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A Markovian open quantum system which relaxes to a unique steady state ρss of finite rank can be decomposed
into a finite physically realizable ensemble (PRE) of pure states. That is, as shown by R. I. Karasik and H. M.
Wiseman [Phys. Rev. Lett. 106, 020406 (2011)], in principle there is a way to monitor the environment so that
in the long-time limit the conditional state jumps between a finite number of possible pure states. In this paper
we show how to apply this idea to the dynamics of a double quantum dot arising from the feedback control of
quantum transport, as previously considered by C. Pöltl, C. Emary, and T. Brandes [Phys. Rev. B 84, 085302
(2011)]. Specifically, we consider the limit where the system can be described as a qubit, and show that while
the control scheme can always realize a two-state PRE, in the incoherent-tunneling regime there are infinitely
many PREs compatible with the dynamics that cannot be so realized. For the two-state PREs that are realized,
we calculate the counting statistics and see a clear distinction between the coherent and incoherent regimes.
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I. INTRODUCTION

An open quantum system undergoes a continuous inter-
action with its environment and typically becomes entangled
with it. Although the state of the total system—composed of
the physical system and its bath—may be pure, the state of the
system itself becomes mixed. In this paper we restrict ourselves
to Markovian systems, by which we mean ones where the
interaction with the environment is well modeled by quantum
white noise [1,2]. In this model, the system continuously
leaks quantum information into the bath, which is why the
system state loses purity. This loss of purity can, however, be
compensated for by monitoring the environment, over time
scales sufficiently short in comparison to the system evolution
time, from which one gains information about the system.
In this process, assuming perfect detection, the state of the
system continuously collapses into pure states ρc conditioned
on measurement results so that on average the unconditional
mixed state ρ is retrieved [2]. This so-called quantum trajectory
theory [3] describes both quantum jumps [4–6] and quantum
diffusion [3,7,8]. These are examples of different types of
“unraveling” [3] of the master equation (ME) describing the
evolution of ρ.

In this work we are concerned with Markovian open
quantum systems that are finite dimensional and have ergodic
evolution. Any such system ultimately relaxes to its unique
steady state ρss which can be expressed as a statistical
mixture of a finite ensemble of pure states. For any given ρss,
there are an infinite number of such decompositions, because
the states therein may be nonorthogonal. However, there is
a crucial distinction to be made here: only some of these

*shakib.daryanoosh@griffithuni.edu.au
†H.Wiseman@griffith.edu.au
‡brandes@physik.tu-berlin.de

ensembles will be physically realizable [9] as the possible
conditioned states of the system under some unraveling. It
was shown how to construct physically realizable ensembles
(PREs), but the question of how to physically realize them
(i.e., what type of unraveling) was not addressed in general.
For finite-dimensional systems it was subsequently shown [10]
that achieving a particular finite PRE will, in general, require
an adaptive monitoring.

The concept of an adaptive measurement is a form of
quantum control that is related to, but distinct from, feedback
control [2]. Feedback control to change the dynamics of
open quantum systems is an ongoing research topic with
applications in noise reduction, state purification, and state
protection [2,11–16]. Adaptive measurements, by contrast,
do not change the dynamics but rather change the quality
of the information obtained about the system, Fig. 1, with
application in metrology [17,18] and measurement-based
quantum computation [19,20]. We can understand this dis-
tinction more formally as follows. Any quantum evolution,
including measurements, can be considered as a sequence
of conditional operations [completely positive (CP) maps]
acting on the system state ρ. At a given time t , there is a
set of possible CP maps M

t = {Ot
j }, such that

∑
j Ot

j = T t

is a trace-preserving (TP) operation (TPCP map), and the
particular operation Ot

j that is realized is conditioned on j ,
the measurement result obtained at that time. In both feedback
and adaptive measurements, the set M

t is made to depend on
prior measurement results. But in the case of feedback, the
unconditioned evolution T t depends on prior results, whereas
in the case of adaptive measurements T t is strictly independent
of prior results—only the decomposition {Ot

j } can be varied.
The central question to be examined in this study is whether

the introduction of feedback control in a Markovian open
quantum system can result in conditional dynamics that realize
a PRE that is finite and is nonclassical, in the sense of
comprising nonorthogonal states. That is, the idea is to use
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FIG. 1. Conceptual diagram for (a) feedback control operation
in which the result of monitoring the bath (B) is used to change the
dynamics of the system (S), and (b) adaptive measurements where
the measurement results are taken to modify the way monitoring is
performed on the bath.

feedback control to engineer a particular Markovian evolution,
different from that which would exist without feedback, such
that an interesting PRE for that Markovian evolution would be
realized by the measurements used as part of the feedback loop.
This should be distinguished from the adaptive monitoring
scheme proposed in [10] where the original unconditional
evolution of the system remains unchanged, although the
way information is extracted from continuous measurements
is controlled, by acting on the environment as shown in
Fig. 1(b). The motivation for the change is that control by
acting on the system as in Fig. 1(a) may be easier to implement
experimentally.

We address this by organizing the structure of the paper
as follows. First, Sec. II reviews how it is possible to track
a finite-dimensional open quantum system to produce a finite
PRE. In particular, we reproduce the result [10] that for a qubit
there always exists a two-element PRE; that is, a bit is sufficient
to keep track of a qubit’s dynamics. Next, in Sec. III we
present the proposed idea of implementing feedback control on
quantum transport in mesoscopic systems to purify the state
of the system [14]. These two are united in Sec. IV where
we show that the conditional dynamics for this mesoscopic
system, with feedback, can be used to realize some of the
PREs that are theoretically possible, but not all of them.
Section V discusses the experimental signature of our scheme:
the cumulants for the counting statistics of quantum transport.
Finally, the conclusions are presented.

II. TRACKING THE STATE OF A QUBIT USING A BIT

In this paper we consider Markovian open quantum sys-
tems, so that the state of the system is determined, in a suitable
interaction frame, by a Lindblad master equation

ρ̇ = −i[Ĥ ,ρ] +
∑

l

D[ĉl]ρ ≡ Lρ, (1)

where D[Ô]• = Ô • Ô† − 1/2{Ô†Ô,•} is the usual irre-
versible superoperator [2]. In the above, Ĥ is the system
Hamiltonian, and the collection of Lindblad operators {ĉl}
is determined by the coupling of the system to the bath. The
Lindblad superoperator L can also be expressed as

L = S[Ĥ ′] +
L∑

l=1

J [ĉl], (2)

where S[Ĥ ′]• = (−iĤ ′) • + • (iĤ ′†) and J [ĉ]• = ĉ • ĉ† are
superoperators which describe smooth evolution and dynami-

cal jumps, respectively (see below). Here

Ĥ ′ = Ĥ − i

2

L∑
l=1

ĉ
†
l ĉl (3)

is a so-called non-Hermitian Hamiltonian. The superoperator
L in Eq. (2) is the generator of the completely positive map
M, that is,

ρ(t) = M(t)ρ(0) = eLt ρ(0). (4)

For the case of a single jump operator ĉ the map can be
evaluated as M(t) = ∑∞

n=0 M(n)(t) where

M(n)(t) =
∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1Q(t − tn)J

×Q(tn − tn−1)J · · ·Q(t2 − t1)JQ(t1), (5)

where Q(t) = etS[Ĥ ′] is the propagator of S. This mapping
indicates that there exists, in principle, a way to monitor the
bath such that the conditional state of the system undergoes
periods of smooth evolution, represented by S, which are
interrupted by instantaneous jumps, described by J ≡ J [ĉ].
Note that if the system state is initially pure, then the
conditioned system state (conditioned, that is, on the times
of the jumps) will be pure at all times. Moreover, it is often
the case that even if the initial state is mixed, the conditioned
state becomes pure in the long-time limit [2].

Note that this separation into smooth nonunitary evolution
and jumps is not unique. Rather, the master equation Eq. (2)
is invariant under the transformation

ĉl → ĉm =
L∑

l=1

Smlĉl + βm, (6)

Ĥ → Ĥ − i

2

M∑
m=1

(β∗
mĉm − βmĉ†m), (7)

where β ∈ CM is a complex vector and S ∈ CM×L is a
semiunitary matrix; that is, it satisfies

∑M
m=1 S∗

l′mSml = δl′l .
In the context of quantum optics, where the bath is bosonic,
this mathematical transformation has a physical meaning.
It corresponds to coherent mixing of the system outputs
prior to detection (via S) and adding a weak local oscillator
(WLO) of amplitude βl to the lth output field channel prior
to detection. Although they give the same master equation,
different choices of the parameters {βl},{Sml} give rise to
different types of conditional evolution, different unravelings
according to Eqs. (6) and (7). In principle, a sufficiently skilled
experimenter could build an apparatus to monitor the bath
in a way corresponding to any of the unravelings above.
In practice, some unravelings may be possible with present
experimental techniques and others not at all possible. This will
have important implications for which physically realizable
ensembles are practically realizable.

We now impose the further condition of ergodicity. This
ensures that in the long-time limit the system converges
to a unique steady state satisfying Lρss = 0. If ρss is of
finite rank, which is always the case for a finite-dimensional
system, the stationary state can be expressed in terms of a
statistical mixture of pure states of a finite set {(pk,|ψk〉)}Kk=1
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with pk being the probability of occupying the kth state.
Since these states need not be orthogonal in general, there
is no upper bound on the number of ways one could do
such decompositions. However, it is important to distinguish
carefully between ensembles that are physically realizable
(PREs) and those that are not. The concept which rules
out physically unrealizable ensembles is referred to as the
preferred ensemble fact [9]. The PREs are those that result
from some unraveling of the master equation. That is to say,
under some unraveling, in the long-time limit, the conditioned
system state will always be one of the states |ψk〉, and the
proportion of time it occupies each such state is pk .

It was proven in Ref. [9] that the above-mentioned ensemble
is physically realizable if and only if there exist some rates
�jk � 0 such that

∀k, L|ψk〉〈ψk| =
K∑

j=1

�jk(|ψj 〉〈ψj | − |ψk〉〈ψk|). (8)

This means that upon evolution, the system jumps from state
k to state j at rate �jk , and there exists an unraveling of the
master equation which enables the experimenter to keep track
of these jumps. It turns out that, in general, adaptive monitoring
of the environment is necessary to realize a given PRE. That is,
it will be necessary to control the above parameters {βm},{Sml}
based on prior results (jumps).

One of the essential outcomes of Ref. [10], which the
present paper leans on, is that, for a two-dimensional ergodic
quantum system, there is always a two-state PRE, which we
will call a TSE for brevity. That is, one can keep track of a qubit
using a single-bit memory. We note that the explicit derivation
presented in Ref. [10] for a qubit does not require a restriction
to cyclic jumps |ψ1〉 � |ψ2〉, although that is not mentioned.
That is, the system may undergo a “jump” (in the sense of the
application of one of the superoperators J [ĉl]) which leaves
it in the same state |ψk〉 → |ψk〉 for k = 1,2.

The TSE solution(s) in Ref. [10] may be expressed most
easily by rewriting Eq. (1) in the Bloch representation. It
becomes

�̇r = A�r + �b, (9)

where A is a 3 × 3 matrix, b is a vector with three entries,
and �r = 〈(σ̂x,σ̂y,σ̂z)�〉 is a Bloch vector whose steady state
satisfies A�rss = −�b. This steady state is unique if and only
if the real part of all eigenvalues of A are negative. In this
notation the TSE is given by {(pk,�rk)}k=± where [10]

�rk = �rss − kαk�ev, (10)

pk = 1

2

[
1 − k�rss · �ev√

1 − ‖�rss‖2 + (�rss · �ev)2

]
. (11)

Here, �ev is a unit-norm real eigenvector of A, and αk =
k�rss · �ev +

√
1 − ‖�rss‖2 + (�rss · �ev)2. Note that because the

Bloch vectors �r+ and �r− have to be real, only those eigenvectors
of A that are real yield to the solution. Any real matrix A is
guaranteed to have at least one real eigenvector, and may have
more than one.

III. STATE STABILIZATION OF A QUBIT USING
FEEDBACK CONTROL

In the preceding section we summarized how, conditioned
on information obtained by monitoring the environment,
the state of the system differs from the solution of the
master equation (1). Nevertheless, on average, the evolution is
unchanged from that master equation solution. However, there
is a way to make the information obtained from monitoring
affect the average state: by using feedback [8]. A typical
objective of quantum feedback is to stabilize the system into a
particular pure state (or close to pure state) [12,21–28].

Recently, a novel way to achieve this in a double quantum
dot (DQD) system was proposed [14]. A DQD is an example of
nonequilibrium quantum transport, with two coupled quantum
dots connected to leads [29]. For the analysis in Ref. [14],
Fig. 2, two assumptions were made to simplify the problem.
First, a strong Coulomb blockade regime [30] guarantees that
at any instant of time there would be at most one extra electron
in the system. Second, in the high-bias limit (μL → ∞,
μR → −∞) [30–32], the resonant energy levels εL and εR

lie within the window between the left and the right lead
chemical potential so that the quantum transport becomes
unidirectional, i.e., electrons can only enter the DQD from
the left and leave it to the right. The former would imply
that the state space of the physical system is spanned by three
states. The first is the so-called null state |∅〉 ≡ |NL,NR〉 where
Nd is the base number of electrons in dot d ∈ {R,L}. The
other two are called single-electron states: |L〉 ≡ |NL + 1,NR〉
and |R〉 ≡ |NL,NR + 1〉, with an additional transport electron
in the corresponding dot. Under these conditions the system

R
L

γL γR

Tc

VG

μL

μR

Δ

U

FIG. 2. Stochastic feedback control of a double quantum dot.
Flow of one excess electron is monitored when it tunnels into the left
dot at rate γL (e.g., by a QPC, not shown). A unitary control operation
(which can be implemented for example with gate voltages VG) then
rotates the state of the system into one of two (randomly chosen)
desired states. Here Tc is the coupling strength between the dots, �

is the detuning, γR is the tunneling rate out of the right dot, and μL(R)

are chemical potentials of the leads.
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undergoes the transitions |∅〉 → |L〉 and |R〉 → |∅〉 with
tunneling rates γL and γR , respectively.

We can describe the evolution of the system using a
Lindblad-form ME as expressed in Eq. (1); see Refs. [2,29].
The system Hamiltonian is

Ĥ = 1
2�σ̂z + Tcσ̂x, (12)

where � ≡ εL − εR is detuning, Tc is the coupling constant
between the two quantum dots, σ̂z = |L〉〈L| − |R〉〈R|, and
σ̂x = |L〉〈R| + |R〉〈L|. In this work for the sake of simplicity
we make the assumption that � = 0. This means that an
electron can be transferred between the two dots at no cost.
The two Lindblad operators are

ĉ1 = √
γL|L〉〈∅|, ĉ2 = √

γR|∅〉〈R|. (13)

Substituting Eqs. (12) and (13) back into the non-Hermitian
Hamiltonian Eq. (3) it is straightforward to show that in the
eigenbasis it takes the form

Ĥ ′ = −i
γL

2
|∅〉〈∅| +

∑
�=±

ε�|φ�〉〈φ̃�|, (14)

where

|φ�〉 = (iγR + �κ)|L〉 + 4Tc|R〉√
16T 2

c + |iγR + �κ|2 , (15)

ε� = − 1
4 (iγR + �κ), κ =

√
16T 2

c − γ 2
R. (16)

Note that the right eigenvectors |φ�〉 and the left eigenvectors
〈φ̃�| of Ĥ ′ must be distinguished from each other since they
are not, in general, adjoint of each other 〈φ̃�| �= 〈φ�|. For the
case we are studying here 〈φ̃�| is equal to the transpose of |φ�〉
given by

〈φ̃�| = (iγR + �κ)〈L| + 4Tc〈R|√
16T 2

c + |iγR + �κ|2 . (17)

Also, the null state has been separated from the other states
of the non-Hermitian Hamiltonian due to the orthogonality
condition where 〈∅|φ�〉 = 0. Note that the other states are not
orthogonal 〈φ�|φ−�〉 �= 0.

In Ref. [14], the authors proposed modifying the above
dynamics by introducing feedback control, as we now sketch.
It is assumed that there is a measurement device, such as a
quantum point contact (QPC) [33,34], in the vicinity of the
junction of the left dot to its lead, which can detect single-
electron tunneling through this junction. This allows access
to the full counting statistics (FCS) [35,36] of single-electron
quantum jumps. It is also assumed that the experimenter has
the ability to feedback the signal obtained from the integrated
detector very fast (effectively instantaneously) to change the
state of the system. Immediately after a tunneling event, the
state will be |L〉, as the following equation shows:

J [ĉ1]|∅〉〈∅| = γL|L〉〈L|. (18)

The aim of the control is to rotate (in Hilbert space) this into
the desired state vector of Ĥ ′, that is, |φ�〉 [14].

The control operations can be experimentally implemented,
e.g., with the gate voltages VG, Fig. 2. That is, it is assumed that
the following unitary operation can be performed effectively

Tunneling into
the left dot

Control
operation

Smooth
evolution

Tunneling out

| |

|L L|

J [ĉ1]

S[Ĥ ]

J [ĉ2]

U

of the right dot

FIG. 3. A schematic representation of the state evolution of the
DQD.

instantaneously:

Û�|L〉 = |φ�〉. (19)

An explicit expression for the unitary operator is given
in the Appendix. Note that the state �� = |φ�〉〈φ�| is the
eigenoperator of the smooth evolution superoperator:

S[Ĥ ′]�� = 2Im(ε�)��. (20)

The system remains in this state as long as the no-jump
dynamics continues. However, it will eventually jump back
to the null state due to the electron tunneling to the right
reservoir:

J [ĉ2]�� = γ �
R|∅〉〈∅|, (21)

where γ �
R ≡ −2Im(ε�). In Fig. 3 we summarize this process in

the form of a schematic diagram showing the evolution of the
conditional state of the system under the control operation.

The evolution of the system can be described in the Hilbert
space H 3 ≡ span(|∅〉,|φ−〉,|φ+〉). This indicates that for a
given fixed � (+ or −) the system is equivalent to a single
resonant level with tunneling rates γL and γ �

R as shown in
Eqs. (18) and (21). The stationary state of the system is

ρss = 1

2γL + γ �
R

(
γ �

R|∅〉〈∅| + 2γL��

)
. (22)

From this, and Eq. (16), it is apparent that under the condition
γL � γR,Tc, the steady-state probability of finding the system
in the null state becomes negligible [14]. From the viewpoint
of the dynamics, in Fig. 3, the time the system spends in the
state |∅〉〈∅| in between ρ� and |L〉〈L| is negligible compared
to the time it stays as ρ�. (So is, as we have already assumed,
the time it takes to perform the operation U�.)

This implies that there is always one transport electron
in the system and its state is simply given by �� = |φ�〉〈φ�|,
depending on which U� was last chosen. This |φ�〉 is a pure
superposition (15) of the single-electron states defined above.
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IV. STOCHASTIC FEEDBACK CONTROL
OF THE DOUBLE QUANTUM DOT

Implementing feedback control effectively changes the left
jump operator:

ĉ1 → ĉ′
1 = Û� ĉ1 = √

γL |φ�〉〈∅|. (23)

This gives rise to modification of the ME to

ρ̇ = −i[Ĥ ,ρ] + (D[ĉ′
1] + D[ĉ2])ρ. (24)

State purification is achieved in the limit where the tunneling
rate into the system is much greater than the tunneling rate out
of it, as already mentioned. In this limit we can project out the
null state, reducing our description of the system from D = 3
Hilbert space to that of a qubit. In other words, in the limit
where the null state decays much faster than the qubit system,
the state � of which can be spanned by {|L〉,|R〉}, one can
adiabatically eliminate the null state. This means that Eq. (24)
reduces to the following (see the Appendix for details):

�̇ = −i[Ĥ ,�] + D[ĉ�]�, (25)

where

ĉ� = √
γR Û�|L〉〈R| = √

γR |φ�〉〈R|. (26)

In this case |φ�〉 is still the eigenstate of the non-Hermitian
Hamiltonian:

Ĥ ′ = Ĥ − i

2
ĉ
†
�ĉ� = ε�|φ�〉〈φ̃�|. (27)

From this it is apparent that the stationary state is given by ��.
The two possible states |φ±〉 are obvious candidates for

generating an interesting (nonorthogonal) TSE. However, to
apply the theory presented in Sec. II, one would need a master
equation with a nontrivial (rank > 1) mixture as its steady state.
Hence, our intention is not to purify the system into merely
one of these states. However, we must not alternate between
the two as this would imply non-Markovianity of the system: it
requires the memory of the last chosen state for processing the
next step. The solution, as shown in Fig. 3, is that prior to every
control operation we toss a coin (figuratively), to determine
which operation Û± is applied to the system. This means that
the system is memoryless and should have a description in
terms of a Markovian master equation. If 0 � ℘� � 1 is the
probability of choosing Û�, with ℘− + ℘+ = 1, the master
equation is

�̇ = −i[Ĥ ,�] +
∑
�=±

℘� D[ĉ�]�, (28)

and has the solution

�ss =
∑
�=±

p���. (29)

Note that the probabilities p� are not, in general, the same as
the ℘� in Eq. (28). We will determine p� when we consider
two different regimes of tunneling below.

From Eq. (28) one can work out and find the equations
of motion in the Bloch representation as in Eq. (9). Details
of matrices A and b are given in the Appendix. Therefore,
after calculating the real eigenvectors of A and obtaining the
steady state �̇rss = 0 we can plug them into Eqs. (10) and (11) to

construct corresponding TSEs. Since the resulting analytical
expressions are too intricate to be usefully analyzed we present
numerical outcomes. Depending on the ratio of the tunneling
rate out of the DQD and the coupling constant, there are two
different regimes which we call “coherent” and “incoherent”
in the following.

A. Coherent tunneling (γR < 4Tc)

For the coherent-tunneling regime the steady state is
oriented in the equatorial plane. This indicates that the system
relaxes to a coherent superposition of single-electron states |L〉
and |R〉 where the transport electron occupies both quantum
dots with some probabilities. The loci of the two states of
the TSE also lie in the same plane. For the trivial case where
℘− = 0 and ℘+ = 1 or vice versa, the steady state reduces to
�r+ and �r−, respectively, the two eigenvectors of H ′ which can
be represented as Bloch vectors by

�r� =
(

−�
κ

4Tc

, − γR

4Tc

,0

)
, γR < 4Tc. (30)

The top row of Fig. 4 illustrates TSEs for different purification
probabilities for this regime. Since matrix A has only one real
eigenvector, therefore there is one TSE. A proportion p� of
time that the system spends in a particular state ρ� is shown by
a little sphere at the end of each arrow. The red arrow shows
the locus of the steady state that varies with values of ℘�. It
is noticeable that no matter what values these probabilities
are assigned to, as long as

∑
� ℘� = 1, they are equal to the

corresponding p�. In order to understand why this is the case
we consider the lifetime of states in the right quantum dot
given by

τ� = (
γR �RR

�

)−1
, (31)

where

�RR
� = 〈R|�|R〉� = 1 − 〈σ̂z〉�

2
. (32)

Since the states in Eq. (30) are on the equator we have 〈σ̂z〉± =
0, and this further would result in an equal lifetime τ� = 2/γR

for being in the right quantum dot for either of these two states.
Hence, the choice of probability ℘� for creating state �� simply
determines the probability pl of the system being in the state:

p� = ℘�. (33)

B. Incoherent tunneling (γR > 4Tc)

For the transport electron tunneling incoherently more
elaborate analysis is required as there are some subtleties.
First of all κ̃ = iκ replaces κ in Eq. (16) from which one can
easily show that the Bloch vectors corresponding to Eq. (15)
become

�r� =
(

0, − 4Tc

γR

, − �
κ̃

γR

)
, γR > 4Tc. (34)

In contrast to the coherent-tunneling regime, it turns out that,
in addition to the TSE defined by Eq. (34), there are an infinite
number of other TSEs. As we pointed out at the end of
Sec. II, for any real eigenvector of the matrix A in Eq. (9)
there is one TSE. In the regime being considered here, there
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rss

γ
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>
4T

c

rss

(d) (e )

rss
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FIG. 4. Bloch representation of TSEs. The top row shows, for γR = 3,Tc = 1, Bloch vectors of two-state hopping for three different
probabilities defining the stochastic feedback: (a) ℘+ = 0.8,℘− = 0.2, (b) ℘+ = 0.5,℘− = 0.5, and (c) ℘+ = 0.2,℘− = 0.8. Blue arrows (dark
arrows in the azimuthal plane) represent the state vectors of the TSE with associated probabilities p� Eq. (11), indicated by the volume of the
sphere at the tip of each vector. The steady state �rss is depicted by a red arrow. In this regime, the probabilities ℘� are equal to the probabilities
p� that the system is found in a particular state of the TSE. The bottom row shows TSEs for γR = 5,Tc = 1 for the same control probabilities
as in the top row. Here, in contrast, in addition to the eigenvectors of the effective Hamiltonian Ĥ ′, shown by blue arrows (dark arrows in the
polar plane), an infinite number of other two-state TSEs exist. The solid green circle depicts the locus of them. By comparing this circle in (d),
(e), and (f) it is clear that increasing ℘+ shrinks its radius such that at ℘+ = 1 it eventually collapses to a single point. In (f) we plot the states of
two other TSEs each corresponding to a real eigenvector of A shown in light brown (in the azimuthal plane) and cyan (dark arrows in the polar
plane). In the bottom row, ℘� and p� are entirely different because the latter is a function of the lifetimes of states in the right dot, Eq. (35).

are at least three such eigenvectors so that each contributes
towards formulating a TSE. In addition to the real eigenvector
giving the states in Eq. (34), there are two other, degenerate,
real eigenvectors of A. A real linear combination of these
other two eigenvectors is also a real eigenvector of A. Hence,
one can assign a TSE to any such linear combination. In
Fig. 4(f) two such TSEs are shown in light brown (in the
azimuthal plane) and cyan (light arrows in the polar plane),
respectively. Since there is a one-parameter continuum of such
linear combinations, here is a one-parameter family of TSEs.
This forms the green circle on all the balls in the bottom
row of Fig. 4. Note that these ensembles are not necessarily
diametrically opposite points on the circle, nor are they equally
weighted in general. Independently of which TSE is being
considered, the weighted average of the two unit Bloch vectors
is the same steady-state Bloch vector. For the special case of
℘� = ℘−� = 0.5, all three eigenvectors are degenerate. In this
case, the stabilized states of Eq. (34) lie in the green circle
as shown in Fig. 4(e). We note that the stabilized states of

Eq. (34), shown in blue arrows, are strictly independent of ℘,
while it is evident that the locus of pure states on the ball from
which the green circle is made up of does depend on ℘.

Another important point is that no longer are {p�} equal to
{℘�}. This is because the states in Eq. (34) would have different
lifetimes in the right quantum dot τ� = 2/[γR + �κ̃]. That is,
in contrast to the coherent-tunneling regime the probability p�

is dependent on τ� and can be expressed as

p� = ℘�τ�∑
j=± ℘jτj

, (35)

where the probability for preparing the �th state ℘� is weighted
by the relevant lifetime of the states in the right quantum dot.
This is clearly evident from Figs. 4(e) and 4(f). Note that if
the lifetimes were equal τ1 = τ2, this relation would reduce to
Eq. (33) as expected.

At the critical parameter value, γR = 4Tc, the steady state
is a pure state that the system ultimately relaxes into �rss =
�r± = (0, − 1,0). It can be imagined that as one approaches
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this setting from either side, for fixed chosen values of ℘�’s,
the Bloch vectors shown in blue in Fig. 4 start to get closer
to each other and ultimately they become the same up to the
point that the green circle shrinks to a point.

C. Physical meaning of the other TSEs

We have already seen that there is a measurement and
feedback control scheme to realize the ME given in Eq. (28)
such that the conditional states of the system are described
by Eq. (34). This raises the question, if this protocol does not
realize the other infinite number of TSEs, then in what sense
are they physically realizable? It may be that the hypothetical
ensembles are in principle physically realizable but through
the instantiation of the aforementioned ME, Eq. (28), they are
not practically realizable. If one were to induce the evolution
described by this ME in a completely different way, then the
other TSEs might be realized in practice. In what follows we
present our speculation on the possibility of realizing these
ensembles in the system as described.

It is necessary to consider a grand system composed of
two subsystems: the DQD and the whole measurement and
feedback control process (MFCP) with state vectors |φ�〉 and
|ξ 〉, respectively, in the spirit of autonomous (passive) feedback
control [27,28]. One would have to imagine that the state of
the grand system is in a pure entangled form as the coherent
superposition of these state vectors

|�〉 ∝
∑

r

|φ�|r〉|ξr〉. (36)

Here the measurement record r determines the state of the
DQD. This implies that the entire MFCP itself is being treated
as a quantum system which could be monitored. However,
an important point is that if this monitoring reveals the
record r used in the feedback loop, then the system would
simply collapse into one of the two states |φ±〉 given in
Eq. (34). It is conceivable that it would be possible to obtain
the other ensembles in Sec. IV B by employing a quantum
eraser method [37,38] for the whole MFCP. However, when
it comes to consider the fermionic systems, the superselection
rules (SSRs) also should be taken into account as additional
constraints [39]. For instance, the transformation in Eq. (6)
does not hold for fermionic systems; fermionic fields cannot
have a nonzero mean value, unlike bosonic fields. Thus, we
tend towards a negative opinion on the possibility of realizing
these other ensembles of Sec. IV B in the controlled quantum
dot system.

V. COUNTING STATISTICS OF QUANTUM TRANSPORT

Just as the mean current through the DQD gives information
about the dynamics of the system, its fluctuation, variance, and
maybe higher order cumulants provide yet further information.
One can determine these from the probability distribution,
P (n,t) = Tr[�(n)(t)]. Here P (n,t) is the probability that n

electrons tunnel into the right lead in time t (assuming that
transport is unidirectional from the source to the drain), and
�(n)(t) represents the system state matrix at time t with n

quantum jumps from which electrons have been transferred to
the drain. This process of electron counting may be realized

experimentally, e.g., by using a QPC as a detection apparatus.
It is easy to show that using the microscopic field-detector
theory for a state with n excitations the n-resolved form of the
ME given in Eq. (2), where �(t) = ∑∞

n=0 �(n)(t), for the DQD
with feedback control is the following [35]:

�̇(n) = S�(n) +
∑
�=±

℘�J [ĉ�]�(n−1). (37)

Since this equation can be solved in n space only for a finite n

which subsequently requires diagonalization of a tridiagonal
matrix, it is thus more convenient to use the Fourier transform
�(χ ) = ∑

n einχ�(n) with the counting field χ as the conjugate
variable of n. Then Eq. (37) in χ space becomes

�̇(χ ) =
(
S +

∑
�=±

℘�J [ĉ�]eiχ

)
�(χ ) ≡ L(χ )�(χ ). (38)

The cumulant generating function F(χ,t) is defined as [35]

eF(χ,t) =
∞∑

N=0

P (n,t)einχ , (39)

where by the definitions of the Fourier transform and the
probability distribution mentioned above it is transformed into

F(χ,t) = ln{Tr[eL(χ)(t−t0)�(t0)]}. (40)

Since in the long-time limit t → ∞ the system is essentially
in the steady state, it is thus possible to use the eigendecom-
position of L(χ ) to further simplify Eq. (40) to

F(χ,t) = λ0(χ )t + constant, (41)

where λ0 is the largest eigenvalue of the spectrum of L(χ ).
Therefore, the nth-order zero-frequency current correlation is
given by

〈S(n)〉 = d

dt

∂n

∂(iχ )n
F(χ,t)|χ=0,t→∞

= ∂n

∂(iχ )n
λ0(χ )|χ=0. (42)

0.2, 0.8

0.5, 0.5

0.8, 0.2

0 2 4 6 8 10
0

1

2

3

4

γR Tc

I

FIG. 5. Shown are the values of the mean current 〈S(1)〉 = 〈I 〉
as a function of γR/Tc for the set of control probabilities. It can be
seen that the incoherent-tunneling regime has a completely different
profile.
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The first-order current correlation 〈S(1)〉 = 〈I 〉 is just the mean
current, depicted in Fig. 5. The two tunneling regimes have
distinct signatures. The dc currents have the same linear
profile for the coherent-tunneling case, but they start to
diverge from each other once the system is no longer in this
regime. Even more striking differences are observed in the
higher order current correlation functions. It is convenient to

F 2

F 3

F 4

(a) = 0.2

 = 0.8

0

1

2

3

4

F
n

 = 0.5

 = 0.5
(b)

0
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3

4

F
n

 = 0.8

 = 0.2
(c)
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R Tc

F
n

FIG. 6. The value of Fano factors F (n), Eq. (43), for the DQD
versus the ratio of tunneling rates γR/Tc: n = 2 (dark blue dashed),
n = 3 (green dotted), and n = 4 (red dashed-dotted). Three different
sets of probabilities are shown (a) ℘+ = 0.2,℘− = 0.8, (b) ℘+ =
0.5,℘− = 0.5, and (c) ℘+ = 0.8,℘− = 0.2. As long as γR � 4Tc all
Fano factors are equal to 1 no matter what value is assigned to ℘±.
This corresponds to the Poissonian statistics of the current which is
independent of the order of the current correlation. In contrast, as γR

becomes larger than 4Tc Fano factors depend on the probabilities ℘±
to the extent that F (n) = 1 holds if and only if ℘+ = 1 and ℘− = 0,
or vice versa.

normalize these to the current to obtain the zero-frequency
Fano factor [35]

F (n) = 〈S(n)〉
〈S(1)〉 . (43)

In Fig. 6 we plot the Fano factor up to order n = 4 as
a function of γR/Tc to study both coherent and incoherent
tunneling regimes. For each regime a different set of control
parameters (θ,ϑc) is chosen; see the Appendix for details. It is
evident that assigning different values to the probabilities ℘±
in Eq. (38) does not affect the statistics of the current when
the system is in the coherent-tunneling case, γR � 4Tc. In
fact, the Fano factor remains unchanged at F (n) = 1 revealing
the Poissonian behavior of the system (left panel of Fig. 6).
However, as γR exceeds 4Tc, that is, in an incoherent-tunneling
regime, Fano factors start to deviate from Poisson statistics
(right panel of Fig. 6). Again, this behavior can be rooted
in the fact that the lifetimes of the two states are different,
Eq. (35). Note that for the trivial case where the feedback
control is not stochastic, that is, ℘+ = 1 and ℘− = 0, or vice
versa, all Fano factors become unity. As expected, this is in
complete agreement with the results of Ref. [14] where the
system is merely stabilized into one of the two feasible states.

VI. CONCLUSION

In summary, we have shown that using a particular
stochastic feedback control scheme for a double quantum
dot, it is possible to engineer Markovian open quantum
system dynamics such that the conditioned state of the single-
electron qubit is (essentially) always one of two nonorthogonal
pure states. Here “conditioned” means conditioned on the
measurement signal derived from the tunneling into or out
of the system and used in the control loop. Previous schemes
to realize conditionally such a nonorthogonal finite ensemble
of pure states [10,40] relied upon an adaptive measurement.
Adaptive measurement is a distinct type of control from
feedback control in that the unconditioned state of the system
is unaffected by the control in the former case, but is affected in
the latter. In the context of quantum optics, a suitable adaptive
measurement can be performed by controlling the amplitude
of a weak local oscillator to the system output field [41,42].

Because of the complexity of performing adaptive mea-
surements, and the inefficiency of photon collection and
detection, no such adaptive measurement experiment to realize
a nonorthogonal pure-state ensemble has been realized. In con-
trast, for the solid-state feedback scheme we have considered
here, one conditions on the detections that are natural for the
system. Another factor that may motivate one to implement this
scheme is the access to a sensitive electrometer such as a QPC
which can be highly efficient in detecting quantum jumps [43].
Thus the system we have studied is a promising candidate
for practically approximating an interesting (nonorthogonal)
highly pure TSE.

The double-dot system has two regimes, depending on the
strength of the interdot tunneling to the rate of tunneling out
of the system. The incoherent (weak) tunneling regime system
has dynamics distinct compared to the case of the coherent
(strong) tunneling regime. This transition corresponds to an
exceptional point [44,45] of the non-Hermitian Hamiltonian
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Ĥ ′, Eq. (13), and thus bears some analogy with simple models
of quantum bifurcations or phase transitions. Physically, this
is a manifestation of the spectral line effect discovered by
Dicke in 1953 [46]. The combination of feedback with a
stochastic choice of the control operation provides a tool to
probe this transition via current fluctuations: First, the full
counting statistics analysis demonstrates that as long as the
control operation chooses randomly between the states of
the TSE, the system statistics shows nonPoissonian behavior.
Second, due to the fact the two nonorthogonal states have
different lifetimes, the occupation probabilities p� are not set
purely by the probabilities ℘� in the stochastic control. And
finally, infinitely many two-element nonorthogonal pure-state
ensembles exist that the system could, in principle, be purified
to. However, the feedback control scheme just realizes one.
That is, even though all of them are in principle physically
realizable only one is practically realizable by the feedback
loop.

There remains some future work to be done for addressing
some of the practical issues that would happen in a real
experiment. These may include efficiency, time delays in
the feedback loop, how fast the control operation could be
performed, how to implement the control unitary, and what
imperfections could arise in this. From the fundamental side,
there is an open question to be explored which addresses
the last point mentioned above: is there any physical way
to realize the ensembles that are theoretically possible but
which do not arise from the feedback loop we construct? This
issue might be connected to an autonomous formulation of the
stochastic feedback loop, including a better understanding of
the thermodynamics of this form of control [47].
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APPENDIX

1. Adiabatic elimination of the null state

In the limit in which the damping rate of the null state is
much quicker than the decay rate of the qubit system, the
null state can be projected out by employing an adiabatic
elimination technique [48]. In the following we concisely
describe how this is done. The state of the qutrit system can
be expressed as

ρ = � + δ|∅〉〈∅|, (A1)

where � is spanned by {|L〉,|R〉} in the qubit subspace and
δ = O(γR/γL). It is easy to show that the evolution of δ is
obtained according to

δ̇ = 〈∅|ρ̇|∅〉
= −γLδ + γR〈R|�|R〉, (A2)

where we have used Eq. (24). In the limit of γL � γR where
the decay rate of the null state is much faster than the rate at
which the qubit system damps, one can employ the adiabatic

elimination which yields to

δ ≈ γR

γL

〈R|�|R〉. (A3)

The dynamics of the qubit state is also obtained by

�̇ = �̂qb ρ̇ �̂qb (A4)

with �̂qb = |L〉〈L| + |R〉〈R| being the projector to the qubit
subspace. Thus, using Eqs. (24) and (A3) it is straightforward
to show that Eq. (A4) is transformed into

�̇ = −i[H,�] + γR|φ�〉〈φ�|〈R|�|R〉
− γR

2
(|R〉〈R|� + �|R〉〈R|)

= −i[H,�] + D[ĉ�]�. (A5)

2. Bloch equations and control parameters

Given the ME in Eq. (28) matrices A and b of the equation of
motion read

A11 = −2γR

∑
�=±

℘�

(∣∣u�
y

∣∣2 + ∣∣u�
z

∣∣2)
, (A6)

A12 = γR

∑
�=±

℘�

[(
u�

xu
�
y

∗ + u�
x

∗
u�

y

)
− i

(
u�

zw
�∗ − u�

z

∗
w�

)] − �, (A7)

A13 = γR

∑
�=±

℘�

[(
u�

xu
�
z

∗ + u�
x

∗
u�

z

)
+ i

(
u�

yw
�∗ − u�

y

∗
w�

)]
, (A8)

A21 = γR

∑
�=±

℘�

[(
u�

xu
�
y

∗ + u�
x

∗
u�

y

)
+ i

(
u�

zw
�∗ − u�

z

∗
w�

)] + �, (A9)

A22 = −2γR

∑
�=±

℘�

(∣∣u�
x

∣∣2 + ∣∣u�
z

∣∣2)
, (A10)

A23 = γR

∑
�=±

℘�

(
u�

yu
�
z

∗ + u�
y

∗
u�

z

)
− i

(
u�

xw
�∗ − u�

x

∗
w�

)] − 2Tc, (A11)

A31 = γR

∑
�=±

℘�

[(
u�

xu
�
z

∗ + u�
x

∗
u�

z

)
− i

(
u�

yw
�∗ − u�

y

∗
w�

)]
, (A12)

A32 = γR

∑
�=±

℘�

(
u�

yu
�
z

∗ + u�
y

∗
u�

z

)
+ i

(
u�

xw
�∗ − u�

x

∗
w�

)] + 2Tc, (A13)

A33 = −2γR

∑
�=±

℘�

(∣∣u�
x

∣∣2 + ∣∣u�
y

∣∣2)
, (A14)
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and

b1 = i 2γR

∑
�=±

℘�

(
u�

yu
�
z

∗ − u�
y

∗
u�

z

)
, (A15)

b2 = i 2γR

∑
�=±

℘�

(
u�

zu
�
x

∗ − u�
z

∗
u�

x

)
, (A16)

b3 = i 2γR

∑
�=±

℘�

(
u�

xu
�
y

∗ − u�
x

∗
u�

y

)
. (A17)

The complex 4-vector u
˜
� = (u�

x,u
�
y,u

�
z,w

�) has the follow-

ing components:

u�
x = 1

2

[
cos

(
ϑ�

c /2
) − i sin

(
ϑ�

c /2
)
cos(θ�)

]
, (A18)

u�
y = i u�

x, (A19)

u�
z = i

2
sin

(
ϑ�

c /2
)
sin(θ�), (A20)

w� = −u�
z. (A21)

See below for the definition of θ� and ϑ�
c separately for each

tunneling regime. The control operator then can be expressed

as a function of these parameters,

Û� = e−iϑ�
c �n�·�σ/2, (A22)

which rotates a state around the unit vector �n� =
(sinθ�,0,cosθ�) by ϑ�

c . Note that ϑc in this paper is twice the
control parameter θC in Ref. [14].

For the coherent-tunneling regime where γR < 4Tc the
control parameters are given by

θ� = arccos

⎛⎝ � κ√
32T 2

c − γ 2
R

⎞⎠, (A23)

ϑ�
c = 2 arccos

(
γR√
32Tc

)
, (A24)

and for γR > 4Tc where an electron tunnels incoherently they
are given by

θ� = π/2, (A25)

ϑ�
c = 2 arctan

(
4Tc

(γR + � κ̃)

)
. (A26)

For the case where γR = 4Tc they are equal to θ� = ϑ�
c = π/2.
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