
PHYSICAL REVIEW B 93, 085117 (2016)

Fractional quantum Hall effect in HgTe quantum wells
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We study the possibility of fractional quantum Hall effects in HgTe quantum wells using exact diagonalization.
Our results show that Laughlin states, the Moore-Read state, and the Read-Rezayi Z3 state can all be supported.
However, near the level crossing point (of the single-particle spectrum) the gap can be destroyed by Landau level
mixing, and the Moore-Read state and the Read-Rezayi state dominate over their respective competing states
only for wide wells. For smaller well widths the Moore-Read state crosses over to the composite fermion Fermi
sea, while the Read-Rezayi state loses its dominance over the hierarchy state.
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HgTe quantum wells have attracted a lot of attention in the
last several years. This is mainly due to the prediction [1] and
observation [2] of the quantum spin Hall effect in this type of
systems. However, it is natural to ask whether it can exhibit
other phenomena associated with two-dimensional (2D) elec-
tronic systems. One of the most prominent such phenomena
is the fractional quantum Hall effect. This phenomenon is
interesting and important due to its strongly correlated nature
and possible application in topological quantum computation.
Fractional quantum Hall effect in HgTe quantum wells is
interesting because of the strong spin-orbit interaction in
this material. The effect of strong spin-orbit interaction is
twofold. First, it affects the single-particle wave functions, so
even though the electron-electron interaction is the Coulomb
interaction just like in other 2D materials, the matrix elements
of the Coulomb interaction are different. This is equivalent to
electrons with a parabolic band interacting with an effective
interaction that is different from the Coulomb interaction. This
is an important point because at some filling factors there are
competitions between different incompressible states, even
between incompressible states and compressible states, and
which state is realized and how stable this state is depend
on the details of the interaction. Second, the single-particle
Landau level spectrum is also modified by the strong spin-orbit
interaction. In particular, there are values of the magnetic field
for which two Landau levels (LLs) cross each other. LL mixing
could become important around such points.

In this work we study the possibilities of different fractional
quantum Hall effects in HgTe quantum well using exact
diagonalization in the torus geometry [3–6]. The effect of
spin-orbit interaction on the single-particle wave function
is taken into account with an eight-band calculation of
the envelope functions [7]. In the presence of a magnetic
field, the single-particle wave function has, with the axial
approximation, the form

ψnLL,kx
(�r) = exp(ikxx)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
(nLL)
1 (z) ϕnLL

f
(nLL)
2 (z) ϕnLL+1

f
(nLL)
3 (z) ϕnLL−1

f
(nLL)
4 (z) ϕnLL

f
(nLL)
5 (z) ϕnLL+1

f
(nLL)
6 (z) ϕnLL+2

f
(nLL)
7 (z) ϕnLL

f
(nLL)
8 (z) ϕnLL+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where kx is the single-particle momentum in the x direction
(the difference in the prefactor from Ref. [7] is due to a
different choice of the vector potential, �A = −Byx̂, with
x̂ being the unit vector in the x direction), and eikxxϕn

are Landau wave functions for a parabolic band. By a
parabolic band we mean a (strictly 2D) system with parabolic
dispersion in the absence of a magnetic field, i.e., Hpara = �p 2

2m

[ �p = (px,py) being the 2D momentum], which becomes
Hpara,mag = 1

2m
( �p + e

c
�A)2 in the presence of a magnetic field.

The solution of the parabolic problem is standard [8] and ϕn =
(−1)n[π�222n(n!)2]−1/4e−(1/2)[(y/�)−�kx ]2

Hn( y

�
− �kx), where �

is the magnetic length and Hn is the Hermite polynomial. ϕn

appear in the ansatz (1) because they form a basis for the raising
and lowering operators, in terms of which the py operator can
be expressed. [The phase (−1)n is chosen so that we have
aϕn = √

nϕn−1 and a†ϕn = √
n + 1ϕn+1 with the correct sign,

when the raising and lowering operators are defined as in
Ref. [7], which in the current gauge have the explicit forms
a = 1√

2
(kx� − y

�
− ∂y), a† = 1√

2
(kx� − y

�
+ ∂y).] Because of

the specific forms of the equations for the envelope functions
in the axial approximation, with the choice of the indices
of the ϕn as in Eq. (1), the y dependence of each equation
reduces to a common factor of ϕn, leaving us a system of
ordinary differential equations for the fi(z), which is then
solved numerically.

ϕn with n < 0 are understood to be 0, so the lowest nLL is
−2, and ψ−2 has only one nonzero component, containing ϕ0.
(The negative sign of the index in ψ−2 is of no significance;
one could have shifted the origin of nLL by defining n′

LL ≡
nLL + 2, then n′

LL would take non-negative integer values. We
are simply following the convention used in Ref. [7].) Hence
ψ−2 is similar to the lowest LL in systems with parabolic
bands, in the sense that the only nonzero component of Eq. (1)
is proportional to ϕ0, except that here there is a finite width in
the z direction, i.e., there is an additional factor f

(0)
6 (z) (there is

no such factor for strictly 2D electron gas). To avoid possible
confusion, we repeat that the word “parabolic” refers to the
dispersion in the absence of a magnetic field for a system whose
eigenfunctions [eikxxϕn(y)] in the presence of a magnetic field
we use as building blocks in Eq. (1). This parabolic case is also
the usual approximation for 2D electron gas. However, there is
nothing parabolic in our current case otherwise. In particular,
the confinement in the current case is due to the discontinuity of
the conduction and valence band edges, which are modeled as
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piecewise constant. These discussions about the single-particle
wave functions are actually quite standard [7,9].

The other LL that is closest to the bulk gap is ψ0, which
has seven nonzero components, including three n = 0 com-
ponents, three n = 1 components, and one n = 2 component.
Because of the n = 1 components it may have some similar
behaviors to the n = 1 LL in conventional 2D electron gas, e.g.,
supporting the Moore-Read state [10] and the Read-Rezayi
state [11].

If we ignore LL mixing, then the effect of the finite width
and the mutlicomponent nature of the single-particle wave
function can be absorbed into a form factor in analogy to the
four-band case in Ref. [12]. Since we use a different geometry
(torus instead of disk) and hence a different gauge (Landau
instead of the symmetric gauge), it may be worthwhile to
repeat some of the steps. The single-particle wave function is
actually, after the magnetic translational invariance along the
two edges of the system �L1 = (L1,0) and �L2 = (L2x,L2y) (in
the xy plane) [6] is taken into account,

φnLL,jx
=C

∑
k∈Z

{[e−(i/2)(L2x/L2y )�2k2
x ψnLL,kx

(�r)]|kx=2π(jx+kNφ )/L1}.

(2)

In the above expression, C is a normalization constant,
ψnLL,kx

(�r) is as given in Eq. (1), Nφ is the number of magnetic
fluxes through the system, and jx = 1,2, . . . ,Nφ replaces kx

as one of the single-particle quantum numbers. The matrix
element of the Fourier transform of the density is given by

unLL,jx2;nLL,jx1 ( �Q) =
∫

d�rφ†
nLL,jx2

(�r)ei �Q·�rφnLL,jx1 (�r). (3)

Note that �r and �Q are three-dimensional vectors. In particular,
�Q = �Q‖ + Qzẑ, where �Q‖ is a vector in the xy plane and is

limited to a lattice

�Q‖ = m�q1 + ñ�q2, m,ñ ∈ Z,
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A
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ŷ

)
, (4)
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L1ŷ = 2π

L2y

ŷ. (5)

After performing the 2D integral in the xy plane (over the
parallelogram determined by �L1 and �L2), we get (suppressing
the label nLL)
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where the prime on the Kronecker delta means that the two
subscripts are equal mod Nφ , Lni

( 1
2Q2

‖�
2) are the Laguerre

polynomials, and explicitly Q2
‖ = 4π2[ 1

L2
2y

(−mL2x
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+ ñ)2 +

m2

L2
1
]. Setting �Q = 0 in the above expression gives us
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.

Writing C = 1√
L1

C̄, we find that the normalization constant C̄

is determined by

1 = |C̄|2
∫ +∞
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dz

∑
i

|fi(z)|2. (7)

Defining
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then the u matrix element can be written

ujx2,jx1 = δ′
jx2,jx1+m

[∫ +∞

−∞
dz F (Q‖,z)eiQzz

]

× exp

{
i

π
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}
. (9)

The Coulomb matrix elements are, shortening the notations
jx1, etc., to j1, etc.,

Vj1,j2,j3,j4 = 1

A

∑
m,ñ∈Z

′ ∫ +∞

−∞

dQz

2π

4πe2

εQ2
uj1,j4 (− �Q)uj2,j3 ( �Q),

(10)

where A is the system size (area in the xy plane), the prime
on the summation indicates that the term m = ñ = 0 should
be omitted [3,4], and ε is the dielectric constant. Substituting
Eq. (9) in Eq. (10), we get

Vj1,j2,j3,j4 = 1
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The Qz integral can be performed easily,∫ +∞

−∞
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2π

eiQz(z2−z1)

Q2
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‖
= e−Q‖|z1−z2|

2Q‖
.

Then

Vj1,j2,j3,j4 = δ′
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2πe2

εQ‖
F(Q‖,nLL)

×ei(2π/Nφ )(j2−j1−m)ñ−(1/2)Q‖�2
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}
,

(12)

where the
∑′ now means that ñ and j2 − j3 + kNφ should not

be simultaneously zero, and we have defined

F(Q‖,nLL) =
∫ +∞

−∞
dz1 dz2e

−Q‖|z1−z2|F (Q‖,z1)F (Q‖,z2).

(13)
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The effect of the complicated band structure of the
single-particle problem has been absorbed into this
form factor, as advertised. The interaction part of the
Hamiltonian is given in terms of the V elements as
Hint = 1

2

∑
j1,j2,j3,j4

Vj1,j2,j3,j4c
†
j1
c
†
j2
cj3cj4 , where the c† and

c are creation and annihilation operators.

In the vicinity of the level crossing point, we will take
into account LL mixing by doing exact diagonalization with
both LLs included. In this case we will need inter-LL matrix
elements and a straightforward generalization of Ref. [12]
is carried out. Specifically, the inter-LL u matrix elements
are

unLL2,jx2;nLL1,jx1 ( �Q) =
∫

d�r φ
†
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(�r)ei �Q·�rφnLL1,jx1 (�r) (14)
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4
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‖�
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}
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where we have defined
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with the last factor being the associated Laguerre polynomial. The form factor for VnLL1,j1;nLL2,j2;nLL3,j3;nLL4,j4 is

F (nLL1,nLL2,nLL3,nLL4)( �Q‖) =
∫ +∞

−∞
dz1 dz2 e−Q‖|z1−z2|F (nLL1,nLL4)(− �Q‖,z1)F (nLL2,nLL3)( �Q‖,z2) (17)

[this replaces the F(Q‖,nLL) in Eq. (12),
with the other factors unchanged]. Now the
interaction part of the Hamiltonian is Hint =
1
2

∑
nLL1,j1;nLL2,j2;nLL3,j3;nLL4,j4

VnLL1,j1;nLL2,j2;nLL3,j3;nLL4,j4c
†
nLL1,j1

c
†
nLL2,j2

cnLL3,j3cnLL4,j4 .
We first consider sample A in Ref. [9] and 1/3-like

states. For sample A, we do not know the electron density
(which is due to a small residual doping), so we consider
many different possibilities, which is equivalent to treating
the density as a tunable parameter. Since the nLL = −2 and
nLL = 0 LLs cross each other at Bc 
 8.72 T, LL mixing may
be important. Therefore we include both LLs simultaneously
in the calculation [13]. Figure 1 shows the gap as a function of
the magnetic field for ν = ±1/3, ± 2/3 (ν = 0 corresponds
to, at least in the noninteracting case, the lower of these
two LLs completely filled, and the higher one completely
empty). For B sufficiently away from Bc on each side we
find that the effect of LL mixing vanishes. This is indicated
by the fact that ν = 1/3 and ν = 2/3 have the same spectrum
[i.e., particle-hole symmetry within the nLL = −2 (0) level for
B < (>)Bc], which is also the same as that from a single-LL
calculation. Similarly, ν = −1/3 and ν = −2/3 have the same
spectrum [particle-hole symmetry within the nLL = 0 (−2)
level for B < (>)Bc]. In these regions we can safely use a
single LL for the calculation and go to larger system size
(i.e., larger Nφ). The spectra for B = 6.3 T are shown in
Fig. 2 as an example. The neutral gaps are determined by the
minima of the magnetoroton branches (the low-lying curve in
each subfigure). We note in passing that the dispersion of the
magnetoroton branch can be measured experimentally [14].
When B is closer to Bc, for each filling factor there is a
narrow region (on each side of Bc) where the gap is determined

by inter-LL excitations (excitations where some electrons are
excited to the higher LL from the otherwise filled lower LL)
and is reduced compared to the magnetoroton minimum (see,
e.g., Fig. 3). For B even closer to Bc the gap is totally destroyed
by LL mixing.

Next we consider ν = 1/2. To be concrete, we fix the
electron density to 4.2 × 1011 cm−2 (as for sample B in

6 8 10 12
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B T
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e2

Sample A, N 15,
2
, nLL 2 and 0

2 3

1 3
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FIG. 1. Gaps as functions of magnetic field for ν = ±1/3, ± 2/3
in sample A as calculated by exact diagonalization. Both nLL = −2
and nLL = 0 levels are included in the diagonalization. The magnetic
flux through the unit cell is Nφ = 15 flux quanta (by unit cell we
mean the simulation cell, i.e., the parallelogram with �L1 and �L2 as
two adjacent sides, not the unit cell of the atomic lattice). The aspect
ratio, i.e., | �L2|/| �L1| is chosen to be 1, and the angle between �L1 and
�L2 (denoted θ ) is chosen to be π/2, i.e., the unit cell is a square.
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FIG. 2. Exact diagonalization spectra for sample A of Ref. [9]
at B = 6.3 T for (a) ν = 1/3 and 2/3 (the fractionally filled LL
is nLL = −2), and (b) ν = −1/3 and −2/3 (the fractionally filled
LL is nLL = 0). For all the data in this figure we used Nφ = 30
and | �L1|/| �L2| = 1, and each color corresponds to a different angle
θ ∈ [ π

3 , π

2 ]. For the horizontal axis, k is the magnitude of �k, which
is a wave-vector-like many-body quantum number characterizing the
relative motions of the electrons [5,6] (and has no relation with the
kx earlier in the discussion about the single-particle wave function).

Ref. [9]). We consider several different well widths w. For the
density we choose, ν = 1/2 corresponds to B = 34.75 T and
is to the right of the level crossing point between nLL = −2 and
nLL = 0 for all the well widths and therefore the fractionally
filled LL is the nLL = 0 level (and for all well widths this
level is sufficiently far away from other levels for LL mixing
to vanish, so we will only keep this one level in the exact
diagonalization).

First we look at w = 8 nm as for sample B of Ref. [9].
Unless otherwise specified the geometry of the unit cell is
hexagonal. For Ne = 10, the ground state (GS) has �k = 5�q1

[�q1 and �q2 are the basis vectors defined in Eqs. (4) and (5)]
and the two �k’s related by rotational symmetry, i.e., 5�q2 and
5(�q1 + �q2) [i.e., the GS is threefold degenerate (not counting
the trivial twofold center-of-mass degeneracy [5,15])]. These
three �k’s correspond to the centers of the edges of the Brillouin
zone. This behavior is consistent [15] with the Moore-Read
Pfaffian (Pf) state [10] [or the anti-Pfaffian [16,17] (APf), the

FIG. 3. The spectrum for sample A with ν = 2/3, B = 7.3 T,
and Nφ = 15. Both nLL = −2 and nLL = 0 LLs are included in the
diagonalization (the total number of eletrons in these two LLs is
then 25). The dots are levels with 〈N−2〉 ≈ 10 electrons in the nLL =
−2 LL (the higher level at this B). The dashes are levels with 〈N−2〉 ≈
11 electrons in the nLL = −2 LL (i.e., one electron is promoted to
this LL from the nLL = 0 LL, leaving a hole in the latter).

particle-hole conjugate of the Pf]. The overlap with the Pfaffian
state is considerable at 0.62 (the overlap with the APf is the
same in the absence of LL mixing). In Ref. [18] it was argued
that since the Coulomb state is particle-hole symmetric in the
absence of LL mixing, while the Pf state is not, we should
consider the particle-hole symmetrized Pf (symPf) instead. In
the current case, the overlap with the symPf is 0.81. However,
this does not necessarily mean that the Coulomb state is the
symPf. The other possibility is the composite fermion Fermi
sea (CFFS) [19], also known as the Rezayi-Read state (not to
be confused with the Read-Rezayi state to be discussed below).
There is no known parent Hamiltonian, i.e., a Hamiltonian for
which this state is exactly the GS, so to calculate the overlap
with this state one would need to use the Monte Carlo method,
which would take too long for the system sizes we are using
here. Fortunately, it is known (from Monte Carlo calculations
with smaller system sizes) that the Coulomb state in the lowest
LL in the purely 2D case [i.e., Hpara,mag given below Eq. (1)] has
overlap with the CFFS that is practically 1 [18,19], so assuming
this is true also for larger system size, one can approximate
the CFFS with the lowest LL Coulomb state [20,21] (the
latter has the added advantage of being exactly particle-hole
symmetric, while for the former the particle-hole symmetry
is only approximate [18]). With this approximation, we find
that in the current case the overlap with the CFFS is 0.99,
much higher than that with the symPf. For Ne = 12 the GS
has �k = 4�q1 + 2�q2 (and some other values related by rotational
symmetry) and is not consistent with the Pf/APf/symPf. The
overlap with the CFFS is 0.99.

For Ne = 14 the GS has �k consistent with the Pf/APf/symPf,
and the overlaps with the Pf/APf, the symPf, and the CFFS are
0.39, 0.58, and 0.97, respectively. The results for all three
system sizes suggest that at this value of well width (w =
8 nm) the GS is the CFFS. However, when we increase the
well width, for Ne = 10 and 14, the overlaps with the Pf and
the symPf increase while the overlap with the CFFS decreases,
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FIG. 4. Overlaps between the Coulomb GS in HgTe quantum
well with the Pf/APf, the symPf and the CFFS for ν = 1/2 and
(a) Ne = 10, (b) Ne = 12, and (c) Ne = 14, as functions of the well
width w.

and for w > wc ≈ 15 nm, the overlap with the symPf is larger
than those with the CFFS [see Figs. 4(a) and 4(c)].

FIG. 5. Gaps for ν = 1/2 as a function of well width for Ne =
10,12,14.

For Ne = 12, the �k of the GS changes from that correspond-
ing to the CFFS to that corresponding to the Pf/APf/symPf
at around w = 21 nm [Fig. 4(b)]. These behaviors suggest a
crossover from the CFFS at small well width to the symPf at
large well width. In Fig. 5 we show the well width dependence
(and system size dependence) of the gap. In Fig. 6 we show the
spectrum for Ne = 16 (both hexagon and square unit cells) at
w = 32 nm. The GS �k values and the overlaps for this system
size also suggest the symPf state.

Finally, we consider ν = 3/5. This filling factor is of
particular interest because the GS could be in the universality
class of the Z3 parafermion state [11], which can support
universal quantum computation [22]. A competing state for

FIG. 6. Spectrum for ν = 1/2, w = 32 nm, with Ne = 16. The
blue dots are for the hexagonal unit cell, while the black dashes are
for the square unit cell. The scheme of Ref. [26] is used to fold the
Brillouin zone to a quarter of the original size to account for the
pairing nature of the Pf/APf state. In particular, the GSs are mapped
from the centers of the edges in the original Brillouin zone to the
center of the folded one (�k = 0). For the hexagon unit cell, the GS’s
overlaps with the Pf/APf and the symPf are 0.50 and 0.86, respectively
[the CFFS for this system size and geometry has �k = −4�q1 − 4�q2 (and
�k’s related by rotational symmetry) in the unfolded Brillouin zone,
which is different from the Coulomb state here, so there is no overlap].
For the square unit cell, the overlaps between the GS and the CFFS,
the Pf/APf, and the symPf are 0.50, 0.55, and 0.86, respectively.

085117-5



JIANHUI WANG PHYSICAL REVIEW B 93, 085117 (2016)

FIG. 7. The overlap between the GS and the H-CF state and the
total overlap of the GS and lowest excited state (at �k = 0) with the
Z3 doublet for ν = 3/5 as functions of the well width. The inset is
the splitting between the GS and the lowest excited state (at �k = 0).

this filling factor is the hierarchy state [23,24], which can
also be described as an integer quantum Hall effect of
composite fermions [25]. As for ν = 1/2, we fix the density
to 4.2 × 1011 cm−2 and vary the well width. For this density
ν = 3/5 corresponds to B = 28.96 T, for which the nLL = 0
LL is also far away from other LLs, so we only include this
one LL in the exact diagonalization. For w = 8 nm, the overlap
between the GS and the hierarchy-CF (H-CF) state is 0.88. The
GS for the Z3 state is twofold degenerate (the GS �k is equal
to 0). For HgTe quantum well the GS is nondegenerate (not
including the trivial fivefold center-of-mass degeneracy) and
the splitting between the Coulomb GS and the lowest excited
state (at �k = 0) is 0.043 e2

ε�
, which is quite large. However,

if we ignore this splitting and calculate the total overlap of
the GS and the first excited state with the Z3 doublet [11],
i.e.,

∑2
i=1(|〈Z3,i|GS〉|2 + |〈Z3,i|FES〉|2), where |Z3,1〉 and

|Z3,2〉 are orthonormal basis states of the Z3 GS subspace,
|GS〉 and |FES〉 denote the GS and the first excited state (at
�k = 0) for the HgTe quantum well, we get 0.92. Hence for
w = 8 nm neither the H-CF state nor the Z3 state is clearly

0.0 0.5 1.0 1.5
0.000

0.005

0.010

0.015

k

E
e2

3 5 nLL 0 , w 44nm, Ne 18,
3

FIG. 8. Exact diagonalization spectrum for ν = 3/5 and w =
44 nm with Ne = 18.

favored. As w is increased, the overlap between the GS and the
H-CF state decreases, the splitting between the GS and the first
excited state decreases, and the total overlap of these two states
with the Z3 GS doublet increases (see Fig. 7). Therefore, at
least for the larger well widths, the Z3 state is a viable candidate
for the GS at ν = 3/5. In Fig. 8 we show the spectrum for
w = 44 nm and Ne = 18.

To conclude, our exact diagonalization results show that
HgTe quantum wells are capable of supporting fractional
quantum Hall effects. The filling factors we studied include
ν = ±1/3, ± 2/3, 1/2, and 3/5. For ν = 1/2 we find a
crossover from the composite fermion Fermi sea at small
well widths to the particle-hole symmetrized Moore-Read
state at large well widths. For ν = 3/5, the Read-Rezayi Z3

state dominates over the hierarchy state at large well widths
but gradually loses this dominance when the well width is
decreased. We also find the effect of Landau level mixing
can be important near the level crossing point and can totally
destroy the gap. We note that our study does not take into
account disorder, which can reduce the gaps significantly and
make the experimental observation difficult.

I thank Christoph Brüne for a useful discussion. A fellow-
ship from the Kreitman Foundation is acknowledged.
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