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Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals
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We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show
that conductivity, thermal conductivity, thermoelectric, and the sound absorption coefficients exhibit strong and
anisotropic magnetic field dependencies. We also discuss properties of magnetoplasmons and magnetopolaritons,
whose existences are entirely determined by the chiral anomaly. Finally, we discuss the conditions of applicability
of the quasiclassical description of electron transport phenomena related to the chiral anomaly.
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I. INTRODUCTION

A concept of zero band gap semiconductors with topolog-
ically protected massless Dirac points (Weyl semimetals) has
been introduced in Refs. [1–4] (see also for a review Ref. [5]).
In these materials the valence and conduction bands touch at
isolated points in the Brilluoin zone, and the electron states
near these points may be described by the Dirac Hamiltonian,

H = k(a)v p · σ , (1)

where σi are Pauli matrices. The coefficient k(a) = ±1 in
Eq. (1) indicates the handedness or chirality of each Weyl
node, labeled by a. Due to Nielsen-Ninomiya theorem [6]
the number of these Weyl points Nv should be even, and
numbers of opposite chirality nodes should be equal. The
stability of Weyl nodes is related to the fact that the flux
of Berry curvature through a closed surface surrounding the
node is quantized. Since the time reversal symmetry requires
the Berry curvature to be an odd function of momentum and
inversion symmetry requires it to be even, Weyl nodes can
only exist in crystals with either broken inversion or time
reversal symmetry. In the former case the minimal number
of Weyl nodes is four, while in the latter case it is two.
An interesting feature of the system with the massless Dirac
electron spectrum is the existence of the chiral anomaly [7,8].
One of its manifestation is a giant and strongly anisotropic
negative magnetoresistance which exists in the case when the
electric and the magnetic fields are collinear. It was predicted
by Nielsen and Ninomiya [6] in the ultraquantum regime
of strong magnetic field, where only zeroth Landau level is
partially occupied. This phenomenon is related to the fact
that in the presence of a magnetic field the electrons can
be transferred between different Weyl nodes by the spectral
flow caused by the electric field parallel to the magnetic
one. It was shown in Ref. [9] that the strongly anisotropic
magnetoresistance due to the chiral anomaly persists to the
semiclassical regime of weak magnetic fields, where it can
be described by the Boltzmann kinetic equation. These effects
are related to the “chiral magnetic effect” which may be
observable in relativistic heavy-ion collisions [10].

Recently in a series of remarkable experiments [11–17]
a significant and strongly anisotropic magnetoresistance has
been measured in a number of systems. It is negative for the
case where the magnetic and electric fields are parallel and
positive in the case when the electric and magnetic field are
perpendicular. This can be interpreted as a strong evidence of
existence of the chiral anomaly in these materials.

In this article we consider electron transport phenomena
related to the chiral anomaly in several physical regimes. We
predict strong and anisotropic magnetic field dependencies of
thermal conductivity and the thermoelectric sound absorption
coefficients. We also discuss new types of magnetoplasmons
and magnetopolaritons in Weyl metals.

II. DESCRIPTION OF ELECTRON TRANSPORT
PHENOMENA RELATED TO THE CHIRAL ANOMALY

We assume that the coupling constant for the electron-
electron interaction is small, α = e2/ε�v � 1, where ε is
the dielectric constant. In this case one can neglect the
renormalization of the electron spectrum and develop a scheme
to describe transport phenomena in Weyl semimetals which is
based on the Boltzmann kinetic equation.

In the presence of an external magnetic field the momentum
operator p in Eq. (1) becomes p = −i�∇ − e

c
A, where A is

the vector potential. For a uniform magnetic field B = (0,0,B)
the spectrum of the massless Dirac Hamiltonian Eq. (1) is well
known,

εn(pz) =
{

±v

√
2n�e

c
B + p2

z , n = 1,2, . . . ,

k(a)vpz, n = 0.
(2)

Here pz is the momentum in the direction of the magnetic
field. A peculiarity of this spectrum is that in addition to n �= 0
Landau levels there is a “chiral,” n = 0, Landau level with an
asymmetric in pz dispersion.

If the electron level broadening γ is smaller than the
Landau level spacing one can describe the electron transport
phenomena with the aid of the Boltzmann kinetic equation
for the electron distribution function of the quantized Landau
orbitals. At low magnetic fields and large characteristic
electron energies this requirement is violated. In this regime the
Landau quantization may be neglected and electron dynamics
may be described using the quasiclassical approach. The
quasiclassical equations of electron motion were generalized
in Ref. [18] to include effects of Berry curvature that arises in
crystals with broken inversion or time reversal symmetry,

ṙ = ∂εp

∂p
+ ṗ × �(a)

p , (3a)

ṗ = eE − 	
(a)
ij (p)∇ruij (r) + e

c
ṙ × B. (3b)
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Here the index a labels the valleys, �(a)
p = ∇p × A(a)

p is the
Berry curvature, A(a)

p = i〈u(a)
p |∇p|u(a)

p 〉, |u(a)
p 〉 are the Bloch

wave functions, 	
(a)
ij (p) is the deformation potential in valley

a, uij (r,t) = 1
2 (∂iuj (r,t) + ∂jui(r,t)) is the strain tensor, with

ui(r,t) being the components of the lattice displacement, and c

the speed of light. The second term in Eq. (3b) for ṗ represents
the force exerted on the electrons by the strain, −∇δε

(a)
p =

−	
(a)
ij (p)∇ruij (r,t).

The quasiclassical Boltzmann kinetic equation for the
electron distribution function np(r,t) that follows from Eq. (3)
has the following form,

∂n
(a)
p

∂t
+ ṙ · ∂n

(a)
p

∂r
+ ṗ · ∂n

(a)
p

∂p
= I

(a)
st

{
n(a)

p

}
, (4)

while the expression for the particle current density in an
individual valley is given by

j(a) =
∫

d3p
(2π�)3

(
1 + e

c
�(a)

p · B
)

ṙ n(a)
p

=
∫

d3p n
(a)
p

(2π�)3

[
∂εp

∂p
+ eE × �(a)

p + eB
c

(
�(a)

p · ∂εp

∂p

)]
.

(5)

The second line in Eq. (5) is obtained by substituting the
solution of the classical equations of motion (3) into the first
line. The collision integral I

(a)
st {n(a)

p } in Eq. (4) accounts for the
evolution of the distribution function due to various electron
scattering processes.

It is important to distinguish between intervalley scattering
processes, which transfer electrons between the valleys, and
intravalley scattering which does not change the number of
electrons in a given valley. In the regime where the elastic
intravalley relaxation time τintra is the shortest relaxation
time in the problem, the description of electron transport
can be considerably simplified. In this case one can neglect
the intravalley anisotropy of the electron distribution and
describe the system by the distribution function n

(a)
p = n(a)(εp),

which depends only on the electron energy and the valley
index a. In the remainder of the paper we specialize in this
regime. Furthermore, we assume that intervalley scattering is
dominated by elastic scattering of electrons from impurities,
which allows us to write the corresponding part of the
scattering integral in the relaxation time approximation with
the energy-dependent intervalley scattering relaxation time
τ (ε). Then the Boltzmann equation (4) simplifies to

∂n(a)(ε)

∂t
+ 1

ν(a)(ε)
∇ · j(a)(ε)

= − k(a)

ν(a)(ε)

e

4π2�2c

(
eE − 	̄

(a)
ij ∇ruij (r)

)

·B ∂n(a)(ε)

∂ε
− n(a)(ε) − n̄(ε)

τ (ε)
+ I (a)

ε . (6)

Here k(a) denotes the quantized flux of the Berry curvature
through the constant energy surface,

k(a) = 1

2π�

∫
�(i)

p · dS(a) = 0, ± 1, . . . , (7)

where dS(a) is the area differential. For Weyl semimetals the
Berry curvature flux is given by the valley helicity k(a) = ±1
in Eq. (1). The quantity 	̄

(a)
ij (ε) in Eq. (6) is the deformation

potential averaged over the direction of momentum p at a given
energy ε in the ath valley, and n̄(ε) = ∑

a n(a)(ε)/Nv (with
Nv being the number of valleys) is the electron distribution
function averaged over the valleys. The collision integral I (a)

ε

in Eq. (6) describes the inelastic scattering processes. The
expression for the density of states in the ath valley has the
form,

ν(a)(ε) =
∫

d3p
(2π�)3

(
1 + e

c
�(a)

p · B
)

δ(ε − εp) ∼ ε2

v32π2�3
,

(8)

where we can neglect the weak magnetic field dependence. The
particle flux density at a given energy in valley a in Eq. (5) can
be expressed as

j(a)(ε) = n(ε)
∫

d3pδ(εp − ε)

(2π�)3

[
eE×�(a)

p + eB
c

(
�(a)

p · ∂εp

∂p

)]

= k(a) e

4π2�2c
B n(a)(ε). (9)

The densities of electric current j and thermal flux I(a)
ε may be

expressed in terms of j(a)(ε) as

j =
∑

a

e

∫
j(a)(ε)dε, (10)

Iε =
∑

a

∫
(ε − μ)j(a)(ε)dε. (11)

In conventional conductors the assumption of complete in-
travalley momentum relaxation (τintra → 0) would result in a
vanishing contribution of each valley to the current density (10)
and thermal flux density (11). In Weyl metals the particle
flux j(a)(ε) in a given valley does not vanish even in this
limit [10,19]. The nonvanishing particle flux density (9) at full
momentum relaxation is a manifestation of the chiral anomaly
in the semiclassical regime.

We note that the expression for the contribution of a given
valley into the current density in Eq. (10) is ambiguous. It
depends on the choice of the lower cutoff of the energy integral.
The observable net current, however, is given by the sum of
valley currents and is therefore independent of this choice.

We note that the first term in the right-hand side of Eq. (6)
describes the evolution of the electron distribution due to
spectral flow, whereby electrons in the chiral, n = 0, Landau
level are accelerated by the electric field. The presence of the
density of states in the denominator of this term is related to
the fact that the flux of electrons due to the spectral flow is
scattered by intravalley processes into all available states at a
given energy ε.

The system of Eqs. (6), (9), (10), and (11), can describe
the electron transport not only in the semiclassical regime but
also at arbitrary magnetic fields. In the latter case the density
of states ν(a)(ε) should account for Landau quantization. For
example, in the ultraquantum limit where only the chiral (n =
0) Landau level matters, ν(a)(ε) = eB/(4π2

�
2cv). The only

restriction for validity of the system is that the characteristic
electron energies should be larger than the broadening of
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electron levels. We will see below that sometimes this require-
ment may be violated even at relatively high temperatures.
Below we apply this kinetic scheme to study several transport
phenomena in Weyl semimetals.

III. MAGNETORESISTANCE AND MAGNETOTHERMAL
CONDUCTIVITY

We begin by considering the longitudinal conductivity,
which corresponds to the situation where the external electric
field is directed along the magnetic field. In the ultraquantum
limit, v/LB 	 T ,μ,γ , and in the single-particle approxima-
tion the longitudinal conductivity of Weyl metals was obtained
in Ref. [6],

σzz = Nv

e2v

4π�L2
B

τ (ε = 0,B). (12)

Here LB = √
�c/eB is the magnetic length. All other compo-

nents of the conductivity tensor in this approximation are zero.
The magnetic field dependence of the longitudinal magnetore-
sistivity in this regime is controlled by the corresponding de-
pendence of the intervalley scattering rate 1/τ (ε = 0,B). The
latter is nonuniversal and depends on the type of impurities.
Its evaluation is not essentially different from the calculation
of the backscattering time in conventional semiconductors in
the ultraquantum limit (see, e.g., Refs. [21,22]). For example,
for the case of short-range impurities the intervalley scattering
rate is proportional to the electron density of states 1/τ ∼
niU

2
0 /(vL2

B), where U0 and ni are, respectively, the strength
and density of impurities. Thus in this case the conductivity
becomes independent of the magnetic field.1

Let us now consider the opposite, quasiclassical regime,
in which the electrical conductivity is dominated by electrons
with large energies. Neglecting inelastic scattering, linearizing
Eq. (6), and using Eqs. (9) and (10) at uij = 0, we get the
following expression for the longitudinal conductivity,

σzz = Nv

(
e2

4π2�2c

)2

B2
∫

dε
τ (ε)

ν(ε)

(
− ∂nF (ε)

∂ε

)
, (13)

where nF (ε) = 1/(e(ε−μ)/T + 1) is the equilibrium Fermi
distribution function.

Quantum degenerate regime. At μ 	 T the expression (13)
for the longitudinal conductivity reduces to [9]

σzz(μ) = Nv

e2

8π2�c

(eB)2v2

μ2

v

c
τ (μ). (14)

Although Eq. (13) was obtained under the assumption of
absence of inelastic scattering, the result for the conductivity,
Eq. (14), is valid for an arbitrary relation between the
inelastic intravalley scattering rate 1/τε and the characteristic
intervalley scattering rate. Since in the quasiclassical regime
ν(ε) ∼ ε2, the integral in Eq. (13) diverges at small ε and
should be cut off at energies of the order of electron level
broadening γ . However, at μ 	 T the contribution to the

1Note that in conventional semiconductors with short-range impuri-
ties the longitudinal magnetoresistance is positive in the ultraquantum
limit [22,27].

conductivity from the small electron energies is exponentially
small, ∼ e−μ/T .

Nondegenerate regime. At T 	 μ inelastic scattering of
electrons may no longer be ignored in the consideration of
electrical conductivity. In this regime the inelastic scattering
rate is dominated by electron-electron collisions and may be
estimated as

1

τε

∼ α2T . (15)

If the inelastic intravalley scattering rate 1/τε exceeds the
characteristic rate of intervalley scattering 1/τ (T ) at ε ∼ T ,
then the inelastic scattering processes establish a locally
equilibrium electron distribution function in a given valley,

n(a)(ε) = 1

exp
(

ε−μ−δμ(a)

T

) + 1
, (16)

where the nonequilibrium part of the distribution is
parametrized by the correction δμ(a) to the chemical potential.
The value of δμ(a) is controlled by the intervalley relaxation
time. One can find δμ(a) with the aid of the electron number
conservation law,

∂N (a)

∂t
= k(a) e

2(B · E)

4π2�2c
+ δμ(a)

∫
dε

ν(a)(ε)

τ (ε)

∂nF (ε)

∂ε
= 0,

(17)
which follows from Eq. (6). Here N (a) = ∫

ν(a)(ε)n(a)(ε)dε is
the density of electrons in the ath valley. Substituting Eq. (16)
with the obtained value of δμ into Eqs. (9) and (10) we get the
following expression for the conductivity:

σzz ∼ Nv

e2

8π2�c

v

c

(eB)2v2

T 2
τ (T ). (18)

Although this equation does not explicitly depend on the
inelastic scattering rate 1/τε it applies only if τε is sufficiently
short. Equation (18) was obtained under the assumption that
the nonequilibrium distribution is well approximated by the
local equilibrium form (16) with a valley-dependent chemical
potential. This assumption breaks down at sufficiently low
energies because the first term in the right-hand side of Eq. (6)
grows as 1/ν(ε) when the energy decreases. Therefore, the
contribution to the conductivity from the small energy interval
requires special treatment. Using Eq. (6) one can estimate the
correction to the local equilibrium distribution (16) at energies
ε ∼ γ ∼ 1/τε ∼ α2T as

δn(ε ∼ γ ) ∼ e2

4π2�2c
(EB)

τε

T ν(γ )
. (19)

Substituting this estimate into Eqs. (9) and (10) we find that
the corresponding correction to the conductivity is dominated
by electrons in the energy interval ε ∼ γ , and is smaller than
Eq. (18) provided

τε

τ (T )
T τε ∼ τε

τ (T )α2
� 1. (20)

Under the opposite condition, τε/(τ (T )α2) 	 1, as well as
in the regime τ (T ) < τε the part of the conductivity related
to the chiral anomaly is determined by electrons in the
energy interval ε ∼ γ where the electron level broadening
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becomes comparable to the energy, and the approach based
on the quasiclassical Boltzmann equation is not applicable.
In the regime where the level broadening is dominated by
inelastic electron-electron collisions and satisfies γ > v/LB

the conductivity may be estimated as

σzz ∼ Nv

e2

8π2�c

v

c

(eB)2v2

�T
τ 2
ε . (21)

Einstein relation. Using Eqs. (9) and (6) one can also evalu-
ate the electron diffusion coefficient. For example, at T � μ,
assuming that n(a)(r,ε) = n̄(r,ε) + δn(a)(r,ε), (δn(a)(r) � n̄,
and

∑
a δn(a)(r) = 0), at E = 0 we get

δn(a)(ε) = −k(a) e

4π2�2c

τ (ε)

ν(a)(ε)
B · ∂n̄(r,ε)

∂r
. (22)

Here n̄ is the averaged over the valley part of the distribution
function. Substituting Eq. (22) into Eq. (9), and summing the
result over a we get the electron diffusion coefficient, which
is consistent with the Einstein relation,

D(ch)
zz (μ) = σzz(μ)

e2ν(μ)
, (23)

where σzz(μ) is given by Eq. (14).
Thermal conductivity. Similarly, at μ 	 T , in the presence

of a temperature gradient using Eq. (9) we get

δn(a)(ε) = k(a) τ (μ)

ν(a)(ε)

e

4π2�2c

ε − μ

T

∂n̄F

∂ε
B · ∂T

∂r
. (24)

This yields the expression for the chiral-anomaly-related
contribution to the longitudinal thermal conductivity, which
is consistent with the Wiedemann-Franz law,

κzz = π2σzzT

3e2
. (25)

At low magnetic fields in the quantum degenerate regime,
μ 	 T , the phonon contribution to the thermal conductivity
is small compared to the electron one, as the phonon mean
free path is limited by their absorption by electrons. In the
opposite limit T ,μ � v/LB of ultraquantum magnetic field
electrons can absorb phonons only in a narrow, of order γ ,
interval of angles between electron and phonon momenta. In
this case the thermal conductivity can be determined by the
phonon transport.

Thermoelectric coefficient. Using Eq. (24) we can also
get an expression for the thermoelectric coefficient which
relates the electric current jz = ηzz(∇T )z and the temperature
gradient in the z direction. At μ 	 T this yields an expression
consistent with the Mott relation,

ηzz = π2

3e
T

∂σzz(T = 0,μ)

∂μ
. (26)

IV. COLLECTIVE MODES IN WEYL SEMIMETALS

In this section we study manifestations of the chiral
anomaly in the collective modes in Weyl semimetals.

A. Magnetoplasmons and magnetopolaritons
in Weyl semimetals

Knowledge of the frequency dependence of the conduc-
tivity σij (ω) is sufficient to determine the plasmon spectrum.

In the quasiclassical limit where max(T ,μ) 	 v/LB and at
ωτintra 	 1 the conductivity is determined by all electrons,
and the contribution of the electrons in the chiral Landau level
is negligible. As a result the plasmon mode has a conventional
for metals form [20]. In the ultraquantum limit μ,T � v/LB

the situation is different. Since at μ,T ,B = 0 the plasmon
mode does not exist, at B �= 0 the plasmon spectrum is entirely
determined by the chiral anomaly, and its form is very different
from the conventional plasmon spectrum [9]. Let us consider
electromagnetic waves with frequencies below v/LB . In this
regime we may neglect excitations of electrons to higher
Landau levels. At ω 	 1/τ the ac conductivity is given by

σij = iω2
0

4πω
ninj , (27)

where n is the unit vector along the magnetic field and we
introduced the notation,

ω2
0 = Nv

πe2v

(πLB)2�
. (28)

Combining Eq. (27) with the Poisson equation and the
continuity equation we get the plasmon spectrum [9],

ω2 = ω2
0q

2
z

q2
z + q2

⊥
. (29)

Note that the plasmon frequency depends only on the angle
between the wave vector q and the magnetic field, but not on
its magnitude |q|. The dependence of the plasmon frequency
on the magnetic field is described by Eq. (28).

Equation (29) was obtained in the approximation where the
speed of light c → ∞. At finite c the hybridization between the
photon and the plasmon modes produces a polariton spectrum.
The dispersion and polarization of electromagnetic waves,
E(r,t) = ReEe−iωt+iq·r, is determined by the equation [23],

(
qiqj − q2δij + ω2

c2
εij

)
Ej = 0, (30)

where εij = δij + 4πiσij /ω is the dielectric tensor. We denote
the angle between the wave vector q and the z axis by θ , so
that cos θ = qz/q. The wave polarized perpendicular to the z

axis does not produce electric current and maintains the same
dispersion as in vacuum, ω = cq. The waves with the electric
field polarized in the plane spanned by wave vector q and the
z axis represent superpositions of longitudinal (plasmon) and
transverse (photon) waves. For these waves we obtain from
Eq. (30) the spectrum,

ω2 = ω2
0 + c2q2

2
± 1

2

√(
ω2

0 + c2q2
)2 − 4ω2

0c
2q2 cos2 θ,

(31)

which is plotted in Fig. 1. The plasmon spectrum, Eq. (29),
and unperturbed photon spectrum, ω = ±cq, are recovered
from Eq. (31) at q 	 ω0/c. We note that the nonanalytic in
q dispersion of the plasmon in Eq. (29) can be traced to the
nonanalyticy of the spectrum (31) in the polariton region.
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FIG. 1. Spectrum of the two branches in the polariton region. The
frequency ω (in units of ω0) is plotted as a function of the wave vector
(in units of ω0/c) at qx = 0. The qz axis is directed from right to left,
and the qy axis into the page. The two branches cross at qy = 0 and
qz = ω0/c.

B. Sound absorption in Weyl semimetals

As a sound wave propagates through a medium its intensity
attenuates with the distance r into the medium, I = I0e

−�r ,
where � is the absorption coefficient. In metals sound attenu-
ation is dominated by the coupling of the lattice deformation
to the conduction electrons. The strong anisotropic magnetic
field dependence of the sound absorption coefficient � also can
reveal the significance of the chiral anomaly in Weyl semimet-
als. For simplicity we consider a sound wave characterized
by a lattice displacement vector ui(r,t) ∼ exp(iq · r − iωt),
where ω = csq, and cs is the sound speed. Sound absorption
in Weyl semimetals is governed by the standard electron-lattice
interaction, described by the deformation potential. We restrict
ourselves to the relatively low frequency limit ω � 1/τintra,ωp.
In this case the charge oscillations induced by the strain are
screened, while the corresponding oscillations of the scalar
potential cancel the part of the electron energy proportional
to the deformation potential averaged over the valley of the
electron spectrum (see, for example, Ref. [24]). As a result the
sound absorption is controlled by the effective deformation
potential,

	̃
(a)
ij = 	̄

(a)
ij − 1

Nv

∑
i

	̄
(a)
ij (32)

(see, for example, Ref. [24]). According to Eq. (6)
−	̃

(a)
ij ∇uij (r)/e acts as electric field acting on electrons in

the ath valley. Let us introduce the electrical conductivity
σ (a)

zz which can be interpreted as a conductivity associated
with valley a, σzz = ∑

a σ (a)
zz . Then we can relate the entropy

production to σ (a)
zz T Ṡ = ∑

a σ (a)
zz cos(θ )q2〈(uij 	̃

(a)
ij )2〉/e2. Di-

viding it by the sound wave energy density ρc2
s 〈u2

ij 〉/2, where
ρ is the crystal density and 〈. . .〉 denotes averaging over the
period of oscillations, at ωτ � 1 we get an expression for the

sound absorption coefficient,

� =
∑

i σ
(a)
zz cos2(θ )q2( ˜̃	(a))2/e2

e2ρc2
s

∼ σzz

cos2(θ )q2 ˜̃	2/e2

e2ρc2
s

,

(33)
where θ is the angle between B and q, ( ˜̃	(a))2 =
〈(uij 	̃

(a)
ij )2〉/〈u2

ij 〉, and ˜̃	 is a characteristic value of ˜̃	(a).
Thus the sound absorption coefficient is a strongly anisotropic
function of the angle between q and B.

V. DISCUSSION

We have considered the electron transport phenomena in
Weyl metals which are related to the chiral anomaly. In
our approximation the only nonvanishing components of the
transport coefficient tensors are σzz, κzz, and ηzz. Their strong
magnetic field dependence is controlled by the intervalley
scattering time τ , and energy relaxation time τε . Of course,
there are also conventional contributions to the transport
coefficients which are related to the anisotropic part of the
intravalley distribution functions, and which are controlled by
the intravalley relaxation time τintra. The former contributions
dominate the transport coefficients if the parameter τ/τintra is
sufficiently large.2 For example, at low magnetic fields in the
quasiclassical regime, the chiral anomaly contribution to σzz

exceeds the conventional Drude contribution if

τ/τintra > ÑB ∼
(

max(μ,T )

v/LB1

)2

	 1. (34)

Here ÑB is the number of Landau levels in the energy
interval [0,max(μ,T )], and B1 is the magnetic field where
the resistance decreases by a factor of order one compared
to its zero magnetic field value. Even if chiral anomaly-
related corrections are smaller than the Drude contribution
to the conductivity, they still can dominate its magnetic field
dependence provided

τ (μ)

τintra

1

(μτintra)2
	 1. (35)

The origin of the large parameter τ/τintra in Weyl semimet-
als may be related to the fact that the scattering potential
is sufficiently smooth, and its inverse correlation radius is
smaller than the value of the momentum transfer for the
electron intervalley scattering. In experiments [11–15,17] a
strong linear in B positive magnetoresistance was observed at
E ⊥ B. A possible explanation of this phenomenon, associated
with motion of electrons in quasiclassical magnetic field in the
presence of smooth potential, was suggested in Ref. [29]. This
supports the picture that the large parameter τ (μ)/τintra 	 1
originates from smooth disorder. We note, however, that the
significant negative magnetoresistance for E ‖ B has been also
observed in Dirac semimetals, where the Dirac points in the
electron spectrum are double degenerate. In this case the origin
of the large parameter τ/τintra is less clear.

In the framework of the conventional Boltzmann kinetic
equation which does not take into consideration the existence

2We note that our results are drastically different from those of
Ref. [30] which are proportional to the intravalley relaxation time.
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of the Berry phase the magnetoresistance is always posi-
tive [24–26]. The negative magnetoresistance is small and
isotropic in three-dimensional systems at pF l 	 �, where
pF is the Fermi momentum. We are not aware of other
mechanisms of strong anisotropic negative magnetoresistance
in conductors at low magnetic fields in the quasiclassical
regime. At high magnetic field, in the ultraquantum limit,
when only the zeroth Landau level is occupied, there is,
unrelated to the chiral anomaly, a mechanism of strongly
anisotropic magnetoresistance, which may become negative in
the longitudinal direction (see, for example, Refs. [21,22,27]).
As far as we know, this effect has never been observed
in conventional semiconductors. An additional difficulty in
interpreting magnetotransport measurements in the ultraquan-
tum regime is associated with the instability of the electron
liquid with respect to charge density wave formation, which
drives the system to the insulating state. In contrast, in
the semiclassical limit, theoretical consideration of electron
transport is free of aforementioned complications.

In many experiments in Weyl semimetals for E ‖ B (see,
for example, Ref. [28]) the strong negative magnetoresistance
is preceded by a small positive magnetoresistance at relatively
small fields B < B∗. We believe, that the value of v/LB∗ in
these experiments is sufficiently low compared to max(T ,μ),
so that the system may be treated quasiclassically in part of
the region where negative magnetoresistance is observed. In
addition, we note that in some experiments (see, for example,
Ref. [28]) there is an interval of temperatures where the nega-
tive magnetoresistance starts at zero magnetic field (B∗ = 0),

where the system, definitely can be described quasiclassically.
Therefore we believe that the anisotropic magnetoresistance
observed in the aforementioned experiments is due to the chiral
anomaly in these materials.

Another difference between the properties of magnetoresis-
tance in quasiclassical and ultraquantum regimes is that they
have different dependence on the orientation of the magnetic
field with respect to the crystalline axes. At low magnetic field
in the quasiclassical regime the magnetoresistance related to
the chiral anomaly is independent of the orientation of the
magnetic field with respect to the crystalline axis in spite of
the fact εp and �p are anisotropic functions of p. The magnetic
field dependence of the sound absorption coefficient exhibits
similar properties. We would like to mention, however, that the
coefficient ˜̃	(a) in Eq. (33) depends on the relative orientation
of the vector q with respect to the crystalline axis. In the
ultraquantum case the value of the velocity in the direction
of the magnetic field, the relaxation time in Eq. (12), and
consequently the conductivity σzz depend on the magnetic
field orientation.
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