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A large part of the interest in magnets with frustrated antiferromagnetic interactions comes from the many
new phases found in applied magnetic field. In this article, we explore some of the new phases which arise in
a model with frustrated ferromagnetic interactions, the J1-J2-J3 Heisenberg model on a square lattice. Using
a combination of classical Monte Carlo simulation and spin-wave theory, we uncover behavior reminiscent
of some widely studied frustrated antiferromagnets, but with a number of new twists. We first demonstrate
that, for a suitable choice of parameters, the phase diagram as a function of magnetic field and temperature
is nearly identical to that of the Heisenberg antiferromagnet on a triangular lattice, including the celebrated
1/3-magnetization plateau. We then examine how this phase diagram changes when the model is tuned to a
point where the classical ground state is highly degenerate. In this case, two new phases emerge: a classical,
finite-temperature spin liquid, characterized by a “ring” in the spin structure factor S(q); and a vortex crystal, a
multiple-Q state with finite magnetization, which can be viewed as an ordered lattice of magnetic vortices. All
of these new phases persist for a wide range of magnetic fields. We discuss the relationship between these results
and published studies of frustrated antiferromagnets, together with some of the materials where these new phases
might be observed in experiment.
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I. INTRODUCTION

Much attention has been devoted to the question of whether
a frustrated magnet orders or not [1]. Even in the cases
where such systems do order, the results are often surprising
and unconventional. Novel phases of matter have often been
uncovered by applying an external magnetic field to frustrated
magnet systems [2,3]. Examples of these phases range from
quasiclassical magnetization plateaux and magnetic supersolid
phases [4–7], magnetic analogs of liquid crystals [8–10],
and crystals formed of Skyrmions, which have already been
observed in experiment [11,12].

This ongoing interest in novel magnetic phases is under-
written by a steady stream of new materials. Among these,
materials with frustrated ferromagnetic interactions, i.e., with
ferromagnetic largest interactions but with a nonferromag-
netic ground state driven by competing interactions, have
a particularly rich phenomenology. Well-known examples
include spin ice, a celebrated example of a three-dimensional
classical spin liquid [13], and the solid phases of 3He,
whose nuclear magnetism continues to push the limits of
our understanding of quantum spins [14,15]. More recent
discoveries include new families of layered, square-lattice
vanadates [16–18] and cuprates [19–22], with properties that
encompass ordered ground states selected by fluctuations [18],
exotic singlet phases [22], helical order [21], and, surprisingly,
a 1/3-magnetization plateau [20].

In this article we explore some of the novel phases which
arise in a simple example of a frustrated ferromagnet: a
Heisenberg model on a square lattice, in which ferromagnetic

first-neighbor interactions compete with antiferromagnetic
second- and third- neighbor exchange. Using a combination
of classical Monte Carlo simulation and spin-wave theory,
we establish the phase diagram of this model as a function
of temperature and magnetic field for two different sets of
exchange parameters. In the process, we uncover a number
of phases not usually associated with square-lattice magnets.
These include a collinear 1/3-magnetization plateau, a spin
liquid with finite magnetization, and a crystal composed of
magnetic vortices. Illustrations of these phases and of the
phase diagram for one of the parameter sets are shown in
Figs. 1 and 2, respectively.

The model we consider is a natural generalization of
the “J1-J2” model, which describes competing Heisenberg
exchange interactions on the first- and second-neighbor bonds
of a square lattice. The J1-J2 model has a long and interesting
history and remains one of the paradigmatic examples of a frus-
trated magnet [24]. Much of the original interest in this model
was driven by the possibility that competing antiferromagnetic
exchange could stabilize a quantum spin liquid, a question
which continues to inspire new research [25–28]. However,
the J1-J2 model is also significant as a working model of
magnetism in iron pnictides [29–31] and as one of the simplest
possible examples of a frustrated ferromagnet. In particular,
where ferromagnetic first-neighbor exchange competes with
antiferromagnetic second-neighbor exchange, the spin- 1

2 J1-J2

model can support spin-nematic order [9,32–39].
Extending frustrated spin models to include further-

neighbor interactions typically results in classical ground
states with incommensurate, helical order. For large values of
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FIG. 1. Novel phases found in a square-lattice frustrated ferromagnet in applied magnetic field. (a) Collinear 1/3-magnetization plateau,
with stripelike three-sublattice order. (b) Spin liquid with short-range helicoidal correlations, characterized by a “ring” in the spin structure
factor S(q), shown here for h = 0. (c) Crystal of magnetic vortices, with finite magnetization. The color map is a representation of the phase
of the spin texture in the Sx-Sy plane. The model studied is the J1-J2-J3 Heisenberg model on a square lattice, HFFM

� [Eq. (1)].

spin, the leading effect of quantum and/or thermal fluctuations
is a small correction to the pitch of the helix, leading to
small, quantitative, changes in phase boundaries [40–42].
In the case of the J1-J2-J3 Heisenberg model on a square
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FIG. 2. Phase diagram of a square lattice frustrated ferromagnet
in applied magnetic field, exhibiting the same phases as found in the
Heisenberg antiferromagnet on a triangular lattice [23]: a coplanar
“Y state,” interpolating to “120◦” order at vanishing magnetization; a
collinear 1/3-magnetization plateau [cf. Fig. 1(a)]; and a coplanar 2:1
canted state. Phase boundaries are taken from classical Monte Carlo
simulations of HFFM

� [Eq. (1)] for the parameter set JA [Eq. (18)]
and scaled to the thermodynamic limit, as described in Sec. III.
Temperature and magnetic field measured in units of J� [Eq. (13)].

lattice, these expectations are borne out by linear spin-wave
theory [43–45]. However, exact diagonalization calculations
for S = 1/2 suggest a richer phase diagram, including a
number of novel ground states [46,47]. Even at a classi-
cal level, other models, such as the J1-J2-J3 Heisenberg
model on a honeycomb lattice, can support a much richer
behavior [48,49].

One of the possible alternatives to simple helical order
are multiple-Q states, composed of a coherent superposition
of states with different ordering vectors. In general, these
states are not compatible with the fixed spin length constraint
|S| = 1 and therefore do not belong to ground-state manifolds.
However, there are a number of recent interesting cases where
these phases are stabilized by the interplay between frustration
and thermal fluctuations, such as the classical pyrochlore
antiferromagnet [50] or the classical extended triangular-
lattice antiferromagnet [51]. Interestingly, multiple-Q states
also arise in the description of spin textures composed of
crystals of topological defects. These are the celebrated case
of Skyrmion lattices in chiral magnets such as MnSi [11,12],
magnetic-vortex lattices in a generic class of Mott insu-
lators [52], or Skyrmion crystals in the antiferromagnetic
triangular lattice [53]. Magnetic-vortex lattices in insulating
systems seem to be especially uncommon outside the realm of
superconducting systems [54,55].

The picture which emerges from the square-lattice frus-
trated ferromagnet studied in this article is interesting for a
number of reasons. Just as in frustrated antiferromagnets, the
interplay between ground-state degeneracy and fluctuations
leads to a rich behavior in applied magnetic field; cf. Fig. 2.
However, unlike those antiferromagnets where the frustration
comes from the geometry of the lattice, the model under study
here can be tuned to exhibit a wide range of different magnetic
phenomena, many of them unexpected on a square lattice. This
is particularly true when parameters are chosen so to place the
model at the border between competing forms of order.

The remainder of this article is structured as follows.
In Sec. II we introduce the model and the methods used to

study it. On the basis of known results for the classical ground
state we single out two parameter sets; one which corresponds,
at a mean-field level, to a triangular-lattice antiferromagnet;
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and another for which the classical ground state is highly
degenerate.

In Sec. III we present Monte Carlo simulation results for
the first of these parameter sets. We demonstrate that the phase
diagram as a function of magnetic field and temperature is
almost identical to that of the Heisenberg antiferromagnet on a
triangular lattice and includes its celebrated 1/3-magnetization
plateau, now translated to three-sublattice order on a square
lattice. These results are summarized in Fig. 2.

In Sec. IV we present Monte Carlo simulation results for the
second of these parameter sets. We establish the phase diagram
of a finite-size cluster as a function of magnetic field and
temperature and present evidence for both a finite-temperature
classical spin liquid and, at low temperature and low values
of magnetic field, a multiple-Q state with the character of a
vortex crystal. These results are summarized in Fig. 8.

In Sec. V we discuss how these results relate to published
work on frustrated antiferromagnets, how quantum effects
might enter into the problem, and where these novel phases
might be realized in experiment.

Finally, in Sec. VI, we conclude with a brief summary of
the results and remaining open questions.

Technical details of associated spin-wave calculations,
used to confirm the results of Monte Carlo simulations, are
discussed in a small number of appendixes.

Appendix A develops the mathematical formalism needed
to carry out both a classical low-temperature expansion and a
linear spin-wave expansion about the classical ground states
found in this model.

Appendix B applies this analysis to the ground-state
manifold for the second parameter set and shows that thermal
fluctuations select a spiral state at low temperatures and zero
field, as suggested from Monte Carlo simulations.

Appendix C analyzes how, for the second parameter set, a
canted Y state eventually prevails over a conical version of the
spiral state when a magnetic field is applied. The vortex crystal
is not favored at very low temperatures, again in agreement
with the Monte Carlo results.

Appendix D discusses, from linear spin-wave calculations
of the quantum corrections to the ground-state energy, how the
classical phase diagram for the second parameter set changes
in the quantum model at low magnetic fields and temperatures.

II. MODEL, METHOD, AND ORDER PARAMETERS

A. The J1- J2- J3 Heisenberg model on a square lattice

In this article, we consider one of the simplest possible
prototypes for a frustrated ferromagnet, the Heisenberg model
on a square lattice, with competing second- and third-neighbor
exchange,

HFFM
� = J1

∑
〈ij〉1

Si · Sj + J2

∑
〈ij〉2

Si · Sj

+ J3

∑
〈ij〉3

Si · Sj − h
∑

i

Sz
i . (1)

Here Si is a classical spin with |Si |2 = 1, the sum
∑

〈ij〉n runs
over the nth-neighbor bonds of a square lattice, as illustrated
in Fig. 3, and h is an applied magnetic field. We restrict
ourselves to the case where first-neighbor exchange J1 is

J1

J2

J3

FIG. 3. Exchange interactions up to third neighbor on the square
lattice. In this article we consider a Heisenberg model HFFM

� [Eq. (1)]
where ferromagnetic first-neighbor exchange J1 competes with
antiferromagnetic second- and third-neighbor exchanges J2 and J3.

ferromagnetic, while further-neighbor exchange J2 and J3 are
antiferromagnetic, i.e.,

J1 < 0, J2 > 0, J3 > 0. (2)

The exchange integrals J1, J2, J3 define a three-dimensional
parameter space, and for many purposes it is convenient to
represent them as a vector

J = (J1, J2, J3). (3)

The classical ground-state phase diagram ofHFFM
� [Eq. (1)],

together with its spin-wave excitations, was studied in a series
of papers by Rastelli et al. [43,44] and Chubukov [45]. In the
absence of magnetic field, allowing for the leading effect of
fluctuations, all ground states are found to be coplanar spirals
characterized by a wave vector

Q = (Qx,Qy). (4)

This wave vector can be determined by minimizing the Fourier
transform of the interactions

J (q) = 2J1(cos qx + cos qy) + 4J2 cos qx cos qy

+ 2J3(cos 2qx + cos 2qy). (5)

For ferromagnetic J1 [cf. Eq. (2)], there are four distinct cases:
(1) a uniform ferromagnetic (FM) phase with

QFM = (0,0); (6)

(2) a two-sublattice collinear antiferromagnetic (CAF)
phase with

QCAF = (π,0) or (0,π ); (7)

(3) a family of one-dimensional (1D) spirals with

Q1D = (Q1D,0) or (0,Q1D),

cos Q1D = −J1 + 2J2

4J3
; (8)

(4) a family of two-dimensional (2D) spirals with

Q2D = (Q2D,Q2D),

cos Q2D = − J1

2J2 + 4J3
. (9)

085132-3



SEABRA, SINDZINGRE, MOMOI, AND SHANNON PHYSICAL REVIEW B 93, 085132 (2016)

JB = (−1, 1, 1/2)

2D spiral

0.50
0

0.25

0.5

1.00.750.25

FM

q = 2π/3

1D spiral

J2/|J1|

J
3
/|

J
1
|

CAF

JA = (−1, 3/4, 1/4)

FIG. 4. Classical ground-state phase diagram of the frustrated
Heisenberg ferromagnet on a square lattice, HFFM

� [Eq. (1)], as
a function of competing antiferromagnetic exchange J2 and J3,
following [43]. Ground states in the absence of magnetic field
comprise a collinear ferromagnet (FM), a collinear antiferromagnet
(CAF), a one-dimensional coplanar spiral (1D spiral) and a two-
dimensional coplanar spiral (2D spiral), as defined in Eqs. (6)–(9).
The two parameter sets studied in this article, JA [Eq. (18)] and
JB [Eq. (22)], are labeled with black dots. A blue dashed line
indicates parameters for which the ground state is a 1D spiral with
three-sublattice order [Eq. (10)].

These ground states, and the range of parameters for which
they occur, are illustrated in Fig. 4.

B. Three-sublattice order on the square lattice and its
connection with a triangular-lattice antiferromagnet

In general, the one-dimensional spiral ground states of
HFFM

� [Eq. (1)] are incommensurate with a wave vector Q1D

[Eq. (8)], which interpolates smoothly from one phase to
another, e.g., from QFM [Eq. (6)] to QCAF [Eq. (7)]. For
certain choices of exchange parameters, however, Q1D takes
on commensurate values. One particular case, occurring for

J1 + 2J2 − 2J3 = 0, [ 0 < 2J3 < |J1| ] (10)

(cf. the blue dashed line in Fig. 4), is

Q1D
3sub =

(
2π

3
,0

)
or

(
0,

2π

3

)
. (11)

In this case the ground state of the frustrated ferromagnetHFFM
�

[Eq. (1)] is composed of stripes of spins, with three-sublattice
order.

Three-sublattice order also occurs in one of the
paradigmatic examples of frustrated antiferromagnetism, the
Heisenberg antiferromagnet on the triangular lattice,

HAF
� = J

∑
〈ij〉

Si · Sj − h
∑

i

Sz
i , J > 0. (12)

First studied as a potential route to a quantum spin liquid [56],
this model has a long and distinguished history as a testing
ground for ideas about classical and quantum magnets [3,57].
Its behavior in magnetic field, in particular, where a collinear
1/3-magnetization plateau is selected by fluctuations from a
degenerate set of classical ground states [6,23,58], has come
to be seen as one of the paradigms for frustrated magnets.

At a mean-field level, for a 1D spiral state with wave vector
Q1D

3sub [Eq. (11)],HFFM
� [Eq. (1)] is equivalent toHAF

� [Eq. (12)],
with an effective interaction

J = J� = J1 + 2J2 + J3

3
. (13)

As a consequence, the frustrated ferromagnet, HFFM
� , inherits

many of the special properties of the Heisenberg antiferromag-
net on a triangular lattice. In particular, the classical ground
states of HAF

� can be found by rewriting the model as

HAF
� = 9

2
J�

∑
�

[(
m� − h

9J�
êz

)2

− S2

3
− h2

81J 2
�

]
, (14)

where êz is a unit vector in the direction of the magnetic field,
the sum

∑
� runs over all triangles in the lattice, and

m� = 1

3

∑
i∈�

Si (15)

is the magnetization per spin in a given triangle.
It follows from Eq. (14) that any state for which

m� ≡ h

9J�
êz ∀ � ∈ lattice (16)

is a classical ground state of HAF
� and that the classical

ground state interpolates to saturation (full magnetization) for
a magnetic field

hsat = 9J�. (17)

At a mean-field level, both of these properties carry over to
three-sublattice ground states of HFFM

� [Eq. (1)].
However, this is by no means the end of the story; except

at saturation, the mean-field constraint on m� [Eq. (16)] does
not uniquely constrain the ground state, and fluctuations play a
crucial role in establishing order. In the case of the Heisenberg
antiferromagnet on a triangular lattice, HAF

� [Eq. (12)], it is
known that thermal [6,23,59] and/or quantum [60] fluctuations
act on the large family of degenerate three-sublattice ground
states to select

(i) a coplanar 120◦ state with zero magnetization, for
h = 0;

(ii) a coplanar Y state with finite magnetization, interpo-
lating to 120◦ order for h → 0;

(iii) a collinear “uud” state associated with a 1/3-
magnetization plateau for intermediate values of h;

(iv) a coplanar 2:1 canted state, interpolating between the
1/3-magnetization plateau and the saturated state for h → hsat.

The associated classical phase diagram is shown in Fig. 1 of
Ref. [23]. Since strict long-range order of phases which break
a continuous symmetry is forbidden at finite temperature in
two dimensions by the Mermin-Wagner theorem, the coplanar
phases should be understood as algebraically correlated.

In Sec. III we use classical Monte Carlo simulation to
explore how the equivalent three-sublattice order in the square-
lattice frustrated ferromagnet HFFM

� [Eq. (1)] evolves as a
function of temperature and magnetic field. For these purposes,
we select the parameter set

JA = (J1, J2, J3) = (−1, 3/4, 1/4), (18)
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marked with a black dot in Fig. 4, as representative of
parameters with a three-sublattice ground state [cf. Eq. (10)].
This, in turn, sets a characteristic scale for temperature and
magnetic field through Eq. (13).

C. Highly degenerate manifold of classical ground states

An enlarged ground-state manifold occurs where the 1D
and 2D spirals meet, for

J2 − 2J3 = 0 ∀ |J1| < 4J2 < 4|J1| (19)

(cf. Fig. 4). On this phase boundary, the classical ground states
of HFFM

� are 2D spirals with wave vector

Qring = (
Qring

x , Qring
y

)
,

(20)

Qring
y = ± arccos

(−J1

2J2
− cos Qring

x

)
,

which interpolates from the 1D to the 2D spiral. This set of Q
forms a ring in reciprocal space, centered on

� = (0, 0), (21)

and defines a highly degenerate manifold of states.
In Sec. IV we use classical Monte Carlo simulation to

explore the consequences of this enlarged ground-state de-
generacy at finite temperature and magnetic field. We consider
the limiting case where the line Eq. (10), corresponding to a
1D spiral with three-sublattice order, terminates at the phase
boundary between 1D and 2D spirals at

JB = (J1, J2, J3) = (−1, 1, 1/2). (22)

This parameter set is denoted as a black dot in Fig. 4. The set
of ground-state wave vectors Qring [Eq. (20)] at JB is shown
as a dashed line in Fig. 1(b).

D. Monte Carlo simulation method

In Secs. III and IV of this paper, we use large-scale Monte
Carlo simulation to study the finite-temperature properties
of the square-lattice frustrated ferromagnet HFFM

� [Eq. (1)]
in applied magnetic field. Simulations were performed using
parallel tempering [61], using 48 to 80 replicas (temperatures).
Simulations were carried out for square clusters of

N = L × L (23)

spins, with periodic boundary conditions. The linear sizes L

were chosen to be commensurate with possible Q wave vectors
in the range 60 � L � 180. Typical simulations involved
2 × 106 steps, half of which were discarded for thermalization.
At every ten steps there was an attempt at exchanging
replicas at neighboring temperatures. Energy scales (field
and temperature) were normalized to J� [Eq. (13)] for easy
comparison with the triangular lattice antiferromagnet [23].

The simulations for the parameter set JB [Eq. (22)],
presented in Sec. IV, become very challenging at low tem-
peratures, especially for low values of magnetic field, where
several different phases compete. In this case we performed
different simulation runs, with and without parallel tempering,
where the initial state was either one of the candidate phases
at T = 0 or a configuration composed of domains of different
phases, in order to ascertain their relative stability.

E. A short catalog of order parameters and
correlation functions

Experience of simulating the Heisenberg antiferromagnet
on a triangular lattice (Ref. [23]), together with the symmetry
of the ordered phases found in the absence of magnetic field (cf.
Fig. 4), suggests a number of order parameters and correlation
functions likely to be of use in determining the behavior of
HFFM

� [Eq. (1)] in applied magnetic field.
The 1D spiral phase in Fig. 4 breaks the fourfold rotational

symmetry of the square lattice from C4 down to C2 by choosing
to orient the stripes in vertical or horizontal direction. We
analyze this with the following order parameter:

OC2 = 〈|φx|〉, (24)

φx = 9

32N

∑
i

Si · (Si+x̂ − Si+ŷ). (25)

The sum over i runs over all N = L2 lattice sites and the lattice
unit vectors are denoted as x̂ = (1,0) and ŷ = (0,1).

In the presence of field, the three-sublattice ordered states
break the translational symmetry of the lattice along the Sz

direction. This can be measured by an order parameter based
on a two-dimensional irreducible representation of C3

∼= Z3;
cf. the triangular-lattice case [23],

ψz
x,1 = 3√

6N

∑
i

2Sz
i + 2Sz

i+x̂ − 4Sz
i+2x̂, (26)

ψz
x,2 = − 3√

2N

∑
i

2Sz
i+x̂ − 2Sz

i , (27)

where the sum over i runs over the N/3 “three-spin stripes,”
each equivalent to an elementary triangle. In order to account
for the two ways of breaking the C2 symmetry, the Z3 order
parameter must be measured along both directions of the
lattice, i.e., x̂ → ŷ in Eqs. (26) and (27). The resulting final
order parameter is

Oz
Z3

= 〈[∣∣ψz
x,1

∣∣2 + ∣∣ψz
x,2

∣∣2 + ∣∣ψz
y,1

∣∣2 + ∣∣ψz
y,2

∣∣2]1/2〉
. (28)

The susceptibility associated with each order parameter O is
defined as

χ = N
〈|O|2〉 − 〈|O|〉2

T
. (29)

In the presence of magnetic field, quasi-long-range order
can develop in the transverse components of spin

S⊥
i = (

Sx
i ,S

y

i

)
. (30)

This is captured by the spin stiffness ρS (see, e.g., Refs. [23,62]
and references therein),

ρs[ê] = 1

N

〈∑
δ

Jδ

∑
〈i,j〉δ

(ê · rij )2S⊥
i · S⊥

j

〉

− 1

NT

〈⎛
⎝∑

δ

Jδ

∑
〈i,j〉δ

(ê · rij )S⊥
i × S⊥

j

⎞
⎠

2〉
, (31)

which is averaged over the two lattice directions ê = {x̂,ŷ}.
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The specific heat, defined as

Ch = 1

N

〈E〉 − 〈E〉2

T 2
, (32)

where E is the total internal energy, is also helpful in tracking
phase transitions.

Last, but not least, the momentum-resolved spin structure
factor

S(q) =
〈

1

N

∣∣∣∣∣
∑

i

Si exp(−iq · ri)

∣∣∣∣∣
2〉

(33)

is of considerable importance for characterizing the spin-
liquid phase studied in Sec. IV. Where appropriate, we
analyze separately the structure factors for the longitudinal
and transverse components of spin,

Sz(q) =
〈

1

N

∣∣∣∣∣
∑

i

Sz
i exp(−iq · ri)

∣∣∣∣∣
2〉

, (34)

S⊥(q) =
〈

1

N

∣∣∣∣∣
∑

i

S⊥
i exp(−iq · ri)

∣∣∣∣∣
2〉

, (35)

where S⊥ is defined in Eq. (30).

III. TRIANGULAR-LATTICE PHYSICS ON
A SQUARE LATTICE

In Sec. II B, we established a connection between the
square-lattice frustrated ferromagnet, HFFM

� [Eq. (1)], and
the Heisenberg antiferromagnet on a triangular lattice, HAF

�
[Eq. (12)], in the case where the ground state of HFFM

� is a
1D-spiral with wave vector

Q1D
3sub =

(
2π

3
,0

)
or

(
0,

2π

3

)

[cf. Eq. (11)], corresponding to three-sublattice “stripe” order.
An example of a three-sublattice stripe state, with finite
magnetization, is shown in Fig. 1(a). The momentum set of
the ground-state manifold,

Q� = {(±2π/3,0), (0, ± 2π/3)}, (36)

has four components, whereas that of the triangular antiferro-
magnet has only two.

In what follows, we use classical Monte Carlo simulation
to explore the properties of HFFM

� at finite temperature and
magnetic field, considering a parameter set JA [Eq. (18)].
The results of these simulations are summarized in the phase
diagram Fig. 2. The similarities to the magnetic phase diagram
of the triangular-lattice antiferromagnetHAF

� (cf. Fig. 1 of [23])
are striking. At first sight, the main difference is only that the
ordering temperature scale is roughly double that forHFFM

� . As
in the case of the triangular-lattice antiferromagnet [23], it will
be instructive to compare the phase diagram where a proper
finite-size scaling has been performed (Fig. 2) to one extracted
from simulations of a fixed cluster size L = 90 (Fig. 5).

While the two models have much in common, differences
arise in the way in which ordered phases break lattice
symmetries. In both cases, under applied magnetic field,

L=90

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.2  0.4  0.6  0.8  1

h
/J

T/J

ρS

Paramagnet

JA
OC2

FIG. 5. Finite-size phase diagram of a square-lattice frustrated
ferromagnet in applied magnetic field. The phases found—a coplanar
Y state; a collinear 1/3-magnetization plateau; and a coplanar 2:1
canted state—and the structure of the phase diagram closely parallel
finite-size results for the Heisenberg antiferromagnet on a triangular
lattice [23]. In both cases, finite-size effects strongly renormalize
the temperature associated with the transition from the collinear 1/3-
magnetization plateau into the Y state. Results are taken from classical
Monte Carlo simulations of HFFM

� [Eq. (1)] for the parameter set
JA [Eq. (18)]. Phase boundaries were extracted from anomalies in
the order parameter associated with lattice rotations [Eq. (24)] and
spin stiffness ρS [Eq. (30)] for a cluster of N = 902 = 8100 spins.
Temperature and magnetic field are measured in units of J� [Eq. (13)].
The horizontal dashed line corresponds to the temperature cut used
in Fig. 7.

three-sublattice ordered phases break a discrete C3
∼= Z3

symmetry, associated with the interchange of the different
sublattices. However, the stripelike order found in the square-
lattice model also breaks a C2 lattice-rotation symmetry
when choosing between the two possible ordering vectors,
Q1D

3sub [Eq. (11)]. This additional symmetry has a number of
interesting consequences, described below.

A. Ising transition at h = 0

We consider first the limit of vanishing magnetic field,
corresponding to h/J� = 0 in Fig. 2. In the absence of
magnetic field, the Heisenberg antiferromagnet on a triangular
lattice HAF

� [Eq. (12)] has been argued to exhibit a finite-
temperature transition, linked with the proliferation of Z2

vortices associated with spin chirality [63]. Whether this
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60
90
120
150

ν = 1
β = 1/8

FIG. 6. Finite-temperature phase transition into a three-
sublattice, 120◦ ground state, breaking lattice-rotation symmetry. The
order parameter OC2 [Eq. (24)] shows finite-size scaling consistent
with a phase transition in the Ising universality class, in contrast with
the triangular-lattice Heisenberg model [63]. Results are taken from
classical Monte Carlo simulations ofHFFM

� [Eq. (1)] for the parameter
set JA [Eq. (18)] in the absence of magnetic field (h = 0).

process corresponds to either a true phase transition or a
crossover is still under debate [64–67].

The situation in the square-lattice frustrated ferromagnet
HFFM

� [Eq. (1)] is quite different. At h = 0, a clear phase
transition is observed, associated with the breaking of lattice-

rotation symmetry by three-sublattice stripe order. The relevant
order parameter is OC2 [Eq. (24)], and in Fig. 6 we show a
scaling plot of simulation results for

OC2 = L−β/νÕ(tL1/ν), (37)

as a function of the reduced temperature,

t = Tc − T

T
, (38)

where the Ising critical exponents

ν = 1, β = 1
8 , (39)

are found to describe the data well.
We do not observe behavior explicitly related to the

unbinding of Z2 vortices in simulation of HFFM
� . However,

just as in simulations of HAF
� (cf. Ref. [23]), the correlation

length associated with transverse components of spin becomes
very large as h → 0, making it difficult to draw definitive
conclusions.

B. Double transition for 0 � h � 3 J�

We now consider the phases found for low to intermediate
values of magnetic field in the phase diagram Fig. 2. Here a
double phase transition is observed as the system is cooled
down from the paramagnet; cf. Fig. 7, for 0 � h/J� � 3. As
the system is cooled from the high-temperature paramagnet,

O
C

2

L=90

L=150
L=120

L=60

(a)

ρ
S

2T

π

(b)  0

 1

 2

 0

 2

 4

 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1
T/J

O
z�

3

(d)

(c)

1/(lnL+b)
 0  0.04  0.08  0.12

T
/J

 0.24

 0.26

 0.28

P(
E)

 0

 0.02

 0.04

 0.06

-0.99 -0.95 -0.91
E/L2

FIG. 7. Evidence for a collinear 1/3-magnetization plateau and coplanar Y state in a square-lattice frustrated ferromagnet. (a) Temperature
dependence of the order parameters OC2 [Eq. (24)] and Oz

Z3
[Eq. (28)], showing the onset of a collinear state with three-sublattice stripe

order (1/3-magnetization plateau), at T ≈ 0.78J�. (b) Temperature dependence of the spin stiffness ρS [Eq. (31)], consistent with a
Berezinski-Kosterlitz-Thouless (BKT) transition into the Y state at TL ≈ 0.24J�. (c) Energy histogram calculated for T = 0.776J�, showing
the discontinuous nature of the phase transition from paramagnet to 1/3-magnetization plateau. (d) Finite-size scaling of the temperature
associated with the BKT transition, TL [Eq. (41)]. Results are taken from classical Monte Carlo simulations of HFFM

� [Eq. (1)] for the parameter
set JA [Eq. (18)] in applied magnetic field h/J� = 2; cf. dashed line in Fig. 5. Temperature is measured in units of J� [Eq. (13)].
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it first enters the collinear 1/3-magnetization plateau, as
described by the rise of the order parameters in Fig. 7(a).
This process is a single phase transition, which simultaneously
breaks the C2 lattice-rotational symmetry [Eq. (24)] and the
Z3 translational symmetry [Eq. (28)] associated with the three-
sublattice order. For values of magnetic field 1.5 � h/J� < 3,
a double distribution in the internal energy is clearly observed
at the transition temperature [Fig. 7(c)], which shows that the
transition is of first order. We cannot observe this behavior
for lower magnetic fields, presumably due to the increased
finite-size effects.

In the case of the Heisenberg antiferromagnet on a tri-
angular lattice, different 1/3-magnetization plateau states are
connected by a threefold permutation symmetry, and the phase
transition into the paramagnet is continuous [23]. Meanwhile,
in the case of the square-lattice frustrated ferromagnet, the
permutation of different sublattices is complemented by a
lattice rotation, enlarging the symmetry from Z3 to Z2 × Z3,
and the corresponding phase transition is first order. This is
reminiscent of the six-state Potts model in 2D, whose ordering
phase transition is known to be first order [68,69].

The canted Y state is found by lowering the temperature
further from the plateau phase. In addition to breaking the
C2 and Z3 symmetries, this phase displays algebraic order
in the Sx-Sy plane, as shown by the finite spin stiffness in
Fig. 7(b). Assuming a Berezinski-Kosterlitz-Thouless (BKT)
transition [70], the transition temperature in a finite-size
system is found via the jump in spin stiffness,

TL = π

2
× �ρS, (40)

which can then be finite-size scaled in a characteristic
logarithmic fashion [23,71],

TL = TBKT

(
1 + 1

2

1

ln L + ln b

)
, (41)

as shown in Fig. 7(d).
The finite-size corrections to this transition are observed

to be rather large. From simulations of a fixed cluster size
L, cf. the phase diagram for L = 90 in Fig. 5, it is unclear
if the BKT transition merges with the C2 ⊗ Z3 transition
for fields h � 0.6, i.e., if there is a single transition from
the paramagnet to the Y state, or two. However, these two
phase transitions are observed to be clearly separated once
the proper finite-size scalings are performed, and no direct
transition from the paramagnet into the Y phase can be reported
for fields h � 0.4J� (Fig. 2). We have faded the region in
Fig. 2 corresponding to values of field 0 < h � 0.4J�, since
finite-size effects become very large in this region and this
analysis becomes unreliable. However, the available data still
suggest the presence of a double phase transition as the field
approaches h → 0. This behavior very closely matches what
is observed in the Heisenberg antiferromagnet on a triangular
lattice, which has been discussed in detail previously [23].

For magnetic fields above the plateau h > 3J�, we register
a single phase transition into the 2:1 canted state. The location
of several quantities, such as the jump in the spin stiffness and
anomalies in the C2 and Z3 order-parameter susceptibilities
and in the specific heat, coincide within resolution after they
are properly finite-size scaled. We do not observe any discon-

tinuity in the internal energy as a function of temperature, or
a bimodal energy distribution at the transition temperature, in
the clusters simulated. Nonetheless, the maximum value of
the specific heat scales roughly with N , and the temperature
at which it is found scales roughly with 1/N , behaviour
consistent with a first-order transition.

IV. CONSEQUENCES OF AN ENLARGED
GROUND-STATE MANIFOLD

We now consider the properties of HFFM
� [Eq. (1)] for

the parameter set JB [Eq. (22)], as summarized in the phase
diagram, Fig. 8. This parameter set corresponds to the point
in the classical ground-state phase diagram (Fig. 4) where the
line of 1D spirals with three-sublattice order terminates on the
boundary with the 2D spiral phase. The behavior of the model
at this special point is determined by the highly degenerate

Conical 
 Spiral 

L =120

ρS
S(q)

Vortex 
Crystal

Helicoidal 
Spin Liquid

JB
OC2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.05  0.1  0.15  0.2  0.25  0.3
T/J

h
/J

FIG. 8. Finite-size phase diagram of a square-lattice frustrated
ferromagnet in applied magnetic field, showing a classical spin liquid
and, at low fields, a vortex crystal [cf. Fig. 1(c)]. The other phases
found are a conical-spiral state interpolating to zero magnetization;
a coplanar Y state and a collinear 1/3-magnetization plateau [cf.
Fig. 1(a)] at intermediate magnetization; and a coplanar 2:1 canted
state interpolating to saturation. Results are taken from classical
Monte Carlo simulations of HFFM

� [Eq. (1)] for the parameter set
JB [Eq. (22)], corresponding to a point of high degeneracy. Phase
boundaries were extracted from anomalies in the order parameter
associated with lattice rotations [Eq. (24)], spin stiffness ρS [Eq. (30)],
and the spin structure factorS(q) [Eq. (33)] for a cluster of N = L2 =
1202 = 14 400 spins. Temperature and magnetic field are measured
in units of J� [Eq. (13)]. The horizontal dashed lines corresponds to
the temperature cuts used in Figs. 9–13 and Fig. 14.
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0

-

(b)

qx
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T = 0.29J

0-

0

-

FIG. 9. Transition from the helicoidal spin liquid into a collinear m = 1/3 magnetization plateau, in applied magnetic field, as revealed by
the spin structure factor S(q) [Eq. (33)]. (a) Spin correlations for T = 0.44J�, showing a ring feature characteristic of the high-temperature
spin liquid. (b) Spin correlations for T = 0.29J�, approaching the transition into an ordered state, showing an enhancement of fluctuations
near to potential ordering wave vectors. (c) Spin correlations for T = 0.24J�, within the collinear m = 1/3 magnetization plateau, showing
Bragg peaks at Q1D

3sub [Eq. (11)], coexisting with the ring feature. Results are taken from classical Monte Carlo simulations of HFFM
� [Eq. (1)],

for a cluster of L2 = 902 spins, with exchange parameters JB [Eq. (22)]. Magnetic field was set to h = 2.4J�, corresponding to the dashed in
line in Fig. 8. The q = 0 component of the spin correlations has been subtracted for clarity.

manifold of states described in Sec. II C. As we shall see,
the ring structure defined in Eq. (20) leaves a characteristic
fingerprint in the spin structure factor for all temperatures and
values of magnetic field.

For a generic choice of parameters on the boundary between
1D and 2D spirals, it is not possible to find commensurate
wave vectors Q which satisfy Eq. (20). However, for specific
choices of parameters J, commensurate wave vectors do exist,
and the parameter set which offers the greatest number of
commensurate states is, in fact, set JB . Here the wave vectors

QR = {(0,2π/3),(π/2,π/3),(π/5,3π/5)}, (42)

together with their reflections and mirrors, fulfill Eq. (20).
In total, this gives 20 different commensurate wave vectors,
compatible with a wide range of cluster sizes.

We begin by establishing the finite-temperature phase
diagram (Fig. 8) using Monte Carlo simulations for a cluster of
size L = 120. For values of applied field h � 1.2J�, the phase
diagram closely follows that of the parameter set JA [Eq. (18)]
(and therefore the Heisenberg antiferromagnet on a triangular
lattice, HAF

� [Eq. (12)]), displaying the succession of canted
Y phase, collinear 1/3-magnetization plateau, and canted 2:1
phase as a function of increasing magnetic field.

Simulations become very challenging at lower values of
applied field, h � 1.2J�, making it very difficult to extrapolate
results to the thermodynamic limit. Still, in this region we can
establish the presence of two additional noncoplanar phases.
At very low temperatures, a conical-spiral phase described by
a single wave vector is favored by thermal fluctuations, as
described in Sec. IV B. At intermediate temperatures, between
this phase and the disordered paramagnet phase, a novel
conical phase, with a more complex spin texture, is stabilized,
as described in Sec. IV C; cf. Fig. 1(c).

All the ordered phases at JB are described by wave vectors
belonging to, or combinations of, QR [Eq. (42)]. All the
transitions from the disordered phase are very clearly observed

to be of first order. The overall ordering-temperature scale is
strongly reduced from the JA case, in units of both J� and
|J1|, indicating the larger role played by frustration in this
case, suppressing the ordering tendency of the model.

A. Spin-liquid phase from a ring of correlations

We consider first the nature of the paramagnetic phase
found for all values of magnetic field at sufficiently high
temperature, as shown in the phase diagram Fig. 8. The highly
degenerate ground-state manifold of HFFM

� at the parameter
set JB [Eq. (22)] is not just of concern at T = 0, but also has
profound consequences at finite temperature. Its effects are
most obvious in the spin structure factorS(q) [Eq. (33)], which
takes on a finite value for all wave vectors q which satisfy, or
nearly satisfy, the ring condition Eq. (22). A corresponding
ring structure can be seen in S(q) for all of the ordered phases
shown in Fig. 8 and is equally prominent for h = 0 [Fig. 1(b)]
and for h = 2.4J� (Fig. 9). In the paramagnetic regions of the
phase diagram (Fig. 8), where no symmetries are broken, the
extra degeneracy gives rise to a classical spin liquid.

The nature of the correlations along the ring does not change
in any fundamental way when magnetic field is applied. In
Fig. 9 we show the evolution of the full structure factor
S(q) at h = 2.4J� as the temperature is lowered from the
disordered phase into the 1/3-magnetization plateau. At high
temperatures and away from the transition [Fig. 9(a)], the
height of S(q) is very uniform, such that many wave vectors
belonging to the ring, or very close to it, contribute equally.
If the temperature is raised from this point, the height of S(q)
just decreases smoothly, and no crossover into a standard
paramagnet is observed at any temperature scale. When the
system is cooled down to near the phase transition T ≈ 0.29J�

[Fig. 9(b)], peaks begin to develop at the wave vectors
Q� [Eq. (36)], corresponding to incipient three-sublattice
magnetic order. Inside the magnetization plateau at even
lower temperature [Fig. 9(c)], Bragg peaks [from the Sz(q)
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(a) (b)

T/J

FIG. 10. Characterization of the helicoidal spin liquid in applied magnetic field h = 2.4J�. (a) Structure factorS⊥(qx,0) [Eq. (35)], showing
a cross section of the characteristic ring of scattering [cf. Fig. 9(a)]. Data for a wide range of system sizes collapse onto a single curve. Dashed
lines are fits to a Lorentzian [Eq. (43)], from which the correlation length ξ is obtained. (b) Temperature dependence of the correlation length
ξ . Results are taken from classical Monte Carlo simulations of HFFM

� [Eq. (1)], for clusters of N = L × L spins, with T = 0.45J� and the
same values of exchange and magnetic field as Fig. 9.

component of the structure factor] are observed, associated
with the broken Z3 symmetry discussed in Sec. III. A diffuse
ring of low-lying excitations can still be observed in this phase,
attesting to the pervasiveness of the ring correlations.

In order to further clarify the physical implications of this
ring in the structure factor, we now focus on the transverse
componentS⊥(q) [Eq. (35)]. Figure 10(a) shows a cut ofS⊥(q)
along the line qy = 0 in the disordered phase for h = 2.4J�
and T = 0.45J�. We find that the structure factor can be fitted
quite well to a (double) Lorentzian expression of the form

S⊥(q) = A2

ξ−2 + (q − q0)2
, (43)

centred at q0 = ±2π/3. Similar fits can be performed for
different cuts of S⊥(q) in the Qx-Qy plane.

The width of the structure factor around q0 is controlled by
the correlation length ξ , which sets a finite length scale for cor-
relations. S⊥(q) shows practically no finite-size dependence
for the clusters studied, attesting to the short-range nature of
the correlations. The correlation length ξ decays slowly with
temperature [Fig. 10(b)], which indicates the stability of the
ring correlations for a wide range of temperatures.

Our next target is the total structure factor arising from
low-energy excitations associated with the ring. First, we need
identify the wave vectors Qring contributing to the total ring
structure factor. A finite ξ means that there are momenta out-
side the T = 0 ring [Eq. (20)] which will contribute to the total
structure factor [cf. Fig. 1(b)]. In order to capture these wave
vectors with a finite spectral weight, we take the one-sublattice
spin-wave dispersion Eq. (A57) [see Appendix A] and impose
an energy cutoff of ωc = 0.01J� on it. Alternatively, using
the inverse of the correlation length of Fig. 10(b) as input,
we can predict approximately the wave vectors which will
be thermally activated. Both approaches provide the same
set of wave vectors belonging to the enlarged ring, but the
latter, correlation-length-based method becomes unwieldy and
computationally more expensive for large system sizes.

The number of momentum vectors, NR , thermally activated
is found to scale linearly with the cluster size NR ∼ L2, for a
very wide range of system sizes (Fig. 11). The area covered
by the ring is given roughly by the product of its width with
its perimeter, which scales with L. This implies that there
are approximately L cuts across the ring such as Fig. 10(a).
The ring has a fixed width in momentum space, set by ξ−1,
which is basically independent of L; see Fig. 10(b). Since
the resolution in momentum space scales with system size as
L−1, the number of points allowed inside each cut of the form
Fig. 10(a) must scale as L. Therefore, the number of points
covered by the ring scales as NR ∼ L × L, and is an extensive
property of the system.

qx

qy

FIG. 11. Evidence that the number of spin configurations con-
tributing to the helicoidal spin liquid, NR , scales linearly with the
system size, N = L2. NR was estimated on the basis of the number
of states lying close to the ring defined by [Eq. (20)], for parameters
JB [Eq. (22)] and system sizes ranging from L = 122 to L = 4502,
as described in Sec. IV A. (Inset) Wave vectors of states contributing
to NR for L = 60.
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L=60
L=72

L=48

T/J

FIG. 12. Comparison between the spectral weight associated
with the ordering vectors of the 1/3-magnetization plateau and that
associated with the remaining wave vectors belonging to the ring
(cf. Fig. 9). The total spectral weight in the ring, �⊥

� [Eq. (44)],
undergoes a discontinuous drop at the ordering temperature T =
2.8J�, but remains finite in the ordered state. Fluctuations at the
ordering vector, �⊥

R−� [Eq. (46)], are associated with a discontinuous
rise at the ordering temperature. Results are taken from classical
Monte Carlo simulations of HFFM

� [Eq. (1)] for system sizes L =
48, 60, 70, and parameters JB [Eq. (22)] with h = 2.4J�.

In order to gain more insight into this state, we define an
integral of the transverse structure factor S⊥(q) [Eq. (35)] over
the manifold of states contributing to the ring

�⊥
R =

∑
q

S⊥(q) ∀ q ∈ {q|ω1SL(q) < ωc}, (44)

as well as a sum over the discrete wave vectors Q� [Eq. (36)]
associated with three-sublattice order

�⊥
� =

∑
q∈{Q�}

S⊥(q), (45)

and the difference of the two

�⊥
R−� = �⊥

R − �⊥
� . (46)

Figure 12 shows how these measures of the ring, normalized
to the number of contributing wave vectors, evolve across
the transition from the high temperature spin liquid into
the 1/3-magnetization plateau for h = 2.4J�. It is clear
that the S(q) ring has a uniform height at temperatures
away from the phase transition. Right above the transition,
enhanced fluctuations in Sx-Sy herald three-sublattice order,
but the defining characteristics of the ring survive both in the
disordered and the ordered limits.

The structure factor per spin,

(�R/L2)/NR ∼ �R/L4, (47)

evaluated at a typical wave vector Qring [Eq. (20)], is itself
not an extensive quantity. Instead, it vanishes as 1/L2, as
can be seen in Fig. 13(a) for a variety of temperatures in
the disordered region. This is also the behavior observed in a
standard paramagnetic region. However, the total ring structure
factor per spin �R/L2 is a function of NR ∼ L2 and should
therefore be an extensive quantity. Figure 13(b) shows that
�R/L2 converges to a finite value as L−2 → 0, and therefore

T= 0.164
T= 0.156
T= 0.171
T= 0.179
T= 0.186
T= 0.194

(a)

(b)

FIG. 13. Evidence for spin-liquid behavior in the finite-size
scaling of the integrated structure factor, �⊥

R [Eq. (44)]. (a) The total
weight associated with spin configurations contributing to the ring
vanishes as 1/L2 in the thermodynamic limit. (b) The structure factor
per spin summed over all ring points, �⊥

R /L2, scales linearly with
the system size and thus persists in the thermodynamic limit. Lines
are a linear fit to the data for the largest system sizes. Results are
taken from classical Monte Carlo simulations of HFFM

� [Eq. (1)] for
h = 2.4J� and T = 0.45J�, with exchange parameters JB [Eq. (22)].

�R is a nonzero quantity in the thermodynamic limit. This is
a direct demonstration of an extensive, nontrivial degeneracy
in the thermodynamic limit an hallmark of a spin liquid.

B. Low-temperature conical spiral

We now turn to the nature of the low-temperature ordered
state found for h/J� � 1 and T/J� � 1.7 in the phase diagram
Fig. 8. We find that specific ordered states, with a wave
vector belonging to the ring manifold [Eq. (20)], are selected
at low temperature. Nonetheless, the ring seen in the spin
structure factor S(q) [Eq. (33)] survives in these ordered
phases, as shown in Fig. 12. For magnetic fields h � 1.2J�, the
magnetization process of the triangular lattice antiferromagnet
is recovered, as described in Sec. III for the parameter set JA

[Eq. (18)]. For values of field 0 � h � 1.2J�, we observe a
strong competition between the coplanar Y state and different
conical states, all with uniform magnetization Sz

i .
In order to better understand this behavior, we have carried

out a low-temperature expansion of the spin-wave excitations
around the T = 0 classical ground-state manifold, which
allows the calculation of corrections to the free energy as a
power series in T . Details of these calculations are given in
Appendix A 1. In the absence of magnetic field, this expansion
predicts that low-temperature fluctuations favor a coplanar
spiral state described by a single incommensurate wave vector
very close to

Q1Q = (π/3,π/2) (48)

(plus associated mirrors and reflections); cf. Fig 15.
When a small magnetic field is applied, the state favored by

fluctuations in the harmonic approach is a conical, noncoplanar
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FIG. 14. Finite-temperature phase transition between conical-spiral state and magnetic-vortex crystal found for a low value of magnetic
field in the phase diagram Fig. 8. (a) Structure factor S⊥(q) [Eq. (35)], within the conical-spiral state for T = 0.13 J�, showing peaks at Q1Q

[Eq. (48)]. (b) Structure factor within the magnetic-vortex crystal for T = 0.175 J�, showing Bragg peaks at Q4Q [Eq. (49)]. (c) Temperature
dependence of the peaks, showing a phase transition from conical spiral to magnetic-vortex crystal at T ≈ 1.6 J� (cf. Fig 8). (d) Illustrative
spin configuration in the plane perpendicular to magnetic field associated with the 1Q conical-spiral state. (e) Illustrative spin configuration
in the plane perpendicular to magnetic field associated with the 4Q magnetic-vortex crystal. Results for S⊥(q) are taken from classical Monte
Carlo simulations of HFFM

� [Eq. (1)] for h = 2.4J�, with exchange parameters JB [Eq. (22)].

version of the h = 0 state; cf. Figs. 14(a) and 14(d). The
wave vector of the h = 0 spiral is preserved in the Sx-Sy

plane, while all spins have a constant magnetization along the
Sz spin direction. This state has been identified previously
as the conical umbrella state in the anisotropic triangular
lattice [3,51,72,73]. According to the low-temperature ex-
pansion, the entropy of the Y coplanar state increases with
increasing value of magnetic field, while that of the conical
state decreases. For fields h � 0.8J�, the Y state is predicted
to be the preferred low-temperature state.

Monte Carlo simulations confirm that, for values of field
0 � h � 0.8J�, the conical state is stabilized at low tem-
perature, while for 0.8 � h � 3J� the Y state is favored.
The first-order phase transition between both phases is very
difficult to observe in MC simulations, since it happens
after two other symmetry-breaking phase transitions at higher
temperature. We also find, from, e.g., a negative spin stiffness
(not shown), that simulations seeded with a conical spin texture
with an in-plane wave vector Q1Q = (π/3,π/2) show a strong
tendency to become slightly incommensurate in the Sx-Sy

plane, in full agreement with the harmonic approximation.
This selection of an incommensurate, noncoplanar phase

by thermal fluctuations is an interesting counterexample to
the rule of thumb that fluctuations prefer collinear, or at
worst coplanar, phases, as a manifestation of the celebrated
order-due-to-disorder effect; cf. [59].

C. Magnetic vortex crystal

We next consider the nature of the ordered state found for
intermediate temperatures, 1.7 < T/J� � 2.2, and low values
of magnetic field, h/J� � 1.2, between the low-temperature
conical spiral and the high-temperature spin-liquid phase,
as shown in the phase diagram Fig. 8. In this parameter
range, Monte Carlo simulations started from a random initial
configuration often get trapped in local free-energy minima,
resulting in domain walls between different phases. This
hints at the presence of competing phases, and a first-order
transition, at a lower temperature than the initial ordering
transition. Further simulations with open boundary condi-
tions [74] reveal a tendency for the edge spins to be collinear
with Sz, while the bulk reproduces the same behavior as
for periodic boundary conditions. We resort to comparing
different parallel-tempering simulations for each value of field,
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initialized from a variety of different ordered states, including
random configurations, mixing different states in a single
replica or across temperature space. This approach does not
permit a very accurate location of the phase transition, but
gives us confidence on the phases present and on the overall
topology of the phase diagram.

Carrying out this analysis, we find a constant-magnetization
state with a spin texture in the Sx-Sy plane described by
four wave vectors; cf. Fig. 1(c). Usually, multiple-Q states
violate the fixed spin-length constraint |Si | = 1 and therefore
are not favored at low temperatures. However, it is possible to
construct a very specific 4Q state out of spirals with the wave
vector

Q4Q = (3π/5,π/5) (49)

and symmetry-related vectors. For a given magnetization

m = Sz
i = const., (50)

the spin configuration associated with this 4Q state is

Sx
i = [1 − m2]

1
2 Re[F (ri)], (51)

S
y

i = [1 − m2]
1
2 Im[F (ri)], (52)

where

F (ri) = eiQA·ri + ei2π/5e−i·QA.ri

+ ei4π/15ei·QB ·ri + e−i8π/15e−iQB ·ri , (53)

and

QA = (π/5, − 3π/5),

QB = (3π/5,π/5). (54)

For vanishing magnetization (m = Sz
i ≡ 0), the 4Q state has

the form of a lattice of vortices shown in Fig. 14(e). By
construction, the 4Q state interpolates smoothly to finite
magnetization, where it takes on the form illustrated in
Fig. 1(c). The associated spin structure factor has four peaks
[cf. Fig. 14(b)].

Monte Carlo simulations for a range of fields 0 � h �
1.2J�, initialized with half of the replicas in the 1Q state, and
the other half in the 4Q state, paint a consistent picture of a
double phase transition, as shown in Fig. 14(c), for h = 0.8J�.
As the system is cooled down from the paramagnet, a region
is found where the 4Q state is stabilized, followed by the
1Q state at a lower temperature. We conclude that the inner
phase transition is probably weakly first order, since we
observe no discontinuities in the internal energy, nor any
significant release of entropy. Unlike simulations of the 1Q

state initialized with the Q1Q = (π/3,π/2) wave vector, the
4Q state does not show a tendency to become incommensurate,
which attests to its stability. We observe this scenario of two
ordered phases down to the h = 0 limit, where both phases
lose their conical character by becoming coplanar.

The spin textures of the two noncoplanar states are funda-
mentally different. A spiral phase described by a single wave
vector breaks a reflection symmetry, which can be detected,
for example, by defining a chiral order parameter on the x

bonds,

κtotal = 1

N

∑
i

(Si × Si+x̂)z. (55)

Conversely, multiple-Q states typically have vanishing net
chirality 〈κtotal〉 = 0. The 4Q state is no exception, and the
chirality defined on each plaquette points along the Sz direction
but with alternating signs, so that the total chirality is zero.
This describes a spin texture where the spin texture winds
up in alternating directions across the lattice, which may be
visualized as a crystalline structure of alternating magnetic
vortices [Fig. 14(e)]. We have not found other possible
multiple-Q states with uniform Sz which could be stabilized
in this model.

V. DISCUSSION OF RESULTS

In this article, we have explored some of the novel phases
which can arise in a square-lattice frustrated ferromagnet
in applied magnetic field. In the process, we have seen a
triangular-lattice antiferromagnet reborn on a square lattice,
and uncovered a spin liquid and a vortex crystal, both
with finite magnetization. In what follows, we examine
how these phases compare with known results for frustrated
antiferromagnets and sketch some of the possible conse-
quences of quantum fluctuations, previously touched upon in
Refs. [46,47].

A. Three-sublattice physics and 1/3-magnetization plateau

The phase diagram for the square-lattice frustrated ferro-
magnet HFFM

� [Eq. (1)] for the parameter set JA [Eq. (18)],
shown in Fig. 2, is markedly different from what might
normally be expected in a square-lattice frustrated magnet [75].
However, it is remarkably similar to that of the triangular-
lattice antiferromagnet, developed in [23]. This similarity
extends beyond the phases found—canted Y state, collinear
1/3-magnetization plateau, and 2:1 canted phase—and the
topology of the resulting phase diagram, into the finite-size
scaling of the associated phase transitions (compare Figs. 2
and 5 of this article with Figs. 1 and 2 of [23]).

These results are striking, since the collinear 1/3-
magnetization plateau is usually thought to be a hallmark
of triangular-lattice physics, stabilized by a delicate order-
by-disorder effect [6,59,60]. Here, however, a robust 1/3-
magnetization plateau, with three-sublattice order, arises in a
model more naturally associated with incommensurate phases.
In fact, for this particular parameter set, the only significant
difference between the square-lattice and triangular-lattice
models is the way in which ordered phases break lattice-
rotation symmetry.

Given the degree of fine tuning in the choice of parameters,
it is natural to ask what happens when HFFM

� [Eq. (1)] is tuned
away from the special line J3 = J2 − |J1|/2 (cf. Fig. 4). In
this case, the collinear and coplanar phases of Fig. 2 would no
longer belong to the T = 0 ground-state manifold. However,
commensurate, collinear phases with Q = ( 2π

3 ,0) or (0, 2π
3 )

are still generically more favored by thermal fluctuations
than noncollinear or noncoplanar phases [59]. In the case of
the Heisenberg antiferromagnet on an anisotropic triangular
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lattice, it is known that quantum fluctuations can stabilize a
1/3-magnetization plateau, even where it is not a classical
ground state [57,73,76].

In the present case, our preliminary Monte Carlo sim-
ulations hint at a rich phase diagram near the line J3 =
J2 − |J1|/2. At the lowest temperatures, conical phases with
incommensurate wave vector predominate. However, at higher
temperatures, commensurate, coplanar phases, and, in partic-
ular, the collinear 1/3-magnetization plateau, are restored by
fluctuations [74]. The full determination of the corresponding
phase diagram remains an open problem and may require use
of an algorithm specially adapted to incommensurability [77].

Another question of obvious interest is what happens
for quantum spins. For large S, it seems reasonable to
expect that quantum fluctuations would act much like thermal
fluctuations, stabilizing triangular-lattice physics in the square-
lattice frustrated ferromagnet, both on the special line J3 =
J2 − |J1|/2 and near it. The extreme quantum limit of HFFM

�
[Eq. (1)], for spin S = 1/2, has already been studied in exact
diagonalization [46]. These studies confirm the existence of
1/3-magnetization plateau at T = 0, for intermediate values
of magnetic field, and a range of parameters close to the line
J3 = J2 − |J1|/2. However, at higher values of field, instead
of interpolating to saturation through a canted phase, the
magnetization plateau gives way to a quantum spin-nematic
phase (cf. [9,47]).

It is also reasonable to ask what phases arise for other
parameter sets where the classical ground state of HFFM

�
[Eq. (1)] is commensurate with the lattice. These will occur on
lines

J1 + 2J2 + 4J3 cos

(
2π

p

)
= 0, (56)

for all integer p > 3, with associated ordering vector

Qp =
(

2π

p
,0

)
. (57)

The parameter set JA [Eq. (18)], with three-sublattice order,
corresponds to p = 3.

Our preliminary investigation of this question, using clas-
sical Monte Carlo simulation [74] and exact diagonaliza-
tion [46], suggests that the answer is not simple. For p = 4,
we do indeed find four-sublattice order. However, thermal
fluctuations favor a collinear state with “up-up-down-down”
stripe order over the expected 1D spiral. This collinear state
cants in applied magnetic field in a way reminiscent of the
planar (XY ) model [78]. Quantum fluctuations select the
same, collinear, stripe order for p = 4 [46]. Meanwhile, exact
diagonalization carried out for J = (−1,0.3,0.175), i.e., p =
6, for clusters of up to N = 36 spins, indicate that the ground
state is a commensurate 1D spiral. They also suggest the
possibility of a 1/3-magnetization plateau in applied magnetic
field. Clearly, this issue merits further investigation.

B. Spin-liquid and ring correlations

The phase diagram shown in Fig. 8, calculated for the
parameter set JB , where different spiral phases meet, looks
superficially similar to the one for the parameter set associated
with three-sublattice order JA, shown in Fig. 2. However, the

addition of a degenerate manifold of classical ground states
leads to a number of crucial differences, especially at high
temperature, and for low values of magnetic field.

The most obvious consequence of the enlarged ground-state
manifold is the ring seen in the structure factor, as shown in
Fig. 9. This ring is present in both the low-temperature ordered
phases and the high-temperature paramagnet for all values
of magnetic field. Simulations for more generic parameter
sets [74] confirm that this ring is a generic feature of the
classical phase boundary between 1D and 2D spiral ground
states (cf. Fig. 4).

At finite temperature, the number of low-lying states
contributing to the ring in the structure factor, �R [Eq. (44)],
scales with the size of the system (Figs. 10 and 11). As a
consequence, the ring makes a macroscopic contribution to
the entropy of the system, even though the number of classical
ground states, defined by Eq. (20), scales only with the linear
dimension of the system L. The high-temperature paramagnet
phase in Fig. 8 can therefore be viewed as a spin liquid with a
finite magnetization.

The spin liquid found in this two-dimensional frustrated
ferromagnet differs from well-known three-dimensional ex-
amples, such as spin ice [79], or the pyrochlore Heisenberg an-
tiferromagnet [80] in that the classical ground-state manifold
is subextensive. It has more in common with problems where
the ground-state manifold correspond to lines or surfaces in
reciprocal space, such as the chiral spin liquid found on the
diamond lattice [81], or the ring and “pancake” liquids reported
in the frustrated honeycomb antiferromagnet [48]. We note,
however, that, unlike the honeycomb lattice example, we do
not find any crossover to a conventional paramagnet at high
temperatures.

In the absence of a more complete description, we refer
to the new state as a “helicoidal” spin liquid, in recognition
of the fact that the system displays short-range helicoidal
correlations [82]; cf. Fig. 10. The better characterization of
this phase remains an open problem.

C. Conical spiral

Besides supporting a spin liquid, the ground-state manifold
for the parameter set JB [Eq. (22)] has the special property
that it contains a large number of simple, commensurate
wave vectors, QR [Eq. (42)]. This sets the stage for a rather
unusual form of order-by-disorder, in which both single-Q and
multiple-Q ordered states are selected by fluctuations from
states belonging to the ring of allowed Q (cf. Fig. 9). Both of
these phases are present for h = 0 and persist for a finite range
of magnetic field, as shown in Fig. 8.

At the lowest temperatures, thermal fluctuations select an
incommensurate single-Q state with the character of conical
spiral, familiar from studies of the Heisenberg antiferromagnet
on an anisotropic triangular lattice [3,51,72,73]. This spiral
has uniform magnetization Sz and wave vector very close
to Q1Q [Eq. (48)]. In the limit T → 0, we can use a low-
temperature expansion to show that this incommensurate spiral
makes a larger contribution to entropy than any other state in
the ground-state manifold of the model (cf. Appendix B). The
same state is found in classical Monte Carlo simulations at low
temperatures T � 0.17J� and low values of magnetic field
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h � J�; cf. Fig. 8. At low temperatures, but larger values of
magnetic field, this incommensurate non–coplanar state gives
way to the commensurate, coplanar Y state familiar from the
triangular-lattice antiferromagnet (cf. Fig. 8 with Fig. 1 of
Ref. [62]).

It is a widely quoted “rule of thumb” that fluctuations
in frustrated magnets, whether quantum or classical, favor
coplanar—and, if possible, collinear—states [59]. It is also
frequently assumed (without proof) that quantum and thermal
fluctuations will favor the same state. The present case provides
an interesting counterexample. Somewhat surprisingly, ther-
mal fluctuations select an incommensurate spiral for T → 0,
as discussed above. Meanwhile, as shown in Appendix D,
quantum fluctuations, treated at the level of linear spin-wave
theory, prefer a state with commensurate wave vector Q1D

3sub
[Eq. (11)].

By analogy with the quantum Heisenberg antiferromagnet
on a triangular lattice [60], we anticipate that the resulting
quantum ground state will support three-sublattice, coplanar,
120◦ order for h = 0, giving way to a coplanar Y state in
applied magnetic field. Thus, for low values of magnetic
field, quantum and thermal effects compete, setting up the
possibility of a phase transition from the commensurate
quantum ground state into the incommensurate state favored by
thermal fluctuations, as temperature is increased. In practice,
this would mean that the coplanar Y state, already favored
by thermal fluctuations for larger value of field—cf. Fig. 8—
would displace the conical spiral for T → 0.

D. Vortex crystal

While the conical spiral is a relatively conventional phase,
the structure of the vortex crystal marks it out as very
different from anything found in triangular-lattice Heisenberg
antiferromagnets. The vortex crystal is formed through the
coherent superposition of classical ground states with four,
symmetry-related wave vectors [Fig. 14(b)]. It is not selected
by harmonic thermal fluctuations (cf. Appendix C), but rather
by anharmonic (interaction) effects which become important
at higher temperatures. At a more intuitive level, this 4Q state
can be visualized as a lattice of vortices in Sx-Sy plane, with
alternating vector chirality [Fig. 1(c)]. The resulting “crystal”
has a ten-site unit cell [cf. Fig. 14(e)] and meets the usual
definition of a magnetic supersolid, since it spontaneously
breaks the translational symmetry of the lattice, while at
the same time breaking spin-rotation symmetry about the
direction of the magnetic field (cf. Refs. [7,62] and references
therein). However, it differs from other examples of magnetic
supersolids, in that it has a uniform magnetization Sz, and
translational symmetry is instead broken by the spin texture
perpendicular to magnetic field.

Crystals formed of vortices have been widely studied in
the context of type II superconductors, where they are known
as a “vortex lattice” [54,55]. Lattices of magnetic vortices
are, however, very unusual, recent work on Mott insulators
notwithstanding [52]. The 4Q state, described above, is not
an exact analog of a superconducting vortex lattice, since it
contains vortices with alternating circulation. Nonetheless, it
is an interesting step in that direction. The vortex crystal also
proves to be a robust state; we have checked in simulation that it

survives for deviations in exchange parameters δJ ≈ 0.01|J1|.
This robustness reflects the fact that it is only possible to
form a 4Q state from classical ground states specific to the
parameter set JB , ruling out any continuous transformation
into an incommensurate state.

Recently, more attention has been paid to a different
kind of crystals of topological defects: lattice states of
Skyrmions [11,12,51,83]. In a Skyrmion lattice the spin texture
also also winds in alternating directions, but the core of
each Skyrmion is associated with a modulated Sz. In fact,
modulation along the Sz direction seems to be a generic feature
of multiple-Q states found in magnetic models [50,51]. This
is a strong constraint and might account for the lack of other
examples of vortex crystals in spin models. In light of the
recent work on Skyrmion lattices, it might also be interesting
to explore how a vortex crystal couples to itinerant electrons.

It would also be of value to investigate how the 1Q and
4Q states found in classical simulations of HFFM

� evolve in
the presence of quantum fluctuations. On general grounds, we
anticipate that the phases shown in Fig. 8 should survive for
large (quantum) spin. In principle, this could be investigated
by self-consistent mean-field methods. The picture for spin- 1

2
is, however, harder to assess. Exact diagonalization studies
reveal a very rich ground-state phase diagram in the absence
of magnetic field and suggest a disordered ground state for
the parameter set JB (Refs. [46,47]). However, given the small
cluster sizes available, and the large unit cell of the 4Q state, it
is impossible to rule out a vortex crystal ground state for spin
S = 1/2.

VI. CONCLUSIONS

In this article we have explored some of the novel phases
which arise in a simple model of a two-dimensional frustrated
ferromagnet; the J1-J2-J3 Heisenberg model on a square
lattice, HFFM

� [Eq. (1)]. We have chosen to concentrate on
the effect of thermal, rather than quantum fluctuations, using
large-scale classical Monte Carlo simulation, complemented
by linear spin-wave theory, to determine the finite-temperature
phase diagram of the model in applied magnetic field.

Two distinct parameter sets were considered. The first of
these, JA [Eq. (18)], was chosen in order to favor three-
sublattice stripe order. In this case we find a phase diagram,
Fig. 2, remarkably similar to that of the Heisenberg antiferro-
magnet on a triangular lattice [23]. In applied magnetic field,
a 120◦ ground state transforms first into a canted Y state and
then into a collinear 1/3-magnetization plateau, illustrated in
Fig. 1(c), before interpolating through a 2:1 canted phase to
saturation.

The second parameter set, JB [Eq. (22)], was chosen to
lie at the classical phase boundary between one-dimensional
and two-dimensional spiral ground states. Here an enlarged
ground-state manifold manifests itself in a ring structure in the
spin structure factor [Fig. 1(b)] and in a much richer phase
diagram (Fig. 8). In this case, the phases found include a
high-temperature spin liquid and a number of new ordered
phases, as well as the Y -state, 1/3-magnetization plateau and
2:1 canted phase familiar from the Heisenberg antiferromagnet
on a triangular lattice. In particular, for low values of magnetic
field, a multiple-Q state with the character of a vortex crystal
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[Fig. 1(c)] competes with an incommensurate conical-spiral
state. These results are quite striking, and the subtle play of
order by disorder which drives the finite-temperature phase
transition between the incommensurate conical spiral and
vortex crystal states would have been very difficult to anticipate
a priori.

The abundance of exotic phases found in this simple model
suggests that there is much still to learn about frustrated
ferromagnets. In particular, questions of commensurability,
and of the role of quantum fluctuations, deserve further
investigation. With respect to commensurability, an obvious
open question is whether vortex crystals, like the one studied
in this article, can form different lattices, or lattices with
different lattice constants. Quantum effects are expected to
lead to an even richer phenomenology, stabilizing new forms of
magnetic order, as well as valence bond solid and spin-nematic
states, with exact diagonalization hinting at the possibility of
a spin-liquid ground state [46]. Also, while the square-lattice
Heisenberg model HFFM

� provides a simple context for these
questions, we anticipate that the same effects may be observed
in a much wider range of systems.

We conclude with a few comments on experiment.
A number of magnetic insulators have been proposed
as examples of square-lattice frustrated ferromagnets.
These include the vanadium phosphates Pb2VO(PO4)2 [16],
BaCdVO(PO4)2 [17], and SrZnVO(PO4)2 [18] and the copper-
based topotactic ion-exchange systems (CuCl)LaNb2O7 [19],
(CuBr)Sr2Nb3O10, [20], and (CuBr)Sr2Nb3O10 [21]. The prop-
erties of the vanadium phosphates in applied magnetic field
appear to be well described by a simple J1-J2 model [38,39].
However, the much richer phenomenology of the cuprates
suggests more complicated exchange interactions, which need
not have the full symmetry of the square lattice [22].

In the absence of a clear experimental validation from,
e.g., inelastic neutron scattering, the Hamiltonian HFFM

�
[Eq. (1)] is probably best regarded as a toy model capturing
some of the the interesting features of quasi-two-dimensional
frustrated ferromagnets, rather than a complete description
of the exchange interactions in these layered cuprates.
Nonetheless, this model does score two notable successes,
in providing a route to both the 1/3-magnetization plateau
observed (CuBr)Sr2Nb3O10 [20] and the helical order found
in (CuBr)Sr2Nb3O10 [21]. In the light of this, it would be
very interesting to see further experiments on square-lattice
frustrated ferromagnets in applied magnetic field.
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APPENDIX A: LOW-TEMPERATURE ENTROPY IN THE
HARMONIC APPROXIMATION AND ITS RELATION

TO SPIN-WAVE THEORY

In this appendix we provide details of the spin-wave cal-
culations used to explore the different ordered phases selected
by fluctuations. We start by reviewing the low-temperature
expansion of classical spin model and show how it can be used
to explicitly calculate the free energy, and thereby the entropy,
associated with a given form of magnetic order, to leading
order in T (Sec. 1 of this Appendix). We then show how
equivalent results for the free energy can be obtained from the
spin-wave dispersion obtained within linear spin-wave theory
for the associated quantum model, using the conical-spiral
state as a worked example (Sec. 2 of this Appendix).

Finally, we derive explicit expressions for the entropy asso-
ciated with the different forms of magnetic order encountered
in this work: (i) conical spirals in applied magnetic field
(Sec. 3 of this Appendix ), (ii) coplanar K-sublattice states
with in-plane magnetic field, such as the Y state (Sec. 4 of this
Appendix), (iii) canted conical K-sublattice states such as the
4Q state in applied field (Sec. 5 of this Appendix).

1. Entropy within a classical low-temperature expansion

The low-temperature thermodynamics of a classical spin
model of the form Eq. (1) can be calculated through an
expansion of the Hamiltonian in small fluctuations about the
ground-state (T = 0) configuration. For this purpose, one may
proceed as follows. Let us consider a magnetic ground state
with K sublattices. Without loss of generality, it is possible
to select a reference frame such that, in this ground state, the
spin on the νth sublattice (ν = 1, . . . ,K) in the mth unit cell
at position Rν,m is written as

S0
ν,m =

⎡
⎢⎣

Sx
ν,m

S
y
ν,m

Sz
ν,m

⎤
⎥⎦ =

⎡
⎢⎣

sin(θν,m) sin(φν,m)

cos(θν,m)

sin(θν,m) cos(φν,m)

⎤
⎥⎦. (A1)

We then choose for each site (ν,m) a local frame (ẽx,ẽy,ẽz),
rotated from the reference frame, such that ẽz coincides with
the ground-state spin direction S0

ν,m, and expand the spin
components in this frame as

Sν,m =

⎡
⎢⎣

xν,m

yν,m

zν,m ≈ 1 − x2
ν,m+y2

ν,m

2

⎤
⎥⎦, (A2)

where xν,m and yν,m denote transverse components of a spin
deviation. One has, in the harmonic approximation,

H = H(0) + H(2), (A3)

where H(0) is the energy of the ground state and H(2) is
quadratic in spin deviations. For N spins with Nc unit cells
(Nc = N/K),

H(2) = 1
2 ξ̂ TMξ̂ , (A4)

where ξ̂ is a 2N -dimensional vector of spin deviations,

ξ̂ T = [x1,1, . . . ,xK,Nc,y1,1, . . . ,yK,Nc], (A5)
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andM a symmetric 2N × 2N matrix. By Fourier transforming
the spin deviations

x(y)ν,m = 1√
Nc

∑
k

x(y)ν,ke
ik·Rν,m , (A6)

Eq. (A4) becomes

H(2) = 1

2

∑
k∈MBZ

ξ̂ T
−kM(k)ξ̂k (A7)

where

ξ̂ T
k = [x1,k, . . . ,xK,k,y1,k, . . . ,yK,k]. (A8)

Here MBZ denotes the magnetic Brillouin zone for the
K-sublattice structure, and M(k) is a 2K × 2K Hermitian
matrix. Diagonalizing M(k) by a unitary transformation, one
obtains the form

H(2) = 1

2

2K∑
ν

∑
k∈MBZ

κν,kζν,kζν,−k, (A9)

where κν,k are the eigenvalues of M(k). The free energy per
site at low T is written as

F
N

= E0

N
− T ln T − T

Ssw

N
+ O(T 2), (A10)

where

Ssw

N
= −〈ln κν,k〉 = − 1

2N

2K∑
ν=1

∑
k

ln κν,k, (A11)

is the entropy per spin associated with harmonic spin fluctu-
ations [84]. We note that the evaluation of 〈ln κν,k〉 does not
require the computation of the eigenvalues of M(k) but only
of its determinant |M(k)|, since

〈ln κν,k〉 = 1

2N

∑
k

ln

[
2K∏
ν

κν,k

]

= 1

2N

∑
k

ln |M(k)|. (A12)

2. Alternative derivation of entropy from linear
spin-wave theory for a quantum model

It is also possible to evaluate the determinant |M(k)|
[Eq. (A12)], which determines the low-temperature entropy
of classical spins [Eq. (A11)], starting from a linear spin-wave
(LSW) theory for quantum spins. To show how this works, we
first derive the large-S, LSW expansion of HFFM

� [cf. Eq (1)]
and then take a classical limit, setting S = 1.

We consider the same ground-state configuration with K

sublattices as discussed in Sec. 1 of this Appendix. After
the rotation to the local frames and a Holstein-Primakoff
transformation of spin operators into bosonic creation and
annihilation operators a

†
ν,k and aν,k,

Sν,m ≈

⎡
⎢⎢⎣

√
S/2(aν,m + a

†
ν,m)

−i
√

S/2(aν,m − a
†
ν,m)

S − a
†
ν,maν,m

⎤
⎥⎥⎦, (A13)

the harmonic Hamiltonian for spin S is written in the form

H(2)
qu = 1

2

∑
k

[â†kM(k)âk − �k], (A14)

where

â†k = [a†
1,k . . . ,a

†
K,k,a1,−k, . . . ,aK,−k], (A15)

M(k) denotes a 2K × 2K matrix, and �k is a scalar function
which determines the zero-point energy associated with a given
form of order.

We can diagonalize H(2)
qu [Eq. (A14)] using a (paraunitary)

Bogoliubov transformation [85]

âk = Tkb̂k, (A16)

such that

T
†

k I−1Tk = I−1, (A17)

with

I−1 =
[
IK 0

0 −IK

]
, (A18)

and a K × K identity matrix IK , brings H(2) into a diagonal
form,

H(2)
qu = 1

2

∑
k

[b̂†
k�(k)b̂k − �k], (A19)

with

�(k) = I−1T
−1

k I−1M(k)Tk =
[
ωk 0

0 ω−k

]
, (A20)

where ω̃k is the diagonal matrix

ω̃k =

⎡
⎢⎢⎣

ω1,k 0
ω2,k

. . .
0 ωK,k

⎤
⎥⎥⎦ (A21)

and ων,k is the spin-wave frequency in the ν branch at wave
vector k.

We now consider a classical limit in Eq. (A14) by setting
S = 1 in order to compare it with the classical harmonic
Hamiltonian Eq. (A4). In the classical limit the spin operators
aν,k and a

†
ν,k are replaced with complex conjugate scalar

fields ψν,k and ψ∗
ν,−k. (This corresponds to considering a

path integral formulation and omitting the imaginary-time
dependence in the fields.) In this classical limit, the Holstein-
Primakoff transformation Eq. (A13) of S = 1 spins in the
lowest order becomes equivalent to the expansion Eq. (A2)
of classical spins, if we set

ψν,k = (xν,k + iyν,k)/
√

2,

ψ∗
ν,−k = (xν,−k − iyν,−k)/

√
2. (A22)

Thus, the classical limit of the quantum S = 1 harmonic
Hamiltonian becomes equivalent to the classical harmonic
Hamiltonian under the transformation

ψ̂k = T ξ̂k, (A23)
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with

ψ̂T
k = [ψ∗

1,k, . . . ,ψ
∗
K,k,ψ1,k, . . . ,ψK,k], (A24)

and

T = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −i 0

1 −i

. . .
. . .

0 1 0 −i

1 0 i 0

1 i

. . .
. . .

0 1 0 i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A25)

Since �k originates from commutation relations of operators,
it can be neglected in the classical limit. Comparing both
classical Hamiltonians, one finds that

ξ̂ T
−kM(k)ξ̂k = ψ̂T

−kM(k)ψ̂k, (A26)

which entails

M(k) = T †M(k)T . (A27)

From this relation one immediately obtains

|M(k)| = |M(k)|, (A28)

since |T †||T | = 1, and from Eq. (A20)

|M(k)| = |�(k)| =
K∏
ν

ων,kων,−k. (A29)

Setting S = 1, we obtain the relation

|M(k)| =
K∏
ν

ων,kων,−k. (A30)

With this result in place, the entropy Ssw entering into the
classical free energy F [Eq. (A10)] can be calculated from the
linear, quantum spin-wave dispersion ων,k [Eq. (A21)] through

Ssw

N
= −〈ln κk〉 = 1

2N

∑
k

ln |M(k)|

= − 1

N

K∑
ν=1

∑
k

ln ων,k = −〈ln ωνk〉. (A31)

We explicitly show in the next section that Eq. (A30) holds
for spiral states. We note that the spin-wave frequencies ων,k
could also be obtained by solving the semiclassical equations
of motion for the quantum spin-1 model.

In conclusion, the classical entropy per spin, Ssw/N , can
be calculated from either the determinant of the matrix
M(k) [Eq. (A12)] found within a classical low-temperature
expansion or the values of the dispersion ων,k obtained within
LSW theory [Eq. (A21)]. The first approach is slightly simpler
but the latter is also interesting as it provides information on
the dynamics for both the classical and the quantum model in
the semiclassical approximation. It may also be more rapidly
implemented if the LSW theory of the model has been derived
previously.

3. Conical spirals

For the case of conical spirals, it is convenient to choose
the reference frame such that the magnetic field h is along the
Sy axis, instead of the Sz axis. The ground-state spins of the
conical spirals have then the same projection on the Sy axis,
whereas their projections on the Sx-Sz plane describe a spiral
with wave vector Q. So, they can be written as in Eq. (A1), with
equal θ for all sites, introducing just one sublattice (K = 1)
as φ1,m = φm = Q · Rm, where Rm is the location of the site
m. After the rotation to the local frames (ẽx,ẽy,ẽz) and the
expansion in spin deviations, the harmonic Hamiltonian reads

H(2) = 1

2

∑
k

ξ̂ T
−kM(k)ξ̂k

= 1

2

∑
k

[x−k,y−k]

[
Mxx(k) Mxy(k)

Myx(k) Myy(k)

][
xk

yk

]
. (A32)

Here M(k) is the 2 × 2 Hermitian matrix with coefficients

Mxx(k) = 1

2
[J (k + Q) + J (k − Q)] − J (Q),

Myy(k) = Mxx(k) cos2 θ + [J (k) − J (Q)] sin2 θ, (A33)

Mxy(k) = [Myx(k)]∗ = 1

2i
[J (k + Q) − J (k − Q)] cos θ,

where J (k) is the Fourier transform of the interactions, given
in Eq. (5). The canting angle θ is fixed by

cos θ = h

J (0) − J (Q)
. (A34)

Next we describe the LSW theory of the quantum spin-S
model. After the rotation to the local frames and a Holstein-
Primakoff transformation of spin operators into bosonic
creation and destruction operators a

†
k and ak, the harmonic

Hamiltonian for spin S is written as [76,86]

H(2)
qu = 1

2

∑
k

[â†kM(k)âk − �k], (A35)

where

â†k = (a†
k,a−k) (A36)

and

�k = −SJ (Q) (A37)

(cf. [87]). The 2 × 2 matrix M(k) is given by

M(k) =
[
A(k) + C(k) B(k)

B(k) A(k) − C(k)

]
, (A38)

with

A(k) = S

4
{(cos2 θ + 1)[J (k + Q) + J (k − Q)] − 4J (Q)

+ 2 sin2 θJ (k)},
B(k) = S

4
sin2 θ [J (k + Q) + J (k − Q) − 2J (k)],

C(k) = S

2
cos θ [J (k + Q) − J (k − Q)]. (A39)
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A Bogoliubov transformation,

âk = Tkb̂k, (A40)

brings H(2)
qu into a diagonal form,

H(2)
qu = 1

2

∑
k

[b̂†
k�(k)b̂k − �k], (A41)

with

�(k) =
[
ωk 0

0 ω−k

]
, (A42)

where the spin-wave dispersion is

ωk =
√

[A(k) + B(k)][A(k) − B(k)] + C(k). (A43)

In the case of S = 1 we have the following relations:

Mxx(k) = A(k) + B(k),

Myy(k) = A(k) − B(k), (A44)

Mxy(k) = iC(k).

One can indeed directly see from Eqs. (A43) and (A44) that

ωkω−k = A2(k) − B2(k) − C2(k)

= Mxx(k)Myy(k) − |Mxy(k)|2
= |M(k)|, (A45)

and hence

Ssw

N
= − 1

N

∑
k

ln ωk = −〈ln ωk〉. (A46)

4. Spin-wave dispersion in coplanar K -sublattice states

We now turn to the case of coplanar ground states such as
the Y state with an in-plane field (or the coplanar 4Q state in
zero field) which require the introduction of K sublattices. For
the sake of greater generality we rewrite the Hamiltonian as

H =
∑

〈ν,m;ν ′,m′〉
Jν,m;ν ′,m′Sν,m · Sν ′,m′ − h ·

∑
ν,m

Sν,m. (A47)

The Fourier transform of the exchange couplings is defined by

Jν,ν ′(k) =
∑
m

Jν,0;ν ′,meik·(Rν′ ,m−Rν,0). (A48)

Choosing the reference frame such that the ground-state spins
lie in the Sx-Sz plane, with h along the Sz axis, the ground-state
spins can then be written as in Eq. (A1), with θ = π/2 for
all sites and φν,m = φν independent of the unit cell. After
expressing the spin deviations in the local frames, one obtains
a harmonic Hamiltonian of the form Eq. (A4) with

M(k) =
[
Mxx(k) Mxy(k)

Myx(k) Myy(k)

]
, (A49)

where Mαβ (k) (α,β = x,y) are K × K matrices given by

Mxx
ν,ν ′(k) = Jν,ν ′(k) cos φν,ν ′ + δν,ν ′[h cos φν − Nν],

Myy

ν,ν ′(k) = Jν,ν ′(k) + δν,ν ′[h cos φν − Nν], (A50)

Myy

ν,ν ′(k) = Myx(k) = 0,

with φν,ν ′ = φν − φν ′ and

Nν =
∑
ν ′

Jν,ν ′(0) cos φν,ν ′ . (A51)

There are K = 3 sublattices in the Y state. The expressions
for the angles φν are similar to those found for the triangular
antiferromagnet,

φ1 = π,

φ2 = −φ3 = arccos
1

2

(
h

3J�
+ 1

)
, (A52)

where J� is given in Eq. (13), whereas the exchange couplings
Eq. (A48) are

Jν,ν(k) = J1 cos(ky) + J3 cos(2ky) , {ν = 1,2,3}
J1,2(k) = J2,3(k) = J3,1(k)

= J1

2
eikx + J2e

ikx cos(ky) + J3

2
e−2ikx . (A53)

For the 4Q states the number of sublattices is K = 10 and we
do not show the matrix of couplings Jν,ν ′ (k).

5. Spin-wave dispersion in canted K -sublattice states

Here we consider canted conical states with K sublattices.
As for the case of conical spirals, the reference frame is chosen
such that the magnetic field is along the Sy axis and the ground-
state spins can then be written as in Eq. (A1). These canted
conical states have equal projections of the spins along the field
(equal values of θ for all sites), whereas the spin projections in
the Sx-Sz plane form a K sublattice configuration and include,
as a special case, the 4Q state where the spins uniformly cant
in the direction of the magnetic field.

The ground state has equal θ for all sites and φν,m = φν

independent of the unit cell. The matrix M(k) has the same
structure as in Eq. (A49) but with

Mxx
ν,ν ′(k) = Jν,ν ′(k) cos φν,ν ′ − δν,ν ′Nν,

Myy

ν,ν ′(k) = Mxx
ν,ν ′(k) cos2 θ + [Jν,ν ′(k) − δν,ν ′Nν] sin2 θ,

Mxy

ν,ν ′(k) = [Jν,ν ′(k) − Jν,ν ′(−k)] sin φν,ν ′ cos θ, (A54)

where the canting angle θ is related to the applied field by

cos θ = hK∑
νν ′ Jν,ν ′(0)(1 − cos φν,ν ′)

. (A55)

In the case of a commensurate spiral state, φν = Q · Rν,0, one
can check that, as expected, H(2) [Eq. (A4)] can be rewritten
in the form Eq. (A32) with the coefficients Eq. (A33), where

J (k) =
∑

ν

J1,ν(k)eik·Rν,0 . (A56)

For the same reasons as above, Eq. (A31) holds and the entropy
factor can be alternatively computed from the spin-wave
frequencies.

6. Spin-wave dispersion in spiral states

In the main text we investigate the fingerprints of the
spin waves of spiral states in the uniform paramagnetic
phase. For this purpose, the spin-wave spectrum of the fully
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FIG. 15. Entropy per spin Ssw/N of the two-dimensional spiral
states which make up the classical ground state manifold of HFFM

�
[cf. Eq (1)] for the parameter set JB [Eq. (22)]. The inset shows the
set of wave vectors associated with the ground-state manifold, as
defined by Eq. (20). Thermal fluctuations select the state with highest
entropy, which corresponds to a an incommensurate spiral with wave
vector close to (π/2,π/3). Ssw/N was calculated through Eq. (A46),
using the linear spin-wave dispersion ω(k) [Eq. (A43)], as discussed
in Appendix A.

polarized state provides useful information about the low-
energy excitations above the ring. The dispersion relation is
obtained at the saturation field in a straightforward manner as

ω(k)1SL = J (k) − J (Q), (A57)

which has the lowest energy at the spiral wave vector Q. By
imposing a low-energy cutoff, we can identify momenta close
to the ring, which contribute to the low-energy excitations,
and use them in Eq. (44) to calculate the total structure factor
associated with the ring.

It would be interesting to see how this dispersion is modified
in the spiral ordered phase. Here we consider the coplanar
spiral state at zero field. The dispersion is obtained from
Eq. (A43) by setting S = 1 and θ = π/2,

ω(k) =
√

1

2
[J (k + Q) + J (k − Q) − 2J (Q)][J (k) − J (Q)].

(A58)

When k is close to the spiral wave vector Q, one finds

ω(k) ≈
√

J[J (k) − J (Q)], (A59)

where J = [J (2Q) + J (0)]/2 − J (Q). At the parameter set
JB , the spin-wave dispersion has gapless line modes along
k = Qring [Eq. (20)] in the LSW approximation.

FIG. 16. Entropy per spin Ssw/N [Eq. (A46)] of different compet-
ing states as a function of magnetic field h. The entropy of the coplanar
Y state increases with increasing field and, for 0.8J� < h < 3J�,
overtakes that of the conical state with Q = (π/2,π/3). Entropy was
calculated with linear spin-wave (LSW) theory for the parameter
set JB [Eq. (22)], as discussed in Appendix A. Within this linear,
low-temperature approximation, the 4Q state is not selected by
fluctuations at any value of magnetic field.

APPENDIX B: ENTROPY SELECTION OF A SPIRAL
WITH Q ≈ (π/2,π/3) OUT OF THE DEGENERATE RING

IN THE HARMONIC APPROXIMATION

In this appendix we show how, for the parameter set JB

[Eq. (22)], the harmonic analysis developed in Appendix A
predicts the entropic selection of a spiral state at low temper-
atures and vanishing magnetic field, as suggested by Monte
Carlo simulations. In Fig. 15 we plot the the entropy per
spin Ssw/N [Eq. (A11)] for the the family of conical states
with wave vector Q = (Qx,Qy) satisfying the ring equation
Eq. (20), in the absence of an applied magnetic field. This
was computed from the spin-wave frequencies [Eqs. (A46)
and (A43)] and is Ssw/N plotted as a function of Qx .

Thermal fluctuations select, within the degenerate ring, the
spiral state with the highest entropy, which is described by an
incommensurate wave vector slightly away from (π/2,π/3), or
wave vectors related to it by symmetry. This result is supported
by the Monte Carlo simulations [see Sec. (IV B)] and continues
to hold for a small applied field, where the state evolves from
a coplanar into a conical spiral.

APPENDIX C: ENTROPY COMPETITION BETWEEN THE
Q ≈ (π/2,π/3) 1Q CONE AND THE COPLANAR Y STATES

IN THE HARMONIC APPROXIMATION

In this appendix we show how, for the parameter set JB

[Eq. (22)], a canted Y state prevails over a conical version of
the spiral state at low temperatures, for a sufficiently strong
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applied magnetic field. In Fig. 16, we plot the entropy per
spin Ssw/N [Eq. (A11)] for a selection of different states
within the degenerate ground-state manifold as a function of
magnetic field, calculated using the results of Appendixes A 3
and A 5 . The entropy factor of the coplanar Y state increases
with increasing field, until it is finally selected by at low-
temperature fluctuations for 0.8J� � h < 3J� as supported by
the Monte Carlo simulations [see Sec. (IV B)]. The 4Q state is
not favored by thermal fluctuations at low temperature, which
is again in agreement with the simulation results. However, its
entropy factor at low field is rather close to the one of the most
favored conical spirals. This small difference is overcome by
anharmonic effects which stabilize the 4Q state at larger T for
field h � 0.8J�.

APPENDIX D: QUANTUM SELECTION OUT OF
THE DEGENERATE RING IN THE QUANTUM MODEL IN

THE LARGE-S LIMIT.

In this appendix we discusses the role of quantum fluctua-
tions in selecting an ordered ground state from the degenerate
ground-state manifold for the parameter set JB [Eq. (22)],
within the linear spin-wave (LSW) theory developed in
Appendix A 2. From the LSW expansion of the quantum model
[Eq. (A19)], one finds that the ground-state energy per spin in
the large-S limit can be written as

equ = e0 + �e, (D1)

where e0 is the ground-state energy per spin of the classical
model and �e is its first-order correction in 1/S due to the the
zero point motion of the spin waves,

�e = 1

2N

∑
k

[Tr(ω̃k) − �k]. (D2)

Here �e is proportional to S, whereas e0 is proportional to S2.
Among a set of classically degenerate ground states, quantum
fluctuations will favor the state which minimizes �e.

For conical spirals,

e0 = S2

2
[J (0) cos2 θ + J (Q) sin2 θ ] + hS cos θ, (D3)

FIG. 17. Quantum correction �e/S to the ground-state energy
(per spin) of spiral states [Eq. (D4)] for the spin-S quantum model
discussed in Appendix A 2. Calculations were carried out within
the linear spin-wave theory (LSW), for coplanar spiral states with
wave vector Q belonging to the classical ground-state manifold in
the absence of magnetic field, for the parameter set JB [Eq. (22)].
The inset shows the range of wave vectors considered. Quantum
fluctuations select a spiral with Q = (2π/3,0) and symmetry-related
states.

which reduces to e0 = S2J (Q)/2 in zero field, and

�e = 1

2N

∑
k

ωk + S

2
J (Q). (D4)

In Fig. 17 we show �e/S at the JB point in zero field for
the family of conical states with wave vector Q = (Qx,Qy)
satisfying the ring equation Eq. (20). One sees that quantum
fluctuations favor the three-sublattice stripe states with Q =
(±2π/3,0) or Q = (0, ± 2π/3).

A similar calculation based on the LSW theory for the
K-sublattice cases [Eq. (A19)] shows that, in zero field, the
4Q state has a higher energy than the Q = (2π/3,0) spiral
state (or equivalently the Y state at zero field). In a finite field,
the Y state becomes favored over the conical spirals and the
canted 4Q state.
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