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Progress in the understanding of quantum critical properties of itinerant electrons has been hindered by the
lack of effective models which are amenable to controlled analytical and numerically exact calculations. Here
we establish that the disorder-driven semimetal to metal quantum phase transition of three-dimensional massless
Dirac fermions could serve as a paradigmatic toy model for studying itinerant quantum criticality, which is
solved in this work by exact numerical and approximate field-theoretic calculations. As a result, we establish
the robust existence of a non-Gaussian universality class, and also construct the relevant low-energy effective
field theory that could guide the understanding of quantum critical scaling for many strange metals. Using the
kernel polynomial method (KPM), we provide numerical results for the calculated dynamical exponent (z) and
correlation length exponent (ν) for the disorder-driven semimetal (SM) to diffusive metal (DM) quantum phase
transition at the Dirac point for several types of disorder, establishing its universal nature and obtaining the
numerical scaling functions in agreement with our field-theoretical analysis.
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I. INTRODUCTION

Phase transitions are ubiquitous in the natural world ranging
from the solidification of water to the thermal suppression of
magnetism in iron or superconductivity in metals. Through
the construction of simplified effective “toy” models, such
as the Ising model to describe classical magnets [1], generic
theories can be developed to gain invaluable physical insights
and explain the universal features of experimental data across
vastly different systems. Due to the quantum-mechanical
zero-point motion, phase transitions can also occur at absolute
zero temperature [2] driven entirely by quantum (rather than
thermal) fluctuations, which can be accessed by tuning a
nonthermal control parameter g, such as disorder, doping,
magnetic field, or pressure. When such a quantum phase
transition (QPT) is continuous, the quantum critical point
(QCP) (located at a critical coupling gc akin to the critical
temperature for thermal phase transitions) exhibits scale
invariance, and the universal scaling properties of physical
quantities are governed by the divergent length (ξl) and time
(ξt ) scales

ξl ∼ |g − gc|−ν, ξt ∼ ξz
l ∼ |g − gc|−νz,

where the critical exponents ν and z characterize the corre-
lations in space and time respectively. These notions have
been put on a solid theoretical foundation, e.g., by adding
nontrivial quantum dynamics into the Ising model [3], which
has allowed for a simplified setting to understand magnetic
quantum phase transitions in general. The critical exponents
ν and z define the universality class of the quantum phase
transition, and critical scaling functions connecting various
physical parameters define the nature of the QCP.

Precisely at the QCP (g = gc) and at T = 0, one has true
scale invariance as the characteristic correlation lengths (ξl and
ξt ) are infinite. Even though the QCP occurs strictly at zero
temperature, its effects on physical properties manifest over a
broad range of temperatures (T ) and energies (E), such that

E, kBT � ξ−1
t ,

where kB is the Boltzmann constant. This critical region,
known as the quantum critical fan (see Fig. 1), is naturally
accessible in the laboratory and is widely studied [4–6]. The
generic magnetic QCPs for most insulating systems can be
simply understood in terms of the Landau-Ginzburg-Wilson
order-parameter theory in (d + z) dimensions, since there is
only one gapless bosonic degree of freedom, namely the order
parameter. By contrast, at the metallic or itinerant QCPs there
are at least two sets of gapless degrees of freedom, (i) the
itinerant fermions and (ii) the bosonic order parameter, whose
mass has been tuned to zero (at g = gc). Thus, to construct
a successful description of a metallic or itinerant QCP, it is
necessary to address both types of gapless excitations on an
equal footing, which is generally a challenging task.

In this work, we show that the disorder-driven semimetal
to diffusive metal (SM-DM) QCP of three-dimensional Dirac
fermions is a quintessential toy model for gaining insights
into the general nature of itinerant quantum criticality. For
a random scalar potential, this problem has been studied
by mean-field [7] and perturbative field-theoretical calcula-
tions [8–12]. These analytical calculations show that above
the lower critical dimensionality d = 2, the average density
of states (DOS) at zero energy vanishes inside the SM for
sufficiently weak disorder, and it becomes finite beyond a
critical disorder strength leading to a diffusive metal (DM).
There is no such finite disorder phase transition in two
dimensions (e.g., graphene), where the system becomes a
diffusive metal already for infinitesimal disorder. Through
a d = 2 + ε expansion of the critical properties, it is found
that the leading-order results for the critical exponents in
d = 3 are z = 3/2 and ν = 1, for both potential and axial
disorder, while there should be no such transition for mass
disorder [8]. Recently, numerical calculations have also come
to bear on the problem through the study of a three-dimensional
disordered topological insulator [13,14], a three-dimensional
layered Chern insulator [15], a Weyl semimetal [16–18], and
the phase diagram of Dirac [19] and Weyl [20] semimetals.
For the case of a single Weyl cone which can be realized
on the surface of a four-dimensional topological insulator,
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FIG. 1. Numerically calculated finite temperature (T ) phase
diagram as a function of disorder (W ) computed for a linear system
size L = 110 (with t , the band hopping energy, setting the energy
scale). The Dirac semimetal (SM), the diffusive metal (DM), and the
QCP separating them only exist at zero temperature and there is no
finite temperature phase transition. The squares mark the crossover
out of the SM phase (green) into the quantum critical (QC) region
(orange), which is anchored by the QCP at the critical disorder value
Wc/t = 2.55 ± 0.05 (star). This crossover is determined by where
the specific heat fails to be described by CV ∼ T 3. The circles mark
the crossover out of the DM phase (blue) into the QC region, which
is marked by where the specific heat fails to be described by CV ∼ T .
The dashed lines connecting the squares/circles are a guide to the
eye. The dashed line at �/t marks the high-energy cutoff above
which the lowenergy continuum description in terms of massless
Dirac fermions is inapplicable. In a narrow region inside the quantum
critical regime the specific heat manifests non-Fermi-liquid behavior
CV ∼ T 2 which gradually crosses over to the power-law behaviors
of SM and DM. The dashed horizontal line EF /t is a schematic for
the (generally unknown) Fermi energy associated with any residual
doping that drives the system slightly away from the precise Dirac
point, indicating the low-energy cutoff above which the zero-doping
Dirac point theory is applicable. Note that as long as EF is not
too large, quantum criticality manifests itself in the orange region
of the phase diagram, even though the QCP itself (the star at Wc

and T = 0) is “hidden” by the residual doping. At temperature and
energy scales smaller than EF , the system behaves as a conventional
metal or diffusive Fermi liquid. In a nominally undoped system, the
inequality � � EF applies, and quantum criticality is observable for
kBT > EF .

the critical exponents have been numerically obtained to high
accuracy [17]. For avoiding any misunderstanding, we mention
that there is a second quantum phase transition [19] for stronger
disorder (Wl � Wc than considered in Fig. 1), where the
diffusive metal undergoes an Anderson localization. In this
work we do not address the Anderson localization transition
at all and exclusively focus on the SM-DM QPT restricting
ourselves to disorder strengths below the threshold for the
Anderson transition [19].

This itinerant QPT is addressed in our work through
numerically exact calculations on sufficiently large system
sizes (∼106 lattice points) and approximate field-theoretic
analysis, which we use to establish the following:

(1) The numerical value of z is universal, being independent
of the disorder type and the details of their probability
distribution (box versus a Gaussian distribution) and we obtain

numerically z = 1.46 ± 0.05 (in good agreement with other
numerical studies on different models [14,15,17]). For the
correlation length exponent we cannot pinpoint a universal
value and we find a value of ν that lies in the range ∼0.9–1.5.
(Our numerical technique, while providing a fairly precise
value of z, is relatively imprecise in obtaining ν because of
the uncertainties in the precise determination of the critical
disorder strength Wc which turns out to be crucial in calculating
ν, but not z.)

(2) The existence of a broad quantum critical fan at finite
temperatures (see Fig. 1), where the fan occupies a large
parameter space.

(3) We find considerable agreement between the numeri-
cally exact crossover scaling functions and their approximate
analytical forms (Appendix A) for the average density of states
and the specific heat. The approximate analytical calculations
are based on one loop renormalization-group analysis which
predicts z = 3/2 and ν = 1.

(4) We also construct an order-parameter field theory
coupled to itinerant fermions, which illustrates how the notion
of well defined quasiparticle excitations can break down in the
quantum critical regime. The microscopic model we solve is
noninteracting (with disorder as the tuning parameter for the
QCP), and the sample to sample fluctuations of disorder give
rise to effective electronic interactions of a statistical nature.
Even though this does not pertain to correlated electronic
systems per se, the theoretical concepts, regarding the itinerant
quantum critical scaling properties that we are able to establish,
should be generally applicable to metallic quantum critical
points. In particular, our theoretical finding and the numerical
verification of the non-Fermi-liquid behavior and crossover
scaling functions in the quantum critical regime should have
generic qualitative applicability to itinerant quantum critical
systems. Therefore, this model may effectively serve as an
“Ising model” for itinerant quantum criticality for future
theoretical work.

(5) Our theoretical results are directly pertinent for describ-
ing the recently discovered gapless Dirac semiconductors or
semimetals [21–25], where the valence and conduction bands
touch linearly at isolated points in the Brillouin zone. In
particular, we expect that the quantum critical fan established
in this work will be experimentally observable in Dirac
semimetals with a very low carrier concentration. We therefore
propose Na3Bi, which has a small Fermi energy [24], as one
of the most promising candidate materials for realizing the
predicted critical properties. Our results can also be relevant for
the three-dimensional topological quantum phase transitions
between a topological and band insulator in the presence of
disorder [26–30]. Although our quantum critical results strictly
apply only for the intrinsic (i.e., undoped) Dirac semimetal,
the results should remain valid even for finite doping as long
as the doping density is low enough so that the associated
chemical potential is smaller than the temperature [31].

In our numerically calculated phase diagram (Fig. 1) we
depict the SM, DM, and the critical fan regions with green,
blue, and orange colors respectively whereas the (bottom)
dashed horizontal line schematically indicates the Fermi level
(or chemical potential) associated with any residual (uninten-
tional and hence unknown) doping in the system providing
the low-energy cut off for the quantum critical theory. The
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high-energy cutoff is indicated by the top horizontal line which
is associated with the usual ultraviolet cutoff for studying Dirac
physics on a lattice. We note that the invariable presence of
some residual doping in the system producing the low-energy
cutoff EF in Fig. 1 acts to “hide” the QCP by introducing an
incipient (unintentional) metallic phase. Although the QCP
itself is inaccessible and hidden, its effect persists in the
quantum critical regime (the orange region above the EF

line in Fig. 1) provided that the doping is not too high.
This situation is not dissimilar to many examples of itinerant
quantum criticality in correlated metallic systems.

The remainder of the paper is organized as follows: In
Sec. II we introduce the lattice model and its continuum
limit. In Sec. III we present detailed numerical results, which
is followed by the construction of the order-parameter field
theory in Sec. IV, and we conclude in Sec. V. In Appendix A,
we theoretically determine the general scaling formulas used
to analyze the numerical data. Finally additional numerical
details for our calculations are provided in Appendix B.

II. LATTICE MODEL AND CONTINUUM LIMIT

We begin by introducing the lattice model and its continuum
limit that will be the focus of this work. We consider
noninteracting electrons hopping on a simple cubic lattice with
periodic boundary conditions in the presence of a random on
site potential. The Hamiltonian is

H = 1

2

∑
r,j

(itψ†
r αjψr+êj

+ H.c.) +
∑

r

V (r)ψ†
r AWψr, (1)

where ψr is a four component spinor. For nonsuperconducting
systems with conserved electric charge we can choose ψT

r =
(cr,+,↑,cr,−,↑,cr,+,↓,cr,−,↓) which is composed of an electron
annihilation operator cr,τ,s at site r, with parity τ = ±, and spin
projections s =↑ / ↓. We work in the Dirac representation and
therefore the matrices are

αj =
(

0 σj

σj 0

)
, γ5 =

(
0 1
1 0

)
, β =

(
1 0
0 −1

)
, (2)

where σj denotes the Pauli matrices and 1 denotes the 2 × 2
identity matrix. Each site is labeled by the vector r and
the nearest neighbors are connected by the unit vectors êj ,
with j = 1,2,3. The strength of hopping between neighboring
sites is determined by t , and the random potential is V (r).
(We often use t = 1 in the rest of this paper using the
hopping as the unit of energy in the problem.) To study
the universality of the transition we consider two types of
random distributions for V (r): (i) a box distribution (BD),
i.e., a randomly distributed variable between [−W/2,W/2],
and (ii) a Gaussian distribution (GD) with zero mean and
variance W 2. The type of disorder is specified by the AW

matrix; we consider three different types of disorder: (1)
axial disorder A5 = γ5, (2) mass disorder Am = β, and (3)
potential disorder Ap = I4×4 (where I4×4 denotes the four by
four identity matrix). Physically, each type of disorder can
naturally occur in experimental systems without any control
over which one may appear or produce the dominant effect,
and it is not unreasonable to assume that the QPT tuned by
each type of disorder belongs to a different universality class
(which turns out not to be the case here as we will see).

In addition to the global U(1) symmetry for total number
conservation, the tight-binding model also has a continuous
U(1) chiral symmetry, as the Hamiltonian commutes with∑

r ψ
†
r γ5ψr, where γ5 = iα1α2α3. This Hamiltonian serves

as a model for a topological Dirac semimetal with eight Dirac
cones at the high-symmetry points of the cubic Brillouin zone,
and the excitations around different cones may be coupled by
intervalley scattering due to disorder. As a result of the U(1)
chiral symmetry we expect the axial and potential disorders to
have identical critical properties, manifesting universality. An
important question is whether the universality of the SM-DM
QCP remains unaffected when the U(1) chiral symmetry is
absent. We address this question by studying the effects of
mass disorder, which reduces the U(1) chiral symmetry down
to a Z2 chiral or particle-hole symmetry, described by the
relation {H,

∑
r ψ

†
r iβγ5ψr} = 0. While potential disorder is

only relevant for nonsuperconducting systems, axial and mass
disorder can naturally appear for superconducting systems.
Due to the discrete particle-hole symmetry, the mass disorder
problem can appear for class AIII or DIII (depending on the
representation of the spinor). By contrast, the axial disorder
displays the discrete particle hole symmetry with respect to
both β, iβγ5, and any arbitrary linear combination of them.
Thus, the axial disorder model is shared by both AIII and DIII
Altland-Zirnbauer classes. One of our completely unantici-
pated findings is that the average density of states at zero energy
[ρ(0)] across the SM-DM QCP is independent of the type of
disorder (potential, mass, or axial) driving the transition; see
Fig. 2(a). As ρ(0) acts as the order parameter of the SM-DM
transition, this implies same power-law dependence of ρ(0) for
potential, axial, and mass disorder. Consequently, the SM-DM
QPTs driven by potential, mass, and axial disorders belong to
the same universality class. We establish this universality of the
disorder-tuned SM-DM transitions through nonperturbative
exact numerical calculations.

In the absence of disorder, the model reduces to the well-
known Dirac Hamiltonian on a lattice, with a dispersion

E0(k) = ±t

√∑
j

sin(kj )2. (3)

Expanding the dispersion in the low-energy limit gives rise to
eight Dirac cones with linearly dispersing excitations around
eight high-symmetry points of the cubic Brillouin zone. Con-
sidering only the long-wavelength degrees of freedom (which
are the most dominant at a second-order phase transition) in
the presence of disorder we arrive at the following continuum
Hamiltonian as the effective theory:

HD = ψ
†
λ[−ivαj ∂j ⊗ Iλσ + V (x)AW ⊗ Bλσ ]ψσ , (4)

where Iλσ is an eight by eight identity matrix in the valley
space, Bλγ is the intervalley mixing matrix, and now the Dirac
spinor carries a valley or flavor index λ. In the absence of
intervalley scattering there is an SU(8) flavor symmetry. The
intervalley scattering due to disorder breaks this flavor symme-
try. We mention, however, that for long-ranged disorder, e.g.,
Coulomb impurities, such a disorder-induced valley symmetry
breaking may be weak and thus operational only at very low
temperatures, which appears to be the situation in (the two-
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FIG. 2. Numerically (KPM) calculated DOS as a function of disorder strength for a linear system size L = 110. (a) DOS at zero energy
ρ(0) as a function of disorder strength for each type of disorder matrix AW , which shows that axial, mass, and potential disorder yield identical
results. Inset: Corresponding calculation for axial disorder in two dimensions [i.e., setting the hopping in the z direction to zero in Eq. (1)]
clearly establishing that there is no stable SM phase and ρ(0) is finite even for an infinitesimal amount of disorder. (b) DOS for axial disorder
as a function of energy passing through the QCP with the arrow indicating increasing disorder strength. Specific heat (solid lines) with axial
disorder for W < Wc (c) and W > Wc (d), the fits (dashed lines) are to the leading CV ∼ T 3 in the SM and CV ∼ T in the DM. The temperatures
at which the fits no longer apply determine the crossover boundary shown in Fig. 1.

dimensional Dirac material) graphene. In such a situation, the
independent Dirac cone approximation that ignores intervalley
scattering effects is valid down to very low temperatures.

For simplicity of the analysis, the analytic calculations are
performed with the independent Dirac cone approximation,
while neglecting intervalley scattering (i.e., Bλσ → Iλσ ). We
choose a Gaussian white-noise disorder distribution with a
variance �̃, and define the dimensionless disorder strength
� = �̃�d−2�d/[(2π )2v2] where � is the large momentum
cutoff and �d = 2πd/2/�(d/2) is the area of the unit sphere
in d dimensions, and �(x) is the γ function. Note that for
analytic calculations we refer to the reduced distance from the
QCP as δ = |� − �c|/�c, while for the numerical work we
denote the reduced distance as δ = |W − Wc|/Wc. To avoid
confusion we explicitly mention our definitions when we use
δ. The one-loop calculation (or to the lowest order in ε) for
potential or axial disorder yields the same β function [8]
and the SM-DM QPT is controlled by the QCP located at
�c = (d − 2)/2 = ε/2 with z = 1 + ε/2 and ν = 1/(d − 2).
For d = 3, this leads to ν = 1, and z = 3/2. The implications

of one-loop calculations for determining quantum critical
scaling properties are discussed in detail in Appendix A.
By contrast, the one-loop β function shows intravalley mass
disorder to be an irrelevant perturbation and does not predict
any QPT. However, through our nonperturbative numerical
calculations we show that the mass disorder with intervalley
scattering actually drives a SM-DM QPT [see Fig. 2(a)],
in contrast to the one-loop perturbative result with only
intravalley scattering.

The important question is whether the results derived at
the one-loop level for potential and axial disorders in the
single-cone approximation remains valid in the presence of
intervalley scattering, i.e., how robust the analytically obtained
values of the critical exponents and scaling functions in the
general situation are where the precise theoretical assumptions
necessary for obtaining the analytical results may no longer
apply. To answer these questions nonperturbatively, we have
performed detailed numerical calculations on the tight-binding
model in Eq. (1) using large system sizes, which we present in
the next section.
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III. NUMERICAL RESULTS

We are primarily interested in obtaining the disorder
averaged DOS. As shown below, the DOS at zero energy
serves as the order parameter for the SM-DM QPT. The DOS
is defined as

ρ(E,L) = 1

D

D∑
i=1

δ(E − Ei), (5)

where L is the linear size of the system with a volume
V = L3, D = 4V is the total number of states of the model,
and Ei corresponds to each eigenstate. We calculate the DOS
using the numerically exact kernel polynomial method (KPM)
(see Ref. [32] for explicit details), which allows us to reach
sufficiently large system sizes (also see Appendix B). We
calculate the specific heat CV (T ) = ∂〈E〉/∂T by numerically
integrating the density of states using the following formula
for noninteracting fermions:

CV = β2
∫ ∞

−∞
dE

ρ(E)E2

4 cosh(βE/2)2
, (6)

where β = 1/T is the inverse temperature and we are working
in units where kB = 1.

A. Method

Central to KPM [32], we expand the density of states
in terms of Chebyshev polynomials Tn(x) and truncate the
expansion at order n = Nc. (The dependence of the numerical
convergence on the parameter Nc must be checked explicitly—
see Appendix B for details.) As Chebyshev polynomials
are only defined on an interval [−1,1], we have to rescale
the Hamiltonian to ensure that its eigenvalues fall within
the corresponding range. This can be done from a simple
transformation H = aH ′ + b where a and b are related to
the maximum and minimum eigenvalues, which we estimate
using the Lanczos method. In short, the KPM reduces the
problem of diagonalizing the Hamiltonian into calculating
the coefficients of the expansion μn = Tr[Tn(H ′)], which can
be done using only matrix-vector multiplication, and the trace
can be evaluated stochastically. For the sparse Hamiltonian
matrix considered here, this can be done very efficiently, and
therefore, KPM is capable of handling system sizes much
larger than what can be done by direct diagonalization for our
purpose. As is well known from the analysis of Fourier series,
truncating a series expansion can lead to artificial oscillations
(Gibb’s oscillations) in the calculation. We filter out these spu-
rious effects by using the Jackson kernel [32]. In Appendix B
we discuss in detail the convergence of the KPM and how to
choose appropriate values for Nc. For the results presented in
Figs. 1 and 2, we have calculated Nc = 1028 moments such
that the DOS is smooth, while considering a lattice size L =
110 (i.e., a system size V = 1103, which would be unthinkable
from the exact diagonalization perspective). As the density of
states is self-averaging (which we have explicitly checked), we
only have to average over different realizations of the disorder
to reduce the noise in the calculation and obtain a smooth
DOS. For the critical exponents, we consider Nc = 4096 and
focus on a two component model [i.e., replacing all the αj

matrices in Eq. (1) with Pauli matrices σj ] after isolating one

of the two degenerate eigenvalues due to the axial symmetry.
In this case, we consider system sizes ranging from L = 60
up to L = 130, and in order to completely eliminate any
statistical fluctuations we perform 100 disorder averages. The
scaling formulas used for the analysis of the numerical data
are described in Appendix A.

B. Potential, axial, and mass disorder

As shown in Fig. 2(b), the DOS inside the SM phase indeed
scales as ρ(E) ∝ |E|2, making the SM an incompressible,
gapless state, which remains stable up to a critical strength
of disorder. For all three types of disorder (potential, axial,
and mass), ρ(0) becomes finite after passing through a
QCP at a finite disorder strength Wc ≈ 2.55t , the putative
SM-DM transition driven by increasing disorder. Remark-
ably, the microscopic critical coupling for all three types
of disorder are identical within our numerical accuracy, as
clearly demonstrated in Fig. 2(a). This is a rather amazing
unanticipated result since universality in critical phenomena
usually refers to the universality of the critical exponents
(and the scaling functions in dimensionless units), but not
to the critical coupling strength (or the critical temperature
Tc in thermodynamic phase transitions). The fact that the
mass disorder leads to the QPT highlights the importance of
intervalley scattering. At the same time the equal strength of
microscopic critical couplings for all three types of disorder
cannot be addressed within any effective low-energy theory
and we have no theoretical explanation for this finding, since
the critical coupling strength is not known to be a universal
quantity, in contrast to critical exponents and scaling functions,
in any quantum (or classical) critical phenomenon. More work
would be necessary, which is well beyond the scope of the
current work, to understand this unexpected “universality
in critical coupling strength” which we have numerically
discovered in this problem.

By contrast, the DOS for a two-dimensional Dirac SM
becomes finite for an infinitesimally weak disorder strength
as shown in the inset of Fig. 2(a), which agrees with the
field-theoretic predictions that d = 2 is the lower critical
dimension for the disorder-tuned SM-DM QPT. The behavior
of the three-dimensional SM is also clearly distinct from
the effects of disorder in compressible normal metals, which
for an infinitesimal amount of disorder converts into a DM
(from a ballistic metal with perfect conductivity). We have
explicitly shown in Ref. [19] that the DM phase (in the present
model) is not Anderson localized, and only for a large disorder
strength Wl/t ≈ 8.8 (for the box distribution) does the DM
undergo Anderson localization, similar to what happens in
three-dimensional conventional disordered metals [33–36].
Thus, within the present calculation we find the SM (for W <

Wc) and the DM (for W > Wc) phases to be stable over finite
ranges of disorder in the undoped three-dimensional Dirac
system and we use the specific heat to determine the crossover
energy scales for each phase as shown in Figs. 2(c) and 2(d).

C. Universal scaling and critical exponents

From our numerical results we now show that the density
of states and specific heat obey universal scaling forms in
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FIG. 3. Determination of the critical exponent z for potential disorder with the box distribution and L = 130. (a) DOS as a function of
energy, and (b) the specific heat as a function of temperature, both obtained at the QCP, Wc = 2.55 ± 0.05.

the vicinity of the QCP, which enables us to determine the
critical exponents characterizing the universality class (see
Appendix A for the details regarding the scaling ansatz).
Assuming that the QCP is non-Gaussian (i.e., non-mean-field),
we apply the scaling hypothesis to the density of states and
specific heat implying that they must obey the scaling forms

ρ(E,L) = δ(d−z)νR(|E|δ−νz,L1/νδ), (7)

CV (T ) = δνdC(T δ−νz,L1/νδ), (8)

where we have introduced the reduced distance to the QCP,
δ ≡ |W − Wc|/Wc, and R and C are two unknown scaling
functions, which are related through

C(T δ−νz,L1/νδ) = T δ−νz

4

∫ +∞

−∞
du u2 cosh−2(u/2)

×R(|u|T δ−νz,L1/νδ). (9)

Based on the numerical calculations presented in Fig. 2(a),
we have established that the QCP driven by axial or mass or
potential disorder between the SM and the DM falls within
the same universality class (within our numerical accuracy).
Therefore, we conclude that irrespective of the underlying
chiral symmetry being present or absent, the disorder-driven
SM-DM QPT of three-dimensional massless Dirac fermions
exhibits a manifest universality, which is one of our main
results.

We determine the location of the critical point by extrapo-
lating ρ(0) to zero from the DM phase, which yields Wc/t =
2.55 ± 0.05 for box disorder (and for all three different types
of disorder) and Wc/t = 0.60 ± 0.03 for Gaussian potential
disorder. Thus, rather curiously, while our numerically ob-
tained critical disorder Wc is the same for the three types
of disorder we consider (i.e., potential, mass, axial), it is
not for the different forms of the disorder distribution (box
or Gaussian) we use. We are able to accurately assess the
disorder strength which places the model in the DM phase by
considering its finite-size dependence as ρ(0) is L independent
in the DM phase, as shown in Appendix B. It is possible that the
method of extrapolation can under- or overestimate the critical

disorder strength, and we discuss below in the next subsections
the implications of this in determining the critical exponents.
[It turns out that the precise quantitative determination of Wc

is (is not) crucial for determining the critical exponent ν (z)
accurately.]

1. Determining z

We begin by discussing the procedure we use to estimate
the dynamical exponent z (see Fig. 3). After determining Wc

by extrapolation we perform a power-law fit to the energy
dependence of ρ(E) at W = Wc [see Fig. 3(a)] and then use
the scaling formula (see Appendix A)

ρ(E) ∼ |E|d/z−1 (10)

to get z; here we find z = 1.46 ± 0.05 for both BD and GD
[we only show the BD results in Fig. 3(a)]. Error bars are
estimated by considering the value of z due to the uncertainty
of Wc, which is actually quite small. Even arbitrarily assuming
a value Wc that exceeds the error bars, for example Wc = 2.65
(where the finite-size effects are still large), yields a value of
z close to 1.55 for BD, and thus an inaccurate estimate of Wc

does not produce a large deviation in the extracted value of z.
We then check for consistency in the estimated z by computing
the specific heat, which integrates over the entire bandwidth,
as shown in Fig. 3(b). Here we use the scaling of the specific
heat at the QCP,

CV (T ) ∼ T d/z, (11)

and the result from CV is z = 1.48 ± 0.05 in good agreement
with the DOS result shown in Fig. 3(a). We mention that very
similar results are obtained for GD which are not shown here.
The fact that the same value of z is obtained numerically from
independent considerations of the DOS and specific heat gives
high confidence in the numerical accuracy of our estimated
dynamical exponent.

2. Determining ν

We now turn to estimating the correlation length exponent
ν (see Fig. 4). Here, we find that obtaining a precise value
of ν using the KPM method alone is numerically challenging
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FIG. 4. Determination of the critical exponent ν for potential disorder with the box distribution [(a) and (c)] and the Gaussian distribution
[(b) and (d)]. Panels (a) and (b) show the numerical DOS as a function of the distance to the QCP. The dashed lines are power-law fits to
extract ν, the thick (thin) dashed lines are fits closer to (further from) the QCP. Panels (c) and (d) show the numerical finite-size scaling and
data collapse of ρ(0,L); the labels for L are shared between (c) and (d). Insets: The local-linearity function [37], which yields the best scaling
collapse at its minimum value. Here δ = |W − Wc|/Wc is the usual dimensionless tuning parameter defining the QPT.

as the value is sensitive to both the accuracy of Wc and the
range over which the numerical results are fitted to extract
the power-law dependence. These features in the KPM data
for the zero energy DOS have been previously pointed out in
Ref. [17] and therefore we analyze the data accordingly. We
first determine ν based on the scaling

ρ(0,L) ∼ δν(d−z), (12)

for sufficiently large L (i.e., where the data is L independent)
using the values of Wc and z we have already obtained. We
do not fit the data sufficiently close to the QCP, as there are
significant finite-size effects as shown in Figs. 4(a) and 4(b).
It is well known that the numerical data close to the QCP
suffer from severe finite-size effects since the correlation
length exceeds the system size around the QCP. As depicted in
Figs. 4(a) and 4(b) using the thick dashed line, fitting a range
of δ for L = 130 starting where ρ(0,L) saturates in L yields
a value ν = 1.48 ± 0.3 for BD and 1.36 ± 0.3 for GD, where
the error bars are obtained by considering the inaccuracy of
Wc, giving consistent results with varying the range of the
fit. Fitting to a larger range of δ away from the QCP (as
done in Ref. [19]) as shown in Figs. 4(a) and 4(b) (the thin

dashed line) yields much lower estimates ν = 1.02 ± 0.2 for
BD and 1.15 ± 0.2 for GD. We remark that fitting the typical
DOS (i.e., the geometric averaged local DOS) data versus δ

in Ref. [19] suffers from these same effects and the critical
exponents governing the average and typical DOS at the QCP
remain distinct.

We also consider the effect of an underestimate of Wc on the
value of ν. Again taking the box distribution with Wc = 2.65
for the critical disorder yields a value of ν = 0.92, which points
to a large deviation of ν with regards to the accuracy of Wc.
Thus, the numerical KPM technique, while being excellent for
estimating the dynamical exponent z, is lacking in accuracy
in estimating the correlation exponent ν, a situation quite
common in numerics on QPTs where the numerical extraction
of ν is often much more challenging as it is strongly affected
by finite-size and fluctuation effects.

We now come to finite-size scaling and data collapse of
ρ(0,L). Here we focus on the general scaling form

ρ(0,L) = δ(d−z)νR(0,L1/νδ), (13)

in the vicinity of the QCP. Using the values we have extracted
for Wc and z, we perform data collapse for W � Wc as shown
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FIG. 5. Scaling collapse of the DOS and the specific heat in the quantum critical fan δνz � E/t,T /t � �/t (with δ = |W − Wc|/Wc)
establishing that both exhibit single parameter scaling as a function of the distance to the QCP given by Eqs. (7) and (8). The dashed line is
the approximate crossover functions analytically determined from the one-loop β functions (see Appendix A); (a) and (c) are for W < Wc,
and (b) and (d) are for W > Wc. We stress that the dashed lines are not a fit, and only the nonuniversal amplitudes are adjusted. Despite the
significant difference between the numerically obtained value for ν and the one-loop result (ν = 1), we find considerable agreement between
the analytical and numerical crossover functions. We are using z = 1.46 and the value of ν from the finite-size scaling for the collapse of the
numerical data νL ≈ 1.46. These results are for the axial disorder using the box distribution, but the results for other distributions and disorder
are very similar.

in Figs. 4(c) and 4(d). We denote the value of the correlation
length exponent extracted from finite-size scaling as νL. We
find excellent scaling collapse of the KPM data for νL equal
to 1.46 ± 0.25 for BD and 1.42 ± 0.3 for GD. Consistent with
the power-law fit of Eq. (12), we again find that performing the
collapse over a larger range away from the QCP or accounting
for an underestimate of Wc yields a value of νL closer to 1
(than to 1.5).

The fact that both box and Gaussian distributions give
consistent results for ν ∼ 1.5 or 1 (depending on whether the
scaling fit is being carried out close to or away from the QCP)
within the error bars provides evidence for the universality of
the critical exponent ν (i.e., that ν is independent of the disorder
distribution). However, while it is possible to estimate ν from
the KPM data, it seems to suffer large fluctuations from small
systematic errors (e.g., the precise value of Wc). Thus we make
the conservative estimate for ν to lie within the range 0.9–1.5.
Much more computationally demanding work on much larger
systems would be necessary to obtain an accurate estimate of

the correlation length exponent ν in this problem. By contrast,
our numerically estimated dynamical exponent z is reliable
and stable.

3. Scaling in the quantum critical fan

To establish the universal nature of the quantum critical fan
we compare the numerically determined crossover functions
R and C with their approximate analytical forms (derived
in Appendix A) in Fig. 5, when |E| > L−1δ−νz and T >

L−1δ−νz. Focusing on our numerical data that are restricted
to lie in the non-Fermi-liquid quantum critical fan (i.e.,
δνz � E/t,T /t � �/t), we plot the numerical results for the
DOS versus Eδ−νz and the specific heat versus T δ−νz using
the values of critical exponents z = 1.46 and νL ≈ 1.46 for
the box disorder as well as the crossover functions R and C
determined analytically on either side of the QCP in Fig. 5. We
find that all of our data collapse onto a single curve manifesting
excellent critical scaling. Even though there is a significant
difference between the numerically obtained value of ν(≈ 1.4)
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and the approximate one-loop result (ν = 1), the crossover
functions obtained from the two methods appear to show
considerable agreement. We stress that this is not a fit, and the
only parameter that is adjusted is the nonuniversal coefficient
of the analytical scaling functions. Finally, the consistency
between our numerical calculations and the scaling hypothesis
[contained in Eqs. (7)] has led us to conclude that the QCP is
indeed non-Gaussian and the disorder-tuned SM-DM QPT in
Dirac systems cannot be described by a Gaussian theory.

Motivated by the universality of the non-Gaussian QCP, in
the following section we construct the effective field theory
of the long-wavelength fluctuations, while accounting for the
strong coupling between the underlying order parameter and
the itinerant fermions.

IV. ORDER-PARAMETER FIELD THEORY

Within the replica field-theory formulation of disordered
systems, the sample to sample fluctuations are captured in
terms of a disorder induced effective statistical interaction
between the fermions although the starting bare Hamiltonian
is noninteracting [cf. Eqs. (1) and (4)]. The collective modes of
the density fluctuations are captured by a bosonic matrix field
Q ∼ 〈ψaψ

†
b〉 and Tr(Q) ∝ ρ(0) acts as the order parameter.

The deviation of Tr(Q) from its vacuum expectation value
constitutes the amplitude or the DOS fluctuations, while
the transverse part of the matrix field captures the slow
diffusons or Goldstone modes. At the SM-DM QCP, both
the amplitude Tr(Q) and the transverse diffuson modes are
gapless and remain strongly coupled with the underlying
fermions. As we show below, the average DOS controls the
residue of the diffusion pole, and it therefore vanishes as
W → W+

c . Similarly, the quasiparticle residue of the Dirac
excitations vanishes as W → W−

c . Consequently, inside the
critical fan the entire notion of weakly coupled quasiparticle
excitations becomes invalid and an emergent strongly coupled
non-Fermi-liquid state is realized. The effective Lagrangian
for the semimetal-metal QCP is therefore described by

L[Qab,ψa] = LD[ψa] + LB[Qab] + iλψ†
aψbQab, (14)

where LD describes the Dirac fermions, LB is a Landau-
Ginzburg functional of Q up to quartic order, and λ is the
coupling between the fermions and the bosons. This effective
theory can be analyzed within a d = 4 − ε expansion around
the upper critical dimension of 4, which leads to a critical value
of λ ∼ O(ε). It is this strong coupling between the collective
modes and the fermions which unifies the problem at hand
with the underlying conceptual theme of the itinerant QCP in
strange metals.

For deriving an order parameter theory, which can capture
the low-energy properties of both the semimetal and the
diffusive metal, we consider the product of the advanced and
retarded propagators GR(E + ω/2 + iη,x)GA(E − ω/2 −
iη,x). This can capture the diffuson or Goldstone modes inside
the metallic phase. For this correlation function, we can write
a generating functional e−S , where the effective action is

S =
∫

ddx �†[E −
(

ω

2
+ iη

)
τ3 − H ]�. (15)

Here �† = −i(ψ†
R,ψ

†
A), and τ3 = diag(1, − 1) is a Pauli

matrix that operates on the retarded and advanced labels.
All physical quantities such as the average DOS and the
density-density correlation functions can be obtained from
the generating functional after taking derivatives with respect
to the appropriate source terms. For simplicity we again
consider only a single Dirac cone and the case of a random
scalar potential. After averaging over disorder with the replica
method we arrive at

S =
∫

ddx �†
a[E −

(
ω

2
+ iη

)
τ3 + ivαj∂j ]�a

− �

2

∫
ddx�†

a�a�
†
b�b. (16)

When ω = η = 0, the retarded and the advanced sectors appear
in a symmetric manner, implying there is a flavor symmetry
between these two sectors. Therefore, η acts as an infinitesimal
external field for the bilinear i�†τ3�, and for � > �c [ρ(0) �=
0] this symmetry is spontaneously broken. We perform the
following Hubbard-Stratonovich transformation:

exp

[
�

2

∫
ddx �†

a�a�
†
b�b

]

=
∫

D[Q] exp

[∫
ddx

(
−Tr(Q2)

2�
+ i�†

a�bQab

)]
, (17)

where Q constitutes a matrix order parameter, and 〈Qab〉 ∼
〈�a�

†
b〉. By computing the susceptibilities for different or-

dering channels, we find that the most favorable choice for Q

inside the metallic phase is Q = iQ0τ3, for which η acts as the
external field. For 2 < d < 4 the integral in the gap equation
for Q0,

Q2
0

v2�2

∫ 1

0
dx

xd−3

x2 + Q2
0

v2�2

=
(

1

�c

− 1

�

)
, (18)

leads to

Q0

v
= �

(
1

�c

− 1

�

)1/(d−2)

∼ ξ−1
l . (19)

The order parameter’s expectation value Q0 acts as the inverse
lifetime τ−1 of the Dirac quasiparticles. Since in the mean-field
calculation we have not accounted for the correction to the real
part of the self-energy, which leads to a modified dispersion
relation at the QCP, the mean-field solution is inadequate
for capturing the scaling form Q0 ∼ δzν . We expect that
accounting for strong order-parameter fluctuations will finally
lead to the correct result.

After the Hubbard-Stratonovich decoupling, if we in-
tegrate out the fermion fields, the fermion bubble con-
tributes to the Qab − Qab correlation function. Since the
replica indices for such a correlation function are fixed
from the outset, the fermion bubble is not proportional
to Nr and it survives the Nr → 0 limit. We can further
decompose the matrix form of Qab = Qab,μ,sτμ ⊗ �s , where
�s are the sixteen 4 × 4 matrices operating on the origi-
nal spinor index and τμ are 2 × 2 matrices operating on
the R/A indices (we have not yet considered the Cooper
channel). By computing the zero-momentum part of the
fermion bubble, we can show that only the conventional
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and chiral density channels corresponding to �0 = I4×4 and
�5 = γ5 channels are most attractive and degenerate. There-
fore, only these two density channels can have gapless diffuson
modes. Since the order parameter or the amplitude of Q

vanishes at the QCP, we cannot safely integrate out the
gapless fermion modes. For this reason, it is necessary to
(phenomenologically) introduce a fermion-diffuson coupling
(of the Yukawa form) to capture the interplay of gapless
order parameter and fermionic excitations. For simplicity if
we consider E = ω = 0, the effective order parameter field
theory takes the following form:

L[�a,Qab] = LD[�a] + LB[Qab] + LDB[Qab,�a], (20)

LD[�a] = iv

∫
ddx �†

aα · ∇�a, (21)

LB[Qab] =
∫

ddx

[
1

2
Tr(∇Q†∇Q) + r

2
Tr(Q†Q)

+u1Tr[(Q†Q)2] + u2[Tr(Q†Q)]2

]
, (22)

LDB[Qab,�a] = iλ

∫
ddx �†

a�bQab, (23)

where the summation over repeated replica indices is implied.
We are only considering Qab in the regular and the axial density
channels. When an external frequency is considered, it couples
to Tr[Qτ3] in the regular density channel as an external field.

At the critical point r = 0, both regular and axial density
fluctuations become gapless. If we scale x → xel , � →
�e(1−d)l/2, Q → Qe(2−d)l/2, we find λ → λe(4−d)l/2, uj →
uje

(4−d)l . Therefore, d = 4 serves as the upper critical di-
mension, and the interaction effects can be addressed through
a d = 4 − ε expansion, which leads to a critical point at
λc = O(ε), uj = O(ε).

In the DM phase the density-density correlation function
(involving both retarded and advanced sectors) displays a
diffusion pole corresponding to the gapless Goldstone modes
or the diffusons, which behaves as

�d (ω,k) ∼ Q2
0

iQ0ω − δ−νηQ
Q2

0
�2 k2

∼ δzν

iω − Dk2
, (24)

where ηQ is the anomalous dimension of the gapless collective
mode. If the order parameter inside the DM phase varies as
Q0 ∼ δβ , the hyperscaling relation leads to

β = (d − 2 + ηQ)
ν

2
= zν, (25)

which implies ηQ = 2z + 2 − d (putting in our numerical
estimate of z yields ηQ ≈ 1.9). We have also introduced the
diffusion constant (D)

D ∼ Q0δ
−νηQ ∼ δ−ν(z+2−d). (26)

Upon approaching the QCP in d = 3 from the metallic
side, the diffusion constant diverges as δ−ν(z−1) [14]. But
most importantly, the residue of the diffusion pole vanishes.
Therefore, the diffusion pole loses its meaning as a well defined
excitation, when the QCP is approached from the metallic side.
In addition, such an order-parameter theory also gives rise to
an anomalous dimension for the fermion field ηψ ∼ O(4 − d),

which implies that the quasiparticle residue of the Dirac
fermion vanishes as δνηψ when the QCP is approached from
the SM side.

The vanishing of the quasiparticle residue of the Dirac
fermions can also be addressed within the 2 + ε expansion
scheme. After using the one loop RG procedure as in Ref. [8]
the retarded propagator in the SM phase acquires the form

GR(E = 0) ∼ δνηψ

[η�0 + vδ(z−1)νk · �]
. (27)

Therefore the quasiparticle residue and the effective Fermi
velocity are respectively given by δνηψ and vδν(z−1). At the one-
loop order ηψ = (z − 1) = ε/2 and ν = 1/ε. Consequently,
both the quasiparticle residue and the Fermi velocity behave
as δ1/2. This is an artifact of the one-loop analysis and at
higher-loop orders (beginning at ε2) they will follow different
power laws. Hence, we conclude that the quasiparticle residue
and the effective Fermi velocity of the Dirac fermion vanish,
as we approach the QCP from the semimetal side.

Consequently, the residue of the two different types of
quasiparticles vanish while approaching the QCP from either
side. Thus, the critical region of this system cannot have any
simple quasiparticle description, qualitatively similar to what
is envisaged for QC regions in correlated materials. Thus,
the orange region in our numerically obtained quantum phase
diagram of Fig. 1 is a finite-temperature “non-Fermi-liquid”
quantum critical crossover regime arising from the critical
fluctuations of the non-Gaussian QCP underlying the SM-DM
QPT in the three-dimensional Dirac materials.

To summarize this section, the finite expectation value of the
DOS [as shown numerically in Fig. 2(a)] on the metallic side
and its critical fluctuations in the vicinity of the QCP can be
described by an order parameter in the form of the Lagrangian
LB for the matrix field Q. While approaching the QCP from
the SM phase, the quasiparticle residue of the underlying Dirac
fermions (as described by LD) vanishes continuously as δ →
0. Thus, the gapless fermionic and bosonic degrees of freedom
must be treated on an equal footing and this has led us to
construct the effective action in Eqs. (20)–(23), which governs
all the long-wavelength degrees of freedom. This effective
theory retains both longitudinal and transverse fluctuations of
the Q matrix, as required by the vanishing of the average
DOS at the QCP. This should be contrasted with the familiar
nonlinear σ model description of the Anderson localization
at stronger disorder [19], where the average DOS remains
noncritical across the transition. The nonlinear σ model is
obtained by integrating out the gapped ballistic fermions and
the gapped longitudinal fluctuations of the Q matrix inside the
metallic phase (below the energy scale of τ−1 ∼ Q0).

In our earlier work [19] on the phase diagram of a disordered
DSM, we have noticed a significant difference between the
critical exponents for the typical DOS at the SM-DM QCP
and the QCP describing an Anderson localization transition
(at stronger disorder). We believe that the differences between
the multifractal properties at these two QCPs are inherited from
(i) the presence or absence of itinerant, ballistic fermions, and
(ii) the presence or absence of gapless longitudinal mode of the
Q matrix. A detailed analysis of different correlation functions
and the multifractal properties associated with the field theory
in Eqs. (20)–(23) is beyond the scope of this work and remains
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an open problem for the future. The Dirac SM and the DM
phases preserve time-reversal and inversion symmetries, and
do not display any topological transport properties such as
anomalous Hall effect. For this reason, there is no Chern-
Simons term in the effective field theory. By contrast, a time-
reversal symmetry-breaking Weyl semimetal phase and the
resulting diffusive metal possess an anomalous Hall effect. In
the effective field theory this arises due to a topological Chern
Simons term [38].

One direct implication of our effective field theory is the
existence of an upper critical dimension of du = 4 for the
disorder-tuned SM-DM transition in Dirac-Weyl systems (in
addition to the known lower critical dimensionality of dl =
2). For dimensions d � du, the correlation length exponent
ν should be given by the mean-field value ν = 1/2 and
hyperscaling relations will be violated. It will be interesting to
check this observation in future numerical studies on higher
dimensional models of a Dirac SM. Finally, the existence of an
upper critical dimension for the SM to DM QCP will further
distinguish this transition from Anderson localization, which
does not possess an upper critical dimension.

We mention here that we do not, however, have an
explanation for our numerical finding of the exact z(≈1.5)
being equal within the numerical accuracy to the one-loop
theoretical value (z = d/2). Whether this is a mere coincidence
or a deeper truth (i.e., somehow all higher-loop corrections
cancel out) is unknown at this stage. Of course, our numerical
error in estimating z, while being small, is not zero, and
thus small corrections in the exact theoretical value of z

(well less than 10%) away from z = 1.5 cannot be ruled
out without more numerical work with much larger systems.
There are well-known examples in the literature for numerical
and one-loop theoretical z values being very close to each
other purely fortuitously in completely different contexts of
dynamical phase transitions [39–41].

V. DISCUSSION AND CONCLUSION

The experimentally observed non-Fermi-liquid scaling
behavior of many correlated metals [42–45] over a significant
range of temperatures is usually reconciled with the existence
of a large quantum critical fan driven by the putative QCP,
whose intrinsic properties are often not well understood. It is
generally believed that the generic behavior of the “strange
metal” within the finite-temperature critical fan regime is
non-Fermi-liquid like because of strong quantum fluctuations
arising from the QCP (which may often be “hidden” or
“inaccessible” experimentally), but no general proof exists.
For describing such a metallic or itinerant QCP, it is necessary
to address both the gapless fermionic degrees of freedom and
the bosonic order-parameter fluctuations on an equal footing,
which is a highly challenging task for analytical calculations,
particularly for strongly correlated systems, where even the
minimal model is intractable with or without the QCP. In this
work even though we have focused on noninteracting massless
Dirac fermions we have been able to make various connections
to the general notion of scaling phenomena of itinerant QCPs.
First, we find the appearance of a broad quantum critical fan at
finite temperatures. Second, we have succeeded in constructing
an effective field theory of bosonic fluctuations (captured here

by the Q matrix for diffusive modes) that are strongly coupled
to itinerant electron degrees of freedom (i.e., massless Dirac
fermions). Third, we have shown how the general notion of
quasiparticle excitations breaks down (via their residue) in the
quantum critical fan region even for our noninteracting model,
explicitly demonstrating that a QCP by itself, independent
of the underlying model being interacting or not, leads to a
generic non-Fermi-liquid behavior. However, as we are dealing
with noninteracting fermions, it is important to contrast the
version of itinerant quantum criticality we obtain here with
the form that is applicable to strongly correlated electronic
systems. We are dealing with free fermions and the interaction
is statistical and only due to disorder (only elastic scattering).
Consequently, the effective field theory will not be a dynamical
one (with inelastic scattering) as we have found. This is in
sharp contrast to that of the strongly correlated systems where
the dynamics of the bosonic field is also important and must
be incorporated in the theory on an equal footing with the
fermionic field.

Through a precise numerically exact calculation using the
KPM technique and an approximate field-theoretical analysis,
we have established that the three-dimensional Dirac SM phase
undergoes a disorder-tuned QPT into a DM state for different
types of disorder (potential, axial, and mass), which belong
to the same universality class (and surprisingly, even with
the identical critical coupling for different disorder types)
of an itinerant QCP. We find the critical exponents for box
and Gaussian distributions agree to within numerical accuracy
(with z = 1.46 ± 0.05 and ν ∈ [0.9,1.5]), which points to the
universal nature of the QCP. For this model of an itinerant
QCP, the universal scaling functions obtained from numerical
and analytical methods show a remarkable agreement, and
thus can serve as a conceptual framework for addressing other
itinerant critical phenomena in diverse correlated metallic
systems. Experimentally, a dilute three-dimensional Dirac
material, such as Na3Bi with a small value of the Fermi
energy EF � � associated with residual doping, can be
a promising material for verifying our theoretical results.
In a real system, the residual unintentional doping always
produces a finite Fermi energy shifting the system from
the zero chemical potential Dirac point, but as long as this
doping-induced Fermi energy is lower than the temperature,
one expects intrinsic Dirac point behavior to prevail, leading
to the manifestation of the QPT studied in this work. One
experiment could be the measurement of the specific heat in
the quantum critical regime which, according to our theory,
should manifest a non-Fermi-liquid-like quadratic temperature
dependence associated with the critical quantum fluctuations.
One key aspect of this QCP is its fundamental non-Gaussian
nature. Our KPM-based estimate of the correlation length
exponent ν, however, has rather large error bars, and much
more work would be necessary (well beyond the scope of the
current work) to obtain a precisely numerically accurate value
of ν in the SM-DM QPT in three dimensions.

Finally, we comment on the possible role that “Griffiths
physics” (associated with rare fluctuations) might play in the
SM-DM QPT studied in the current work. The physics of
rare regions (or the so-called Griffiths physics) is not captured
by the long-wavelength field theory developed in the present
paper. Recently it has been suggested that rare regions affecting
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the SM-DM QCP can induce a finite DOS at the Dirac point
for an infinitesimally weak disorder [46], thus converting the
SM phase into effectively a DM phase. Compared to the box
distribution, the unbounded tails of the Gaussian disorder
distribution are expected to enhance these rare fluctuations,
but we get the same universal QCP properties for both
box and Gaussian distributions without seeing any obvious
effects of rare regions. Within our numerical calculations we
have not found any evidence of rare region effects, as the
results for both distributions agree with the field-theoretical
predictions for the existence of the transition (e.g., considering
the problem in two versus three dimensions). However, the
detection of rare region effects can be quite subtle (due to a
possibly exponentially small DOS contribution from the rare
regions) and therefore the possible existence of rare regions
still cannot be ruled out completely (e.g., the regions are
rarer than our numerical system size or the rare regions being
independent of the QCP itself or the exponentially small DOS
introduced by the rare regions are simply too small to show
up in our KPM simulations), which necessitates a detailed
focused numerical study on its own. Although we cannot
rule out the possibility of rare regions based on our study,
we can assert that the disorder-tuned SM-DM QPT is well
captured by our theory and numerics once any contribution
from rare fluctuations are subtracted out. It is important in this
context to emphasize that the real Dirac systems are likely
to have random impurity-induced “puddles” or spatial density
inhomogeneities (i.e., random spatially nonuniform doping)
around zero energy (i.e., the Dirac point) any way, as is
ubiquitous in graphene [47], leading to a locally fluctuating
chemical potential masking the QCP in a way similar to what
rare regions would do. Any experimental study of the QPT
itself must find a reasonable way of subtracting out these
additional effects (from rare regions and/or puddles) in order
to capture the underlying critical behavior.
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APPENDIX A: SCALING FORMULAS

In the vicinity of the QCP, we have two divergent scales,
namely the spatial correlation length ξl ∝ δ−ν and the tem-
poral correlation length ξt ∼ ξz

l ∝ δ−νz. The universal scaling
functions are determined by these two divergent scales. Quite
generally for an observable O we have the scaling formula

O(L,E,T ) ∼ ξ
�O
l FO

(
Lξ−1

l ,Eξz
l ,T ξz

l

)
, (A1)

where L, E, and T respectively denote the system size, the
energy, and the temperature, and �O is the scaling dimension
of O. For example, the scaling dimensions �O for the average
density of states, the free-energy density, the specific heat,

and the longitudinal conductivity are respectively given by
−(d − z), −(d + z), −d, and −(d − 2). The leading scaling
behavior is determined by max{L−1,E,T ,ξ−1

l }. Since there are
two fixed points respectively with z = 1 and z = 3/2 (at one
loop), the crossover scaling functions are quite nontrivial.

For example, first consider the average density of states

ρ(L,E) ∼ ξ
−(d−z)
l Fρ

(
Lξ−1

l ,Eξz
l

)
. (A2)

At zero energy this becomes

ρ(L,0) ∼ δν(d−z)f (Lδ−ν) ∼ L−(d−z)g(L1/νδ). (A3)

When L � ξl ∼ δ−ν , we are in the quantum critical regime
and

ρ(L,0) ∼ 1

Ld−z
(A4)

reflects the scale invariance. By contrast, inside the metallic
phase (� > �c)

ρ(L,0) ∼ δν(d−z). (A5)

On the semimetal side we rather expect

ρ(L,0) ∼ L−(d−1). (A6)

These finite-size scaling properties constitute the basis for the
analysis of our numerical results. In addition, we consider
a large enough system size, L � (ξl,v/E). In this case, the
scaling behavior is determined by the interplay between v/E

and ξz
l . The scaling function now behaves as

ρ(E) ∼ δν(d−z)h(Eδ−νz). (A7)

When, E � δνz, we are in the quantum critical regime and
obtain the following scale invariant answer:

ρ(E) ∼ |E|d/z−1. (A8)

Inside the metallic phase (� > �c), the leading behavior is
given by

ρ(E) ∼ δν(d−z). (A9)

By contrast, inside the Dirac semimetal phase we obtain

ρ(E) ∼ c(δ)Ed−1 ∼ δ−d(z−1)ν |E|d−1. (A10)

We can gain considerable analytical insight regard-
ing the crossover functions by integrating the one-loop
renormalization-group equations. The one-loop RG equations
for potential and axial disorder are [8]

z(l) = 1 + �,
d�

dl
= −(d − 2)� + 2�2. (A11)

We simultaneously solve the β function for the disorder
coupling � and

dε

dl
= z(l)� = (1 + �)ε, (A12)

where ε = E/(v�) is the dimensionless quantity defined from
the energy E. The dimensionless temperature t = kBT /(v�)
also satisfies the same flow equation as ε. From these solutions
we can identify two RG flow times associated with two
divergent scales. The disorder coupling �(l) is given by

�(l) = �c

1 + (
�c

�0
− 1

)
e(d−2)l

, (A13)

085103-12

http://www.it.umd.edu/hpcc


DISORDER-DRIVEN ITINERANT QUANTUM CRITICALITY . . . PHYSICAL REVIEW B 93, 085103 (2016)

where �0 = �(l = 0) is the bare value of the coupling
constant. On the SM side �0 < �c, the renormalized disorder
coupling monotonically decreases and satisfies the asymptotic
form

�(l) ≈ �0

δ
e−(d−2)l . (A14)

In contrast, for the metallic side �0 > �c the renormalized
disorder coupling diverges at the RG scale

el1 = ξl� ∼ |δ|−ν, (A15)

which defines the correlation length ξl and the scaling exponent
ν = 1/(d − 2). By contrast, the divergent time scale has to be
found from the solution of the differential equation for energy

ε(l) = ε(0)

(
�(l) − �c

�(0) − �c

)zν(
�0

�(l)

)ν

=
(

�c

�0

)(z−1)ν
ε(0)ezl[

1 + (
�c

�0
− 1

)
el/ν

](z−1)ν . (A16)

For that we need to find the RG scale l2 as a function of the
bare energy ε(0) and δ by imposing the condition ε(l2) ∼ 1.
This results in the following equation for l2:(

E

v�

)
ezl2

(
�c

�

)(z−1)ν

=
[

1 +
(

�c

�
− 1

)
el2/ν

](z−1)ν

.

(A17)
When � = �c, l1 → ∞, and the infrared cutoff is solely
determined by l2 where

el2 ∼ |E|−1/z.

Inside the semimetal phase � → 0, and again the infrared
cutoff is determined by l2 with el2 ∼ E−1δ(z−1)ν . Since ρ has
the scaling dimension −(d − z), we find ρ ∼ |E|(d/z−1) inside
the critical fan, and ρ ∼ c(δ)|E|(d−1) inside the semimetal
phase, with the c(δ) quoted in the previous paragraph.

The explicit solution for el2 in d = 3 inside the quantum
critical fan is obtained by finding the roots of a cubic equation.
When �0 > �c, we have the following cubic equation:

e3l2 + δ

ε2(0)
el2 − 1 + δ

ε2(0)
= 0, (A18)

which has the only one real root given by

el2 = 2

√
δ

3ε2(0)
sinh

[
1

3
sinh−1

{
(1 + δ)3

√
3ε(0)

2δ3/2

}]

≈ 3ξl�

x
sinh

(
1

3
sinh−1 x

)
, for δ � 1, (A19)

with the anticipated dimensionless variable x = 3
√

3ε(0)δ−3/2

2 .
When x � 1 we have the quantum critical behavior, which
eventually gives way to the metallic behavior for x < 1 when
the infrared scale is determined by el1 or the correlation length.
When �0 < �c, the cubic equation becomes

e3l2 − δ

ε2(0)
el2 − 1 − δ

ε2(0)
= 0. (A20)

 1e-05

 0.0001

 0.001

 0.01

 0.1

0.005 0.01 0.02 0.03

ρ(
0)

1/L

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 100  1000  10000  100000

ρ(
0)

Nc

(b)

FIG. 6. (a) Finite-size scaling of ρ(0,L,Nc) on a log-log scale,
for Nc = 1028 in the clean limit (W = 0) yields a power-law decay
in system size 1/L2.85 consistent with 1/L3. (b) Scaling of ρ(0,L,Nc)
on a log-log scale with Nc for L = 60 yielding a linear in Nc scaling.
Here Nc is the number of terms kept in the Chebyshev expansion in
the KPM numerics.

When (1−δ)3
√

3ε(0)
2δ3/2 > 1 the only real root is given by

el2 = 2

√
δ

3ε2(0)
cosh

[
1

3
cosh−1

{
(1 − δ)3

√
3ε(0)

2δ3/2

}]

≈ 3ξl�

x
cosh

(
1

3
cosh−1 x

)
, for δ � 1. (A21)

For (1−δ)3
√

3ε(0)
2δ3/2 < 1, there are three real roots, and only one of

them is positive. This root is given by

el2 = 2

√
δ

3ε2(0)
cos

[
1

3
cos−1

{
(1 − δ)3

√
3ε(0)

2δ3/2

}]

≈ 3ξl�

x
cos

(
1

3
cos−1 x

)
, for δ � 1, (A22)

where the inverse trigonometric function is restricted to the
first quadrant. For small δ, δel2 is again a scaling function of
ε(0)δ−3/2. For energies satisfying ε(0)δ−3/2 � 1 or x � 1
inside the quantum critical fan cosh and sinh terms determine
the z = 3/2 quantum critical behavior, while inside the SM
phase the cos term leads to the z = 1 critical behavior.
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FIG. 7. DOS for L = 60 and W = 2.0t < Wc (a) Nc dependence
of ρ(0,L,Nc) converges in Nc for Nc � 4096. (b) Low-energy
dependence of ρ(E,L,Nc) for various Nc showing that the deviations
in the DOS for larger Nc in the SM phase is a result of the KPM
beginning to resolve individual eigenstates. The low-energy peak is
a result of the eight Dirac states that are there in the clean limit that
have now been broadened by disorder.

Therefore, the crossover from the z = 3/2 to z = 1 scaling
is appropriately captured by how the cosh term transforms
into a cos term.

In the thermodynamic limit the total number of states per
unit volume can be estimated to be

N (ε)

L3
∼ �de−dl2 = ξ−d

l f −d (x). (A23)

Since the average DOS can be obtained by differentiating
N (ε)L−d with respect to ε, we can write

ρ(ε) ∼ �2δ3/2

2
√

3v
g(x), (A24)

where the crossover scaling function g(x) is determined by

g(x) = x2

sinh3
(

1
3 sinh−1 x

)
[

1 − x coth
(

1
3 sinh−1 x

)
3
√

1 + x2

]
,

for � > �c, x > 1, (A25)
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FIG. 8. DOS for L = 60 and W = 3.0t > Wc; (a) Nc dependence
of ρ(0,L,Nc) converges in Nc for Nc � 4096. (b) Low-energy
dependence of ρ(E,L,Nc) for various Nc showing that there is a
very weak dependence in the DM phase.

g(x) = x2

cosh3
(

1
3 cosh−1 x

)
[

1 − x tanh
(

1
3 cosh−1 x

)
3
√

x2 − 1

]
,

for � < �c, x > 1, (A26)

g(x) = x2

cos3
(

1
3 cos−1 x

)
[

1 − x tan
(

1
3 cos−1 x

)
3
√

1 − x2

]
,

for � < �c, x < 1. (A27)

When |E| � L−1δ(z−1)ν , these analytically obtained approxi-
mate crossover scaling functions have been compared with the
numerically determined exact scaling functionR in Sec. III. In
this comparison, we have only adjusted an overall numerical
prefactor for the analytical formula. A similar approximate
expression for C is also found by substituting the explicit
expressions of ρ [in terms of g(x)] in Eq. (6).

APPENDIX B: NUMERICAL DETAILS

In this appendix we discuss the scaling and convergence
of the zero energy DOS as a function of various KPM
parameters. We begin with the clean limit W = 0 and compute
the zero energy density of states as a function of system
size ranging from L = 60 to 140 in steps of 10. Gener-
ally in the thermodynamic limit we expect ρ(0,L) ∼ 1/L2.
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However, this behavior cannot be obtained within the KPM.
Rather within the KPM we find ρ(0,L) ∼ 1/L2.85 consistent
with a 1/L3 scaling [see Fig. 6(a)]. This can be understood by
considering the density of states with a Gaussian broadening
factor σ = π/Nc, where Nc is the number of terms kept in
the Chebyshev expansion (as described in Sec. III A), as this
is an excellent approximation to the effect of the Jackson
kernel [32]. Since there is only an intensive number (8 corre-
sponding to each cone) of states at zero energy the KPM yields

ρ(0,L,Nc) =
∑

nx,ny ,nz

exp
[ − (

2π
Lσ

)2(
n2

x + n2
y + n2

z

)]
L3

√
2πσ 2

∼ 1

σL3
= Nc

πL3
, (B1)

where we have used ki = 2πni/L. We find ρ(0,L,Nc) ∼ N1.02
c

reproducing the linear in Nc scaling to a good degree of
accuracy as shown in Fig. 6(b). These results are obtained by
considering the asymptotic behavior of the Jacobi θ function,

∞∑
n=−∞

e−xπn2 = θ3(0,e−πx) = ϑ(0,ix). (B2)

Moving away from the clean limit by introducing disorder
provides a natural broadening of the energy eigenvalues and
thus changes the scaling with Nc. Focusing on the SM phase,
we find that ρ(0,L,Nc) ∼ 1/L3 is essentially satisfied for weak
disorder strengths. Even though we find a large deviation in
the zero energy DOS as a function of Nc, it does converge for
increasing Nc as shown in Figs. 7(a) and 7(b). The deviations
in ρ(0,L,Nc) are due to the KPM beginning to resolve the
energy eigenstates.

Inside the DM phase, ρ(0,L,Nc) has a very weak de-
pendence on Nc [as shown in Figs. 8(a) and 8(b)] and for
sufficiently large system sizes, converges in L [see Figs. 9(a)
and 9(b)]. We conclude that in each phase choosing Nc = 4096
gives a converged estimate of ρ(0), and therefore we use this
value of Nc to determine the critical exponents.
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