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The uniform electron gas (UEG) at finite temperature is of key relevance for many applications in the warm
dense matter regime, e.g., dense plasmas and laser excited solids. Also, the quality of density functional theory
calculations crucially relies on the availability of accurate data for the exchange-correlation energy. Recently,
results for N = 33 spin-polarized electrons at high density, rs = r̄/aB � 4, and low temperature have been
obtained with the configuration path integral Monte Carlo (CPIMC) method [T. Schoof et al., Phys. Rev. Lett.
115, 130402 (2015)]. To achieve these results, the original CPIMC algorithm [T. Schoof et al., Contrib. Plasma
Phys. 51, 687 (2011)] had to be further optimized to cope with the fermion sign problem (FSP). It is the purpose
of this paper to give detailed information on the manifestation of the FSP in CPIMC simulations of the UEG
and to demonstrate how it can be turned into a controllable convergence problem. In addition, we present new
thermodynamic results for higher temperatures. Finally, to overcome the limitations of CPIMC towards strong
coupling, we invoke an independent method—the recently developed permutation blocking path integral Monte
Carlo approach [T. Dornheim et al., J. Chem. Phys. 143, 204101 (2015)]. The combination of both approaches
is able to yield ab initio data for the UEG over the entire density range, above a temperature of about one half
of the Fermi temperature. Comparison with restricted path integral Monte Carlo data [E. W. Brown et al., Phys.
Rev. Lett. 110, 146405 (2013)] allows us to quantify the systematic error arising from the free particle nodes.
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I. INTRODUCTION

The uniform electron gas (UEG) constitutes a well-known
simple model for metals [1]. At finite temperature, the
spin-polarized UEG is described by the density parameter
rs = r̄/aB [r̄ is the mean interparticle distance related to
the density by n−1 = 4πr̄3/3, and aB is the Bohr radius]
and the dimensionless temperature (degeneracy parameter)
� = kBT /EF , with the Fermi energy EF . Besides being an
interesting theoretical model system for studying correlated
fermionic many-body systems, exact data for the exchange-
correlation energy of the UEG is essential for the construction
of exchange correlation functionals [2,3] for density functional
theory (DFT) calculations of more realistic systems, e.g.
atoms, molecules, and novel materials. For the ground state this
data has been provided many years ago by Ceperley and Alder
[4] utilizing the fixed node diffusion Monte Carlo approach.
Based on these calculations, Perdew and Zunger computed the
density functionals [5], which have been the basis for countless
DFT applications.

Often one is interested in properties of chemical systems
or condensed matter at low temperature, not exceeding room
temperature, for which it is justified to use ground state
results. However, in recent years more and more applications
have emerged where the electrons are highly excited, e.g., by
compression of the material or by electromagnetic radiation.
Examples are dense plasmas in compact stars or planet cores,
e.g., [6–8], and laser fusion experiments at the National
Ignition Facility, e.g. [9–11], at Rochester [12], or Sandia
[13,14]. It is now widely agreed upon that the theoretical
description of these experiments requires to go beyond ground
state DFT. This leads to a high demand for exact data for the
UEG at finite temperature and high to moderate density where
fermionic exchange and correlation effects play an important
role simultaneously, namely the warm dense matter (WDM)
regime, where both rs and � are of order one.

Quantum Monte Carlo (QMC) simulations are the method
of choice for the computation of exact thermodynamic
quantities at finite temperature. However, it is well known
that, when applied to fermions, path integral Monte Carlo
(PIMC) methods suffer the fermion sign problem (FSP),
which may render the simulation even of small fermionic
systems impossible and was shown to be NP hard [15]. In the
standard PIMC formulation in coordinate space, e.g. [16], the
FSP causes an exponential loss of accuracy with increasing
degeneracy, i.e., towards low temperature and high density
of the system. For this reason, standard fermionic PIMC
calculations of the commonly used N = 33 spin-polarized
UEG are not feasible in the warm dense matter regime [17].
Presently, the search for accurate and efficient strategies to
weaken the FSP is one of the most important questions in
condensed matter and dense plasma theory.

A popular approach to avoid the FSP is the restricted
(fixed-node) PIMC (RPIMC) method [18], which is claimed to
be exact if the true nodal surface of the density matrix would be
known. Usually this is not the case, and one has to rely on ap-
proximations, thereby introducing an uncontrolled systematic
error. Brown et al. [17] performed RPIMC calculations with
ideal nodes of the UEG in a broad density-temperature range
down to rs = 1 and � = 0.0625. These results have been used
by many groups, e.g., for the construction of analytical fits for
the exchange-correlation free energy [2,3] and as benchmarks
for models and simulations [19,20].

In a recent paper [21], we applied the configuration path
integral Monte Carlo (CPIMC) approach to the uniform
electron gas and were able to obtain ab initio simulation results
for finite temperatures and high degeneracy. These results
also showed that the RPIMC data of Ref. [17] are inaccurate
for high densities, rs � 4. As any fermionic PIMC approach,
CPIMC as well suffers from the FSP. But, being formulated in
Fock space of Slater determinants [22,23], CPIMC experiences
an increasing FSP with decreasing quantum degeneracy,
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FIG. 1. Available ab initio quantum Monte Carlo data in the
warm dense matter range for N = 33 spin-polarized electrons. Dots:
CPIMC. Squares: PB-PIMC. Red: Additional combined CPIMC
and PB-PIMC results of this paper. Gray: Previous results from
CPIMC [21] and PB-PIMC [25], respectively. ICF: Typical inertial
confinement fusion parameters [10]. Quantum (classical) behavior
dominates below (above) the line � = 1. � = e2/r̄kBT is the
classical coupling parameter.

i.e., towards low density. In the case of the UEG with
N = 33 particles, direct CPIMC simulations were possible
only for rs � 0.4. Nevertheless, in Ref. [21] an extension to
substantially larger rs was achieved by introducing an auxiliary
kink potential which leads to a complication of the original
CPIMC algorithm.

For this reason, the present paper aims at giving a
comprehensive explanation of the modified CPIMC approach,
in particular of the details of the kink potential and the issues
of convergence and accuracy. In order to give a systematic
analysis of these concepts and their capabilities, we concen-
trate on the simplest situation—the polarized UEG. Also, we
restrict ourselves to finite particle numbers, deferring the issues
of finite size effects and extrapolation to the thermodynamics
limit to a future publication. Here, we explore in detail how
the algorithm performs with varying particle number and what
range of densities and temperatures is accessible. This allows
us to extend the range of ab initio CPIMC data presented in
Ref. [21] to temperatures as high as � = 8 and to larger rs

values, where the maximum accessible value is found to be
on the order of rmax

s ∼ �. However, we demonstrate that it is
possible to access the entire rs range without fixed nodes. To
this end, we invoke another ab initio approach—the recently
developed permutation blocking PIMC method (PB-PIMC)
[24,25] which has a complementary FSP, restricting the
simulations from the side of low temperatures. For N = 33
spin-polarized particles, the combination of CPIMC and PB-
PIMC allows us to present exact results for � � 0.5, for all
densities, without fixed nodes, see Fig. 1.

The paper is organized as follows. After introducing the
model Hamiltonian of the UEG in Sec. II A, we start with a
brief but self-contained derivation of the CPIMC expansion of
the partition function in Sec. II B and, in Sec. II C, explain the
interpretation of the latter as being a sum over closed paths
in Fock space, in imaginary time. In Sec. III A, we proceed

with addressing the FSP in direct CPIMC simulations, where
we find an abrupt drop of the average sign at a certain critical
value of rs depending on particle number and temperature.
Then, in Sec. III B, we demonstrate how the applicable
region of the CPIMC method can be extended to significantly
lower densities by the use of an auxiliary kink potential and
an appropriate extrapolation scheme. In Sec. IV, the main
ideas of PB-PIMC and its differences compared to standard
PIMC are explained. Finally, in Sec. V, we combine the two
complementary methods, CPIMC and PB-PIMC, to obtain
results for N = 33 spin-polarized particles over the whole
density range for several degeneracy parameters reaching from
θ = 0.5 to θ = 8.

II. THEORY

A. The Jellium Hamiltonian

In second quantization with respect to plane waves, 〈r |k〉 =
1

L3/2 e
ik·r with k = 2π

L
m, m ∈ Z3, the Hamiltonian of the finite

simulation-cell 3D uniform electron gas consisting of N

electrons on a uniform neutralizing background in a periodic
box of length L takes the familiar form (Rydberg units)

Ĥ =
∑

i

k2
i â

†
i âi + 2

∑
i<j,k<l

i �=k,j �=l

w−
ijkl â

†
i â

†
j âl âk + EM, (1)

with the antisymmetrized two-electron integrals, w−
ijkl =

wijkl − wijlk , where

wijkl = 4πe2

L3(ki − kk)2
δki+kj ,kk+kl

, (2)

and the delta function ensuring momentum conservation.
The first (second) term in the Hamiltonian Eq. (1) describes
the kinetic (interaction) energy. The Madelung energy EM

accounts for the self-interaction of the Ewald summation in
periodic boundary conditions [26], for which we found EM ≈
−2.837297 · (3/4π )

1
3 N

2
3 r−1

s . The operator â
†
i (âi) creates

(annihilates) a particle in the orbital |ki〉. The diverging
contributions in the interaction term, i.e., for ki = kk and
kj = kl , cancel with the contributions due to the positive
background. Note that choosing the plane wave basis, which
is the ideal, natural, and Hartree-Fock basis at the same time,
has the major advantage of having two-electron integrals that
can be computed analytically according to Eq. (2). In an
arbitrary basis one generally has to compute the two-electron
integrals prior to the simulation and store them in computer
memory, limiting the number of basis functions that can be
taken into account. Yet, it is well-known that plane waves
badly describe the Coulomb interaction, making a large
number of basis functions necessary to obtain converged
results.

B. CPIMC expansion of the partition function

In equilibrium many-body quantum statistics the central
quantity is the partition function, which is given by the trace
over the density operator

Z = Tr ρ̂ , (3)
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where, in the canonical ensemble,

ρ̂ = e−βĤ , (4)

with the inverse temperature β = [kBT ]−1. In standard PIMC,
the trace in Eq. (3) is evaluated in coordinate space expressing
the density operator in terms of a product of M density
operators at M-times higher temperature, which is justified
by the Trotter formula. To correctly take into account Fermi
statistics, one then has to antisymmetrize the density operator
thereby introducing a sign change in the weight function for
odd particle permutations. This is the source of the FSP in
standard PIMC. In CPIMC instead we perform the trace in
Eq. (3) directly with antisymmetrized N -particle states (Slater
determinants)

|{n}〉 = |n1,n2, . . . 〉, (5)

which form a complete basis of the Fock space. Here, the ni

denote the fermionic occupation numbers (ni = 0,1) of the
orbitals |ki〉.

To bring the partition function into a form suitable for a
Monte Carlo algorithm, one can split the Hamiltonian into
a diagonal and off-diagonal part, i.e., Ĥ = D̂ + Ŷ , which
is always possible for any arbitrary basis. In the interaction
picture in imaginary time with respect to the diagonal operator
D̂, i.e.,

Ŷ (τ ) = eτD̂Ŷ e−τD̂, τ ∈ (0,β), (6)

the density operator can be written in terms of a perturbation
expansion in orders of Ŷ

e−βĤ = e−βD̂T̂τ e
− ∫ β

0 Ŷ (τ )dτ

= e−βD̂

∞∑
K=0

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

× (−1)KŶ (τK )Ŷ (τK−1) · . . . · Ŷ (τ1), (7)

where T̂τ denotes the time-ordering operator. Inserting Eq. (7)
into Eq. (3), evaluating the trace and rearranging terms, yields
the following expansion of the partition function

Z =
∞∑

K=0,

K �=1

∑
{n}

∑
s1...sK−1

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

× (−1)Ke− ∑K
i=0 D{n(i)}(τi+1−τi )

K∏
i=1

Y{n(i)},{n(i−1)}(si), (8)

where si denotes a multi-index defining the orbitals in which
the two sets of occupation numbers {n(i)} and {n(i−1)} differ.
Due to the trace in Eq. (3) it has to be {n} = {n(0)} = {n(K)}.
According to the Slater-Condon rules the Fock space matrix
elements of the UEG Hamiltonian do not vanish only if the
states differ in no (diagonal part) or exactly four occupation
numbers (off-diagonal part) so that

D{n(i)} =
∑

l

k2
l n

(i)
l +

∑
l<k

w−
lklkn

(i)
l n

(i)
k , (9)

Y{n(i)},{n(i−1)}(si) = w−
si

(−1)αsi (10)

with si = (pqrs) defining the four occupation numbers in
which {n(i)} and {n(i−1)} differ, where it is p < q and r < s.

In this notation, the exponent of the fermionic phase factor is
given by

αsi
= α(i)

pqrs =
q−1∑
l=p

n
(i−1)
l +

s−1∑
l=r

n
(i)
l .

Monte Carlo estimators of observables are readily computed
as derivatives of the partition function Eq. (8), e.g., for the
internal energy one obtains

〈Ĥ 〉 = − ∂

∂β
ln Z (11)

=
∞∑

K=0,

K �=1

∑
{n}

∑
s1...sK−1

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

×
(

1

β

K∑
i=0

D{n(i)}(τi+1 − τi) − K

β

)
W. (12)

We point out that the expansion (8) is exact and system inde-
pendent. Monte Carlo methods using this expansion belong to
the so-called continuous time QMC methods (in the interaction
picture) since there is no imaginary time discretization left.
This concept has been developed by Prokofev et al. [27,28]
and extensively applied to lattice models, e.g., [27–30]. We
have presented an alternative derivation of Eq. (8) by starting
from the Trotter formula and developed an algorithm for
continuous systems [23] requiring more involved Monte Carlo
steps compared to lattice models.

C. Closed path in Fock space

A contribution to the partition function Eq. (8) can be
interpreted as a β− periodic path in Fock space, in imaginary
time, that is uniquely defined by the initial determinant
{n} = {n(0)} at β = 0 and the K two-particle excitations of
type si = (pqrs) at times τi , where two particles are excited
from the orbitals r and s to p and q. An example of such a
path is illustrated in Fig. 2. Due to their visual appearance,
the excitations are called “kinks.” The weight of each path is
determined by the weight function which, according to Eqs. (8)

0
1
2
3
4
5

τ1 τ2 τ30 β
imaginary time τ

or
bi

ta
l
i

|{n(2)}〉 = |001110 . . .〉s1 = (2, 5, 0, 3)

FIG. 2. Typical closed path in Slater determinant (Fock) space.
The state with three occupied orbitals |	k0〉,|	k1〉,|	k3〉 undergoes a
two-particle excitation s1 at time τ1 replacing the occupied orbitals
|	k0〉,|	k3〉 by |	k2〉,|	k5〉. Two further excitations occur at τ2 and τ3.
The states at the “imaginary times” τ = 0 and τ = β coincide.
All possible paths contribute to the partition function Z, Eq. (8).
(Figure from Ref. [21].)
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and (10), reads

W (K,{n},s1, . . . ,sK−1,τ1, . . . ,τK )

= (−1)Ke− ∑K
i=0 D{n(i)}(τi+1−τi )

K∏
i=1

w−
si

(−1)αsi . (13)

The set of occupation numbers of a determinant between kinks
contributes to the exponential function with its corresponding
diagonal matrix element, cf. Eq. (9), weighted with the length
of the time interval on which the determinant is realized in
the path. On the other hand, each kink enters the product over
all kinks in the path with its corresponding antisymmetrized
two-electron integral and phase factor of the involved orbitals.
Since the two-electron integrals can be both positive and
negative, there are altogether three sources of sign changes
in the weight function.

III. SIGN PROBLEM OF CPIMC

A. Sign problem of the direct CPIMC method

Since the weight function W takes both positive and
negative values, it is not a probability density. Therefore, the
Metropolis algorithm can only be used to generate a Markov
chain of paths distributed according to the modulus of the
weight. This is achieved with an ergodic set of six Monte Carlo
steps in which single or paired kinks are added or changed. A
detailed description of these steps can be found in Ref. [22]. By
generating a Markov chain of paths according to the modulus
of the weight, we actually simulate a system described by

Z′ =
∞∑

K=0,

K �=1

∑
{n}

∑
s1...sK−1

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

× |W (K,{n},s1, . . . ,sK−1,τ1, . . . ,τK )| (14)

rather than the true physical system described by the partition
function Eq. (8). Physical expectation values of observables
are then obtained via

〈O〉 = 〈Os〉′
〈s〉′ , (15)

where O is the Monte Carlo estimator, e.g., for the internal
energy the term in brackets in Eq. (12), 〈·〉′ denotes the
expectation value with respect to the modified partition
function, Eq. (14), and s = sign(W ) measures the sign of each
path. For the expectation value of s, which is called the average
sign, it holds

〈s〉′ = Z

Z′ = e−βN(f −f ′) (16)

with f being the free energy per particle. It is straightforward
to show that the relative statistical error of quantities computed
with Monte Carlo methods via Eq. (15) is inversely propor-
tional to the average sign. Therefore, it grows exponentially
with particle number and inverse temperature, while it can only
be reduced by the square root of the number of Monte Carlo
samples. Depending on the available computational resources
acceptable statistical errors can be obtained for average signs
larger than about 10−4. This is the FSP.

Figure 3(a) shows the dependency of the average sign in
CPIMC simulations of the UEG on the density parameter

(a)

(b)

FIG. 3. Average sign (a) and average number of kinks (b) of direct
CPIMC, plotted versus the density parameter for different particle
numbers in NB = 2109 basis functions at θ = 0.125.

at a fixed degeneracy parameter θ = 0.125 for different
particle numbers. The number of basis functions is fixed to
NB = 2109, which is sufficient to obtain converged results
(within reasonable statistical errors) for all data points. We
generally observe a rather sharp drop of the average sign
from almost 1 to about 10−3. This effect clearly increases and
shifts towards smaller rs with particle number. Consequently,
for N = 33 particles at this temperature we obtain negligible
small statistical errors for rs � 0.4, whereas for slightly larger
values of rs direct simulations are not feasible. To investigate
this behavior in more detail, in Fig. 3(b) we plot the average
number of kinks in the simulations for the same parameters.
This quantity is closely connected to the average sign since
each additional kink in the paths comes with three potential
sources of sign changes, cf. Sec. II C. In CPIMC simulations
with on average more than 30 kinks we find that, depending on
the temperature, the average sign is too small to obtain results
with reasonable statistical errors.

In the high density regime, the average number of kinks
grows linearly with rs , see Fig. 3(b), then at some critical
value of rs it starts growing exponentially. The slope of this
exponential growth increases with particle number so that for
N = 33 it appears to be rather a jump from below 1 to about
200 kinks at rs ∼ 0.4 explaining the sudden drop of the average
sign in Fig. 3(a). Interestingly, for further reduced density,
the average number of kinks grows again linearly with rs . We
have carefully checked that this is not an effect of the finite
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FIG. 4. Average number of kinks of direct CPIMC, plotted versus
the density parameter for N = 4 particles in NB = 5575 basis
functions at different temperatures.

number of basis functions. However, in this regime, even for
N = 4 particles the average number of kinks is larger than
1000 resulting in a practically vanishing average sign. For
N = 4 particles, Fig. 4 shows the average number of kinks
in dependence on rs for different degeneracy parameters. In
the linear regimes (both at very large and small values of
rs), the average number of kinks depends also linearly on
the degeneracy parameter while the onset of the exponential
growth shifts towards smaller rs , for increasing degeneracy,
i.e., for decreasing θ . Further, at lower temperatures, the
transition from the exponential to the linear rs dependency is
smoother, cf. red and brown curve in Fig. 4. Summarizing, the
direct CPIMC method suffers an abrupt drop of the average
sign in particular for larger systems and lower temperature
caused by a strong increase of the average number of kinks in
the simulated paths.

B. Extending CPIMC towards lower density

In this section, the use of the auxiliary kink potentials is
explained, and its influence on the CPIMC method is investi-
gated in detail. These kink potentials have been introduced in
Ref. [21] to obtain the results for rs > 0.4.

The average number of kinks in the simulation is only
connected to the number of kinks K necessary for the partition
function of the primed system to be converged, cf. Eq. (14).
However, to obtain correct physical observables via Eq. (15) it
is sufficient to include only those paths in the simulation that
actually contribute to the physical partition function Eq. (8),
which, due to cancellations of contributions with opposite sign,
may converge for a much smaller value of K than the primed
partition function. In other words, if this cancellation applies,
then we can restrict the simulation paths to a certain number of
kinks and thereby strongly reduce the sign problem while still
obtaining exact results for the observables. In addition, since
both Eqs. (8) and (14) are exact perturbation series in orders
of the number of kinks K , it is reasonable to investigate the
convergence of this series with respect to K . For this purpose,
we have introduced an auxiliary Fermi-like kink potential

Vδ,κ (K) = 1

e−δ(κ−K+0.5) + 1
, (17)

FIG. 5. Convergence of the internal energy with respect to the
kink potential parameter κ , using different parameters δ. The system
consists of N = 4 particles in NB = 19 basis functions at θ = 0.5
and rs = 40 for which the energy can be computed with an exact
configuration interaction (CI) method (dashed black line). Each point
is the result of a whole CPIMC simulation, where integer numbers
from 5 to 28 have been used for κ .

which becomes a step function at K = κ + 0.5 in the limit
δ → ∞. We add this potential as an auxiliary factor in the
primed partition function so that it acts as a penalty, depending
on the values of δ and κ , for paths with a large number of kinks.
Hence, the simulated partition function is now parametrized
by δ and κ reading

Z′(δ,κ) =
∞∑

K=0,

K �=1

∑
{n}

∑
s1...sK−1

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

×Vδ,κ (K)|W (K,{n},s1, . . . ,sK−1,τ1, . . . ,τK )|.
(18)

Obviously, for any non-negative value of δ, we recover the
original primed partition function in the limit κ → ∞

Z′ = lim
κ→∞ Z′(δ,κ), ∀ δ � 0. (19)

Therefore, performing CPIMC simulations for different values
of κ at fixed δ converges to the exact result in the limit
1/κ → 0.

This is demonstrated in Fig. 5, where the convergence of
the internal energy is shown for three different values of δ.
The system size has been chosen to be very small, i.e., N = 4
particles in NB = 19 basis functions at θ = 0.5 and rs = 40, so
that the energy can be computed with an exact diagonalization
method (dashed black line). For the parameter κ integer
values have been used from κ = 5 to 28. At δ = 10 (red
points), the kink potential practically resembles a step function
restricting paths in the simulation to a maximum of Kmax = κ

kinks. Interestingly, in this case the energy converges not
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(a)

(b)

FIG. 6. Convergence of the internal energy with respect to the
kink potential parameter κ and extrapolation to 1/κ → 0, corre-
sponding to K → ∞, at θ = 1.0. (a) N = 4 particles and rs = 10.0 in
NB = 5575 basis functions. (b) N = 33 and rs = 1.0 in NB = 4169
basis functions. The asymptotic values (black points) are enclosed
between the blue and green lines and, within error bars, coincide with
the PB-PIMC result (orange points).

monotonically towards the exact result but oscillates with even
and odd numbers of κ . Strictly speaking, for only odd numbers
of κ the energy does converge monotonically while for even
numbers it first drops below the exact value before eventually
converging. This behavior may be explained by the factor
(−1)K in the weight function, c.f. Eq. (13), dominating the
other two sign changing sources of the phase factor and the
two-electron integrals. Nevertheless, these oscillations render
a reliable extrapolation to the exact limit 1/κ → 0 difficult
and hence, simply restricting the number of kinks is not a
good choice. For smaller values of δ (green points in Fig. 5)
where we, to a larger extent, allow paths with a larger number
of kinks than κ , the oscillations are significantly reduced. At
δ = 1 (blue points), the oscillations finally vanish completely
and the energy converges monotonically towards the exact
result. In fact, we always observe an s-shaped convergence
behavior with 1/κ for Fermi potentials with δ � 1. This allows
for a very robust extrapolation scheme to the exact result in the
limit 1/κ → ∞ after the onset of convergence that is clearly
indicated by the change in curvature (at κ ∼ 17 in Fig. 5).

In Fig. 6(a), we demonstrate this extrapolation scheme for
a more difficult system of N = 4 particles in NB = 5575 basis
functions at θ = 1 and rs = 10, for which the direct CPIMC
method without the kink potential is not applicable due to on
average more than 50 kinks, cf. orange curve in Fig. 4, and a
resulting vanishing sign. To obtain an upper bound of the exact
energy, we perform a horizontal fit (blue line) to those points
after the onset of the convergence, while for the lower bound a
linear fit is performed to those points (green line). The concrete
fitting procedure is explained in Appendix. For comparison the
result for the energy of the likewise exact PB-PIMC method

(cf. Sec. IV) is shown (orange point), which is well enclosed by
the horizontal and linear fit and hence perfectly confirms our
approach. Note that for the N = 4 particles in only NB = 19
basis functions in Fig. 5 the energy is entirely converged for
κ = 20 so that all points for κ > 20 lie on the horizontal line of
the CI energy. This is because here the direct CPIMC algorithm
converges to an average number of 20 kinks. In contrast, in
Fig. 6(a), after the change in curvature at approximately κ = 8,
the energy is not entirely converged and still slowly decreasing.
In this regime a near cancellation of all contributions for
increasing κ occurs. However, in the limit κ → ∞ the energy
does not converge linearly towards the exact value, because
the direct CPIMC algorithm always converges at a finite value
of 〈K〉′, cf. Fig. 3(b) and Fig. 4. Therefore, from some value
of κ onwards, depending on the average number of kinks in
the direct CPIMC algorithm, the points will be on a horizontal
line getting no further contributions for increasing κ . For this
reason, the linear fit (green line) is indeed a true lower bound
of the exact energy for the used number of basis function. Our
extrapolation scheme also works well for larger systems, which
is illustrated in Fig. 6(b) for the example of N = 33 particles
at θ = 1 and rs = 1 in NB = 4169 basis functions. Here, the
extrapolated value (black point) also agrees with the PB-PIMC
result (orange point), which has a larger statistical error than in
Fig. 6(a), due to the larger density. For a convergence plot for
the same system at a lower temperature of θ = 0.0625, where
no other results are available, we refer to Ref. [21].

In general, the use of the kink potential combined with
the extrapolation scheme actually more than doubles the
accessible density parameter within the CPIMC approach at
fixed other system parameters. Nevertheless, our procedure is
still limited by the FSP, which is indicated by the increasing
error bars of the last points in Fig. 6(a). For example, at κ = 10
there are on average 〈K〉′ ∼ 9.4 kinks with a corresponding
average sign 〈s〉′ ∼ 0.05, while at κ = 16 (last point) there
are 〈K〉′ ∼ 15.3 kinks with a corresponding average sign
〈s〉′ ∼ 5×10−3 causing a large statistical error. Of course,
if the sign problem becomes too severe before the onset
of convergence (indicated by the change in curvature), our
procedure is not applicable.

IV. BASIC IDEA OF PB-PIMC

In contrast to CPIMC, our permutation blocking PIMC
approach is essentially standard PIMC in coordinate space
but combines two well-known concepts: (1) antisymmetric
imaginary time propagators, i.e., determinants [31–33], and (2)
a fourth-order factorization of the density matrix [34–36]. In
addition, to sample this more complicated configuration space,
one of us has developed an efficient set of Monte Carlo updates
based on the temporary construction of artificial trajectories.
Since PB-PIMC and its application to the UEG have been
introduced in detail in Refs. [24] and [25], here we shall restrict
ourselves to a brief overview.

We start from the coordinate representation of the canonical
partition function (3) describing a system of N spin-polarized
fermions at inverse temperature β

Z = 1

N !

∑
σ∈SN

sgn(σ )
∫

dR 〈R| e−βĤ |π̂σ R〉, (20)
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with π̂σ being the exchange operator that corresponds to a
particular element σ from the permutation group SN with
associated sign sgn(σ ). However, since the low-temperature
matrix elements of ρ̂ are not known, we use the group
property ρ̂(β) = ∏P−1

α=0 ρ̂(ε), with ε = β/P , and approximate
each of the P factors at a P times higher temperature by the
fourth-order factorization [35,36]

e−εĤ ≈ e−v1εŴa1 e−t1εK̂e−v2εŴ1−2a1

× e−t1εK̂e−v1εŴa1 e−2t0εK̂ , (21)

which allows for sufficient accuracy, for small P . The Ŵ

operators in Eq. (21) denote a modified potential that combines
the usual potential energy V̂ with double commutator terms of
the form

[[V̂ ,K̂],V̂ ] = �
2

m

N∑
i=1

|Fi |2, Fi = −∇iV (R), (22)

where K̂ denotes the operator of the kinetic energy. Therefore,
PB-PIMC requires the additional evaluation of all forces, and
the final result for the partition function is given by

Z = 1

(N !)3P

∫
dX

P−1∏
α=0

(
e−εṼα e−ε3u0

�
2

m
F̃α (23)

det(ρα)det(ραA)det(ραB)
)
. (24)

Here, Ṽα and F̃α contain all contributions of the potential
energy and the forces, respectively, and the diffusion matrix is
given by

ρα(i,j ) = λ−D
t1ε

exp

(
− π

λ2
t1ε

(rα,j − rαA,i)
2

)
, (25)

with λt1ε =
√

2πεt1�2/m being the thermal wavelength of a
single “time slice.”

Instead of explicitly sampling each permutation cycle, as
in standard PIMC, we combine both positively and negatively
signed configuration weights in the determinants, which leads
to a cancellation of terms and, therefore, a significantly
increased average sign in our simulations. However, this “per-
mutation blocking” is only effective when λt1ε is comparable
to the mean interparticle distance. With increasing P , λt1ε

decreases and the average sign eventually converges towards
that of standard PIMC. Hence, it is crucial to combine the
determinants with the fourth order factorization from Eq. (21),
which allows for sufficient accuracy with as few as two or three
propagators and thereby maximizes the benefit of the blocking
by the determinants.

V. CPIMC AND PB-PIMC BENCHMARK RESULTS
FOR THE POLARIZED UEG

Due to the complementary character of the FSP the CPIMC
and PB-PIMC approaches are well suited to be combined and,
thereby, to circumvent the sign problem. Concerning the N =
33 spin-polarized UEG, CPIMC is applicable practically over
the entire temperature range from θ = 0.01 to 10 and suffers an
increasing sign problem for increasing rs . The critical region
at which the FSP becomes severe is around rs ∼ 1 for θ � 0.5

FIG. 7. Exchange-correlation energy Exc times rs of the N = 33
particle spin-polarized UEG over the density parameter rs for different
degeneracy parameters θ . Results have been obtained by combining
the CPIMC (dots) and PB-PIMC (crosses) approach taking the most
accurate values of each method (connected by the solid line). In
addition, RPIMC results from Ref. [17] are plotted for comparison
(open circles).

and rs ∼ θ for θ � 1. On the other hand, the PB-PIMC method
suffers a weak increase of the FSP for decreasing rs , yet it is in
principle capable of providing results over the entire density
range for degeneracy parameters θ � 0.75. At temperatures
θ < 0.5, PB-PIMC is not feasible at high density.

For the construction of density functionals the exchange-
correlation energy Exc (per particle) of the UEG is of particular
importance, which is obtained by subtracting the ideal energy
U0 from the total internal energy

Exc = E − U0. (26)

In Fig. 7, we show our results for the exchange-correlation
energy. Note that we plot Exc · rs which converges towards the
finite Hartree-Fock energy in the limit rs → 0. We always
took the most accurate value of CPIMC (solid dots) or
PB-PIMC (crosses), in cases where both are available. These
data complement our earlier results that are included here
as well, to have a complete set (for CPIMC, data for four
isotherms θ = 0.5,1,2,4 have been reported in Ref. [21], while
for PB-PIMC, the internal energy for the three isotherms θ =
1,2,4 has been presented in Ref. [25], where the application
of the method to the UEG is explained in detail). At θ = 0.5,
CPIMC can provide data up to rs = 1, while PB-PIMC suffers
a too strong FSP below rs = 2 leaving a gap between both
approaches. We have fitted a spline of order 4 to the available
points and are thereby able to accurately close the gap (dotted
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TABLE I. Energies per particle for N = 33 polarized electrons: ideal energy U0, kinetic energy Ekin, potential energy Epot, and exchange-
correlation energy Exc. An a marks CPIMC results that have been obtained by an extrapolation as explained in Appendix. For these values, the
error given in parenthesis includes systematic effects. All other errors correspond to a 1σ standard deviation. A b marks results from PB-PIMC
calculations. For CPIMC results, the number of basis functions NB is given in the last column. Energies in units of Ryd.

θ rs U0 Ekin Epot Exc NB

0.50 0.05 2380.191(6) 2376.036(25) −20.63427(16) −24.789(26) 2109
0.10 595.0477(16) 593.041(25) −10.40869(32) −12.416(25) 4169
0.20 148.7619(4) 147.818(5) −5.29077(12) −6.234(5) 4169
0.30 66.11641(18) 65.5186(17) −3.57994(9) −4.1777(17) 4169
0.40 37.19048(10) 36.7599(10) −2.72121(13) −3.1518(11) 4169
0.60 16.52910(5) 16.2673(14)a −1.8577(8)a −2.1198(21)a 2109
0.80 9.297620(25) 9.1196(30)a −1.424(4)a −1.6034(26)a 2109
1.00 5.950477(16) 5.823(6)a −1.162(6)a −1.291(4)a 2109
2.00 1.487619(4) 1.426(22)b −0.6202(23)b −0.682(21)b

−0.661c

4.00 0.3719050(10) 0.3618(6)b −0.32970(8)b −0.3398(5)b

6.00 0.1652910(5) 0.16355(30)b −0.22873(6)b −0.23047(29)b

8.00 0.09297600(25) 0.09356(14)b −0.176150(30)b −0.17557(13)b

10.00 0.05950500(16) 0.06130(8)b −0.143718(17)b −0.14192(7)b

0.75 0.05 3147.466(12) 3143.18(4) −18.84333(19) −23.13(5) 4169
0.10 786.8665(31) 784.718(10) −9.51839(8) −11.667(11) 4169
0.20 196.7166(8) 195.6818(24) −4.85031(4) −5.8851(26) 4169
0.30 87.42961(35) 86.7672(12) −3.289850(30) −3.9523(12) 4169
0.40 49.17916(19) 48.7016(4) −2.506603(22) −2.9842(5) 4169
0.50 31.47466(12) 31.10585(31) −2.034685(20) −2.40349(34) 4169
0.60 21.85740(9) 21.5612(7)a −1.71865(16)a −2.0154(11)a 4169
0.80 12.29479(5) 12.0878(5)a −1.32039(10)a −1.5280(8)a 4169
1.00 7.868665(31) 7.7140(5)a −1.0793(6)a −1.2340(5)a 4169
2.00 1.967166(8) 1.9097(6)b −0.58218(7)b −0.6397(6)b

4.00 0.4917920(19) 0.47535(10)b −0.316986(20)b −0.33343(10)b

6.00 0.2185740(9) 0.21257(13)b −0.221880(28)b −0.22788(13)b

8.00 0.1229480(5) 0.120659(29)b −0.171940(11)b −0.174229(29)b

10.00 0.07868700(31) 0.078268(32)b −0.140854(9)b −0.141272(31)b

1.00 0.05 3957.262(19) 3953.20(9) −17.56511(21) −21.63(9) 4169
0.10 989.316(5) 987.269(20) −8.87662(10) −10.923(21) 4169
0.20 247.3289(12) 246.337(5) −4.52798(5) −5.520(5) 4169
0.30 109.9239(5) 109.2790(18) −3.07450(4) −3.7194(19) 4169
0.40 61.83222(30) 61.3643(11) −2.345237(22) −2.8132(11) 4169
0.60 27.48099(13) 27.1891(4) −1.611535(18) −1.9034(4) 4169
0.80 15.45805(8) 15.2540(7) −1.2450(15) −1.4491(8) 4169
1.00 9.89316(5) 9.7381(10)a −1.01625(29)a −1.1717(7)a 4169
1.50 4.396958(21) 4.3066(15)b −0.71068(17)b −0.8010(15)b

2.00 2.473289(12) 2.4136(8)b −0.55337(12)b −0.6131(8)b

3.00 1.099239(5) 1.06770(26)b −0.39052(5)b −0.42206(26)b

4.00 0.6183220(30) 0.59980(14)b −0.305012(33)b −0.32353(15)b

5.00 0.3957260(19) 0.38361(7)b −0.251795(19)b −0.26392(8)b

6.00 0.2748100(13) 0.26690(5)b −0.215138(13)b −0.22305(5)b

8.00 0.1545810(8) 0.150966(20)b −0.167579(7)b −0.171193(22)b

10.00 0.0989320(5) 0.097380(13)b −0.137806(5)b −0.139358(13)b

2.00 0.05 7335.15(4) 7331.95(15) −14.93186(20) −18.13(15) 5575
0.10 1833.788(11) 1832.30(4) −7.54095(11) −9.02(4) 5575
0.20 458.4470(26) 457.718(8) −3.84305(5) −4.572(8) 5575
0.30 203.7542(12) 203.2810(32) −2.60821(4) −3.0815(34) 5575
0.40 114.6118(7) 114.2583(20) −1.989454(30) −2.3429(21) 5575
0.60 50.93856(29) 50.7147(9) −1.368155(19) −1.5920(10) 5575
0.80 28.65294(16) 28.4931(5) −1.055120(15) −1.2149(5) 5575
1.00 18.33788(11) 18.21454(30) −0.865709(17) −0.98905(31) 5575
1.50 8.15017(5) 8.0775(12)b −0.60945(21)b −0.6821(12)b

2.00 4.584470(26) 4.5339(4)a −0.4780(5)a −0.5287(6)a 5575
3.00 2.037542(12) 2.00917(27)b −0.34120(8)b −0.36958(28)b
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TABLE I. (Continued).

θ rs U0 Ekin Epot Exc NB

4.00 1.146118(7) 1.12840(27)b −0.26956(9)b −0.28727(28)b

5.00 0.733515(4) 0.72143(9)b −0.224617(35)b −0.23670(10)b

6.00 0.5093860(29) 0.50075(11)b −0.19347(5)b −0.20210(13)b

8.00 0.2865290(16) 0.28185(4)b −0.152706(18)b −0.15739(4)b

10.00 0.1833790(11) 0.180676(18)b −0.126841(10)b −0.129543(21)b

4.00 0.05 14258.10(14) 14256.29(19) −13.17459(10) −14.99(23) 24405
0.10 3564.525(35) 3563.55(5) −6.63750(5) −7.62(6) 24405
0.20 891.131(9) 890.660(12) −3.367889(23) −3.839(14) 24405
0.30 396.058(4) 395.752(5) −2.277115(17) −2.583(7) 24405
0.40 222.7828(22) 222.5676(30) −1.731134(13) −1.946(4) 24405
0.50 142.5810(14) 142.4029(24) −1.403167(13) −1.5812(27) 24405
0.60 99.0146(10) 98.8721(13) −1.184072(9) −1.3265(16) 24405
0.80 55.6957(5) 55.5925(13) −0.909464(11) −1.0126(14) 24405
1.00 35.64525(35) 35.5622(10) −0.743926(12) −0.8269(10) 24405
1.50 15.84233(15) 15.7935(18)b −0.5208(4)b −0.5696(19)b

2.00 8.91131(9) 8.87718(18) −0.407967(8) −0.44210(20) 24405
3.00 3.96058(4) 3.9409(4)b −0.29176(17)b −0.3115(5)b

4.00 2.227828(22) 2.21563(34)b −0.23140(14)b −0.2436(4)b

5.00 1.425810(14) 1.41669(16)b −0.19370(8)b −0.20282(18)b

6.00 0.990146(10) 0.98344(14)b −0.16772(8)b −0.17442(17)b

8.00 0.556957(5) 0.55306(9)b −0.13378(5)b −0.13767(10)b

10.00 0.3564530(35) 0.35389(4)b −0.112127(25)b −0.11469(4)b

6.00 0.05 21232.56(31) 21231.34(28) −12.50240(7) −13.7(4) 38911
0.10 5308.14(8) 5307.53(7) −6.28885(4) −6.90(11) 38911
0.20 1327.035(19) 1326.709(17) −3.181308(18) −3.507(26) 38911
0.30 589.793(9) 589.566(8) −2.145065(12) −2.372(12) 38911
0.40 331.759(5) 331.602(5) −1.626612(9) −1.783(7) 38911
0.50 212.3256(31) 212.1926(34) −1.315274(9) −1.448(5) 38911
0.60 147.4484(21) 147.3440(24) −1.107473(8) −1.2118(32) 38911
0.80 82.9397(12) 82.864(4) −0.847318(17) −0.923(4) 38911
1.00 53.0814(8) 53.0227(25) −0.690775(17) −0.7494(26) 38911
2.00 13.27035(19) 13.2448(6) −0.374712(10) −0.4003(6) 38911
4.00 3.31759(5) 3.3074(5)a −0.21107(8)a −0.2216(6)a 38911
6.00 1.474484(21) 1.46893(21)b −0.15299(14)b −0.15854(26)b

8.00 0.829397(12) 0.82618(12)b −0.12223(8)b −0.12544(15)b

10.00 0.530814(8) 0.52859(9)b −0.10284(7)b −0.10507(11)b

8.00 0.05 28224.1(5) 28222.5(4) −12.14740(7) −13.8(7) 44473
0.10 7056.03(14) 7055.43(10) −6.103529(32) −6.71(17) 44473
0.20 1764.009(34) 1763.732(25) −3.081446(15) −3.36(4) 44473
0.30 784.004(15) 783.799(12) −2.073757(12) −2.279(19) 44473
0.40 441.002(9) 440.863(7) −1.569731(9) −1.709(11) 44473
0.50 282.241(5) 282.151(5) −1.267116(9) −1.358(8) 44473
0.60 196.001(4) 195.9224(35) −1.065252(7) −1.144(5) 44473
0.80 110.2505(21) 110.191(8) −0.812627(18) −0.872(8) 44473
1.00 70.5603(14) 70.509(9) −0.660769(30) −0.712(10) 44473
2.00 17.64009(34) 17.6191(11) −0.355004(10) −0.3760(12) 44473
3.00 7.84004(15) 7.8274(5) −0.251192(7) −0.2638(5) 44473
4.00 4.41002(9) 4.40107(15) −0.198143(7) −0.20709(17) 44473
6.00 1.96001(4) 1.95532(32)a −0.14327(8)a −0.1482(5)a 44473
8.00 1.102505(21) 1.09990(18)b −0.11447(13)b −0.11708(22)b

10.00 0.705603(14) 0.70369(11)b −0.09639(7)b −0.09830(13)b

line). With this, we are able to present ab initio results for
this system for the entire density range, for all temperatures
� > 0.5.

In Table I, we present all CPIMC and PB-PIMC data points
shown in Fig. 7. In addition to the exchange-correlation energy,
the ideal, kinetic, and potential energy are listed. Note that

even the ideal energy in the canonical ensemble cannot be
calculated analytically. Further, we added the number of basis
functions NB that have been used in the corresponding CPIMC
simulation, where we have carefully checked convergence
of the energy (within statistical errors) with respect to NB .
The origin of the fluctuations at the highest temperature
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FIG. 8. Exchange-correlation energy Exc times rs of the N = 33
particle spin-polarized UEG over the degeneracy parameter θ for
different density parameters rs . Shown are results from CPIMC (dots)
and PB-PIMC (crosses) calculations. In addition, RPIMC results from
Ref. [17] are plotted for comparison (lines with light colors and open
circles, for rs = 1 and rs = 4).

are easily understood: At θ = 8, the relative contribution
of the exchange-correlation energy to the internal energy
becomes very small since the kinetic energy dominates for
increasing temperature. Hence, Exc is obtained by subtracting
two large numbers of similar size which, of course, is ill-
conditioned and, therefore, increases the statistical error of
Exc. The same applies in the limit rs → 0. Nevertheless,
our exchange-correlation energies represent the most accurate
results published to date.

For comparison we also plot the RPIMC data from
Ref. [17]. It is evident that they not only have a significantly
larger statistical error, but they clearly deviate systematically
from our results. Interestingly, the deviations increase from
θ = 1 to θ = 2, and even at θ = 4, there is a significant dis-
crepancy. This observation stands in contrast to the assumption
that the systematic error due to the fixed node approximation
vanishes for increasing temperature.

Finally, Fig. 8 shows the dependence of the exchange-
correlation energy on temperature for four fixed densities.
We again show the most accurate points of either CPIMC
and PB-PIMC. CPIMC allows for calculations practically
down to the ground state, for rs � 1. On the other hand,
PB-PIMC is limited, at larger densities, to temperatures
θ � 0.5. We observe that all isochores are nearly parallel
and do not cross. An interesting feature is the existence of a
minimum around � ∼ 0.25, for all densities (some uncertainty
remains for the lowest density, rs = 4, as our simulations are
confined to � � 0.5). Similar observations have been made
in the fit results of Ref. [2] and in the computation of the
screened potential of an ion in a streaming quantum plasma
[37].

The origin of this nonmonotonic behavior is a competition
of two effects. The governing trend is a decrease of the (mod-
ulus of the) interaction energy with temperature arising from a
thermal broadening of the particle density. At low temperatures
there exists a second trend arising from quantum diffraction

effects: The thermal DeBroglie wavelength is reduced with
temperature increase which increases the Coulomb interaction.
A similar trend of an intermediate increase of correlations with
temperature has been predicted for Wigner crystallization in
2D [38].

In addition to the ab initio data, Fig. 8 also includes the fixed
node RPIMC data of Ref. [17] which are available for the two
lowest densities, rs = 1 and rs = 4. For the case rs = 4 the
RPIMC results are systematically too high by a few percent.
More severe deviations are observed for rs = 1 where the
energies are too low. Particularly strong deviations are seen
for low temperatures, θ � 1 where the error exceeds 10%,
giving even rise to a crossing of two isochores.

VI. SUMMARY AND DISCUSSION

This paper was devoted to a detailed discussion of the
CPIMC simulation results for the uniform electron gas
reported in a recent paper [21]. We presented a systematic
analysis of the fermion sign problem of direct CPIMC for the
polarized UEG. For increasing particle number, a sharp drop
of the average sign, at a certain critical value of rcr

s (�,N ),
has been observed and was shown to be connected to a strong
increase in the average number of kinks in the simulation paths
in Fock space. By introducing an auxiliary Fermi-like kink
potential we introduced a modified CPIMC approach for which
the accessible rs range could be increased by more than a factor
2, for a fixed particle number and temperature [21]. When
restricting the number of kinks to a maximum number Kmax,
it turned out that the energy does not converge monotonically
but rather oscillates towards the exact result with increasing
Kmax, which renders a reliable extrapolation scheme difficult.
However, by choosing the kink potential parameter δ such that
it acts as a smooth penalty for paths with a larger number
of kinks, a monotonic convergence of the energy could be
achieved. We have developed a robust extrapolation scheme
that provides strict upper and lower bounds thereby yielding
an accurate value for the thermodynamic quantities of the
UEG.

An independent confirmation of our extrapolation proce-
dure could be obtained by a comparison to accurate PB-PIMC
results. Interestingly, utilizing the kink potential, the energy
of the simulation typically converges at about 20–30 kinks
(on average in the simulation paths), whereas the direct
CPIMC approach (without the potential) equilibrates at several
thousand kinks. This is explained by an almost complete
cancellation of contributions of paths with a large number
of kinks in the partition function, which sets the limitation of
the auxiliary kink potential method: It works only if we are
able to reach the onset of this near cancellation, before the sign
problem becomes too severe. This is clearly detectable from
the convergence behavior of the energy, cf. Fig. 6: Only when
the energy approaches the horizontal asymptote, as a function
of 1/κ , the method is applicable.

The second goal of this paper was to extend the available
ab initio results for the exchange-correlation energy of the
polarized electron gas to higher temperatures and lower den-
sities. This was achieved by combining two complementary
independent methods—CPIMC and PB-PIMC. With this we
were able to avoid the sign problem for N = 33 electrons over
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the entire density range, for all temperatures θ � 0.5, and we
presented data up to θ = 8, completely avoiding fixed nodes
or similar approximations. In all cases where both methods
overlap we observed perfect agreement (within error bars),
allowing for extremely valuable cross-checks.

Below θ = 0.5, the present combination of two methods
accesses only parts of the density range. Within the current
implementations (and reasonable numerical effort) PB-PIMC
is not applicable, for high densities, whereas CPIMC can only
provide accurate results up to a minimum density around
rs ∼ 1, leaving open a gap in the density which further
increases with the particle number. Work is presently underway
to access larger particle numbers and, eventually, perform an
extrapolation to the thermodynamic limit, as was successfully
demonstrated for very high densities in Ref. [21].

The present results should be useful for the development of
improved quantum Monte Carlo simulations including density
matrix QMC [39,40] and tests of improved fermionic nodes for
RPIMC. The present scheme of combining CPIMC and PB-
PIMC should also be suitable to produce first-principle results
for the paramagnetic electron gas for which an increased sign
problem of CPIMC was observed [21].
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APPENDIX: EXTRAPOLATION WITH RESPECT
TO THE NUMBER OF KINKS

To obtain an upper bound for the energy from CPIMC
calculations utilizing the kink potential (see, e.g., Fig. 6) a
horizontal (constant) fit is performed as follows: First, all
data points with a relative error exceeding 1% are discarded
defining a maximum value of κ , denoted κmax (minimum
of 1/κmax), satisfying this condition. Second, all data points
are upshifted by 1σ standard deviation. Then, horizontal fits
are performed to the next 6,7,8 . . . ,nh points with κ < κmax,
where we add additional points as long as these deviate no more
than 4σ from the constant fit. This procedure ensures that we
only fit to those points belonging to the onset of convergence
(indicated by the change in curvature in Fig. 6).

A lower bound of the energy is obtained by starting with a
linear fit to the last nh points with κ < κmax. But instead of the
prior upshift of the data by 1σ we now perform a downshift of
the data points by 1σ prior to the fit. We proceed with adding
points included in the linear fit as long as there are less than
3 points deviating by 2σ and less than 1 point deviating by
3σ from the fit. The lower bound of the energy is given by
the lowest value of all linear fits at 1/κ = 0. The result for the
energy is then computed as the mean value of the lower and
upper bounds with the error estimated (from above) as their
difference.
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