion is to draw attention
to reinvestigate manganites and the CMR effect from the
topological perspective.

First, a direct relevant experiment is the ferro-
magnetic edge state observed recently in manganite
(La0.325Pr0.3Ca0.375MnO3) strips [35]. This manganite is fa-
mous for its large scale (up to the micrometer scale) phase
separation consisting of a charge-ordered phase (mostly
believed to be the CE type or canting CE type) and a
ferromagnetic phase [36]. In Du et al.’s experiment, the
magnetic force microscopy images clearly indicated that the
edges prefer the ferromagnetic tendency [35]. A Monte Carlo
simulation on a two-orbital double-exchange model (done by
one of the authors) indeed got the ferromagnetic edge in the
nanometer scale which was attributed to the possible seed
for the experimentally observed ferromagnetic edge. Even
so, the underlying mechanism remained unclear at that time.
Now it is clear that the existence of end states in the CE-
phase manganite stripe make the CE-type antiferromagnetic
ordering unstable at the edge.

Second, a similar situation occurs in small size manganites
(e.g., nanoparticle, nanowires, etc.), where a ferromagneticlike
surface state usually emerges for charge-ordered (mostly the
CE phase or canting CE phase) manganites [37,38]. A
previous model study explained the ferromagnetic tendency
for the [001] surface of the CE phase [39], while it remains an
open question for other surfaces. The present study can give
a hint to understand these phenomena based on the end/edge
state scenario.

Third, previous experiments have found that the CE phase
is fragile against the B-site substitution [40–44]. Despite
many model studies which support the experimental ob-
servations [45,46], the real origin is somewhat ambiguous.
The robust end states as revealed in our study provide a
hint to understand the corrosion of the CE phase. Any
B-site substitution, whether magnetic or nonmagnetic, will
make the end states surround the “defect” site, as long as
the double-exchange process is blocked there. Considering
the quasilocalization of end state in the CE phase, the
influenced region is considerably large. In other words, a
few B-site substitutions can significantly suppress the CE

antiferromagnetic order.
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Fourth, Brey and Littlewood once proposed a solitonic
phase in half-doped manganites, in which each orbital soliton
carried a charge of ±e/2 [47]. In fact, their orbital soliton
is closely related to the topological end states of CE phase
studied here.

Last, but not least, the end states of the CE phase
can play an important role in real manganites with phase
competitions, which may influence the colossal magnetoresis-
tance. In typical manganites, phase separation with coexisting
ferromagnetic/charge-ordering clusters can be modulated by
external magnetic fields, giving rise to the colossal magne-
toresistance. The edges of CE-type clusters will be an active
frontier of phase transition and thus play a crucial role in
percolative transport. More studies are needed to further clarify
the edge states in manganites and their effects in colossal
magnetoresistance.

VI. CONCLUSION

In the present study, the nontrivial topology of two
common antiferromagnetic phases (E-type and CE-type) in

manganites has been studied using the standard two-orbital
double-exchange model. Our study proved that the E-type
phase is a weak topological insulator belonging to the Z class,
while the CE-type phase is a different class of topological
insulator characterized by the Duffin-Kemmer-Petiau algebra.
The end states associated with the topological bands are also
studied, which may be responsible for the ferromagnetic edge
state and some long-standing experimental observations in
manganites. The present study not only extends the scope
of topological physics in complex oxides, but also provides
insight into colossal magnetoresistance. Further theoretical
and experimental studies are needed to complete the scenario
of topological correlated electronics.
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