
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 93, 081411(R) (2016)

Fermion-parity duality and energy relaxation in interacting open systems
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We study the transient heat current out of a confined electron system into a weakly coupled electrode in
response to a voltage switch. We show that the decay of the Coulomb interaction energy for this repulsive system
exhibits signatures of electron-electron attraction, and is governed by an interaction-independent rate. This can
only be understood from a general duality that relates the nonunitary evolution of a quantum system to that of a
dual model with inverted energies. Deriving from the fermion-parity superselection postulate, this duality applies
to a large class of open systems.
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Energy decay due to heat currents is of key importance
in the continued downscaling of electronic devices [1]. The
quantum [2–6] and interaction effects [7–9] that arise on
the nanoscale give rise to new possibilities [10–13] and
motivate both fundamental [14] and application oriented
[3,4,8,13,15] studies on quantum heat engines, possibly
realized in, e.g., cold atoms, trapped ions, or quantum dots.
The successful control and exploitation of heat in nanodevices
requires both a fundamental understanding and the practical
ability to detect and manipulate few-electron heat currents.
Under stationary conditions, progress has been achieved using
various approaches [16–18], including heat transfer through
molecular-scale devices [19] with electrostatic gating [20].
However, any device is eventually adjusted by some external
agent that provokes a time-dependent response. In the context
of electronic heat currents, this raises a very basic question that,
despite recent promising theoretical [21–27] and experimental
[28–30] studies, has not been answered so far: how does a
small electron system, typically governed by a strong level
quantization and Coulomb interaction, dissipate in time its
stored energy into a coupled electronic bath?

The essence of time-dependent transport in such systems is
already captured by the simple model sketched in Figs. 1(a) and
1(b). Here, an instant energy shift of a single electronic orbital
in a quantum dot leads to a time-dependent charge current
IN (t) [31,32] and heat current IQ(t) into a tunnel-coupled
electrode. In the weak-coupling regime, expressions for these
currents can be calculated straightforwardly, and in the case
of the transient charge current IN (t) also allow for an intuitive
physical understanding [33]. This is, however, not the case for
the heat current IQ(t) = ace

−γct + ape−γpt . Compared to the
charge current IN (t) ∝ e−γct , the heat current contains a second
decay mode. The mere presence of this mode can be expected:
it originates from the dissipation of the Coulomb energy.
However, what is quite remarkable is that its rate γp turns out
to be completely independent of the interaction strength U

[34–37]—despite entering the heat current only as a conse-
quence of the interaction. Even more surprisingly, as indicated
by the blue dashed line in Fig. 1(e), both excitation amplitudes,
ac and ap, show an abrupt change at an energy typically
associated with electron-electron attraction [38], even though

we are dealing with a system governed by repulsive interaction.
As we will show, both surprising effects have a fundamental
origin and they can occur in a broad class of systems.

The difficulty in explaining the counterintuitive observa-
tions in the heat current ultimately stems from the nonunitarity
of the dynamics of open quantum systems. In closed systems,
the hermiticity of the Hamiltonian implies that its left and right
eigenvectors are simply adjoint to each other. Thanks to this
property, the amplitude with which an energy eigenstate enters
the full time evolution of the system is simply given by the
overlap between this eigenstate and the initially prepared state.
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FIG. 1. (a), (b) Quantum dot with charging energy U subject to
a gate-voltage switch. The instant level shift from ε0 to ε causes
two electrons to be sequentially expelled. (c) Inverted stationary state
for the dual model obtained from the final state (b) by inverting all
energies, as prescribed by Eq. (4). (d), (e) Amplitude of the charge
mode, ac, and of the parity mode, ap , in the time-dependent heat
current IQ(t) = ace

−γct + ape−γpt , plotted versus the initial (ε0) and
final (ε) level position for T = 0.1U � �. The black crosses mark
the switch in (a) and (b), and the circles a switch to ε = μ.
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For dissipative open systems, a similar and equally insightful
relation for the amplitudes of the decay modes is not known.
Yet, such a relation would be extremely valuable, not only for
the understanding of the transient heat current in Fig. 1, but
also for a broad class of other dynamical problems, ranging
from qubit dynamics to molecular electron transfer.

In this Rapid Communication, we identify a duality relation
between decay modes and amplitudes. This duality applies
to all open fermionic systems that can be modeled by a
Hamiltonian H tot = H + H R + H T with an arbitrary local
Hamiltonian H and (a) effectively noninteracting, wide-band
fermionic reservoirs H R, with a coupling H T that is (b) bilinear
in the fermion fields and (c) energy independent, but otherwise
arbitrarily strong. Under these very general assumptions, the
duality emerges mainly as a consequence of the fermion-parity
superselection postulate of quantum mechanics [39–42], by
which states with even and odd fermion number cannot be
superposed. Applied to the system shown in Fig. 1, it explains
in full detail the poorly understood heat decay.

Mode-amplitude duality for open systems. An open quan-
tum system is most naturally described in terms of its
reduced density matrix ρ(t), whose equation of motion is
∂tρ(t) = −i[H,ρ(t)] + ∫ t

0 dt ′W(t − t ′)ρ(t ′) (with � = kB =
e = 1). The kernel W takes into account the coupling to the
external reservoirs [43–46] that causes ρ(t) to decay. Introduc-
ing the Laplace transform of W , W (ω) = ∫ ∞

0 dt eiωtW(t), the
decay dynamics can be expressed in terms of the frequency(ω)-
dependent right eigenvectors of W (ω), the decay modes. The
decay amplitude for each mode is determined by the overlap
between the initial state ρ0 and the left eigenvector of W (ω)
for the same eigenvalue, the amplitude covector. Since W is
non-Hermitian, left and right eigenvectors are not simply each
others’ adjoint. However, under the very general assumptions
stated above, we can prove that the vectors are still linked by
the duality relation

W (ω; H,H T,{μ})† = −� + PW (ω̄; H̄ ,H̄ T,{μ̄})P. (1)

The physical consequences of Eq. (1) arise from the three
operations it involves: (i) a constant shift by �—the lumped
sum of constant couplings characterizing H T; (ii) the fun-
damental transformation P , which multiplies an operator
by the fermion-parity operator (−1)N := eiπN with local
fermion-number operator N ; and (iii) a parameter substitution
in the original model, which constructs a dual model with
inverted local energies H̄ := −H , a dual coupling H̄ T := iH T

to reservoirs with dual chemical potentials μ̄ := −μ at dual
frequency ω̄ := i� − ω∗, but with same Hamiltonian H R

and temperature T . The duality Eq. (1) therefore links in a
nontrivial way the left eigenvectors of W to those of W †, which
are in turn the right eigenvectors of W for the dual model. The
physics behind the derivation of Eq. (1) is summarized at
the end of this paper, and the proof is given in [47]. In the
following, we apply the duality to the transient dynamics of
the system depicted in Figs. 1(a) and 1(b), and show that it
provides the key insight to interpret the remarkable features of
the heat current.

Transient dynamics. The system of interest is a spin-
degenerate single-level quantum dot with Hamiltonian H =
εN + UN↑N↓, where ε is the tunable level position and
U the local interaction (see Fig. 1). Here, N = N↑ + N↓

is the occupation operator, with Nσ = d†
σ dσ and dσ the

field operators of the dot electrons (σ =↑ , ↓). The dot is
tunnel coupled by H T = ∑

k,σ τk,σ c
†
kσ dσ + H.c. to a single

noninteracting electrode H R = ∑
k,σ εk,σ c

†
kσ ckσ . Here, ckσ

is the field operator for reservoir electrons with spin σ ,
orbital index k, and energy εk,σ , while τk,σ is the tun-
nel amplitude. The grand-canonical reservoir state is ρR =
e−(H R−μNR)/T / TrR e−(H R−μNR)/T , where NR = ∑

k,σ c
†
kσ ckσ .

In the wide-band limit, the tunnel coupling is characterized
by �σ = 2π

∑
k δ(ω − εk)|τk,σ |2, assumed ω independent,

with total strength � := ∑
σ �σ and �↑ = �↓ = �/2 in our

spin-independent case.
We consider the regime of high temperature and weak

coupling to the electrode � 	 T , and the response to a sudden
shift of the level position ε0 → ε at t = 0, due to, e.g., a
switch of the gate voltage. Immediately after the level shift,
the dot state equals the initial state ρ0 before the shift. At later
times t > 0, the density operator ρ(t) of the dot obeys the
Born-Markov master equation

∂t |ρ(t)) ≈ W |ρ(t)), W := lim
ω→i0

W (ω), (2)

where W = ∑
ij Wij |i)(j | for i,j = 0,1,2. Here and below,

we write an operator x as |x) := x, and its covector acting
on an argument • as (x|• := Tr x†• [48]. The basis vectors
denote unit-trace physical-state operators1 with 0, 1, and
2 electrons: |0) := |0〉〈0|, |1) := 1

2

∑
σ |σ 〉〈σ |, |2) := |2〉〈2|.

The coefficients Wij , given in [47], represent the golden-rule
transition rates between the different electronic states (see,
e.g., [34]).

For t > 0, a standard way of solving Eq. (2) proceeds by
expanding ρ(t) in the right eigenvectors of W—the decay
modes—and obtaining their coefficients from the correspond-
ing left eigenvectors—the amplitude covectors:

|ρ(t)) = eWt |ρ0) (3)

= |z)(z′|ρ0) + e−γpt |p)(p′|ρ0) + e−γct |c)(c′|ρ0).

We denote the eigenvalues of W by −γx , where γx is a positive
decay rate for x = c,p. Since the system reaches a unique
stationary state limt→∞ |ρ(t)) = |z), one eigenvalue of W is 0.

To explicitly calculate the rates and vectors in Eq. (3),
one can now straightforwardly determine the left and right
eigenvectors of the 3 × 3 matrix representing W . However,
this does not give any systematic, physical insight into how
the excitation amplitudes and rates of the decay modes
are related. As we illustrate in the following, the duality,
Eq. (1), does provide such insight. In the Born-Markov
approximation, we expand Eq. (1) to linear order in �, and
take the limit ω,i� → i0 in the frequency arguments. This
yields2 W † = −� − PIWIP , where I denotes the parameter
substitution that constructs the dual model: μ → −μ, ε → −ε

and, importantly, U → −U . For a known mode |x) = x with
decay rate γx , application of this relation to PI|x) determines

1The empty state is |0〉, whereas |σ 〉 := d†
σ |0〉 and |2〉 := d

†
↑d

†
↓|0〉.

2Since W ∝ � ∝ (H T)2, the dual coupling H T → iH T effectively
inverts the sign of W .
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an amplitude covector (y ′|• with

y ′ = (−1)NIx and rate γy = � − Iγx. (4)

The key result, Eq. (4), cross-links left and right eigenvectors
with different rates. For our model, it allows one to physically
relate all the rates and vectors in Eq. (3). First, the zero
eigenvector of W is simply the trace-normalized stationary
equilibrium state |z) = e−(H−μN)/T /Z of the quantum dot
with Z(ε,U,μ) = Tr e−(H−μN)/T . Its amplitude in Eq. (3) is
(z′|ρ0) = 1, since probability conservation [Tr ρ(t) = 1] for
all times t requires that the left eigenvector associated with the
zero eigenvalue is (z′| = (1|. The mere existence of this left
zero eigenvector implies by duality (4) that there is a maximal
[47] rate γp = � which depends only on the bare tunnel
coupling, and whose mode is given by the fermion-parity
operator:

|p) = |(−1)N ) with γp = �. (5)

Analogously, the parity amplitude covector is found by
applying Eq. (4) to the stationary mode |z), giving

(p′| = ((−1)Nzi| with γp = �. (6)

It contains zi = Iz = z(−ε, − U, − μ), the stationary state
of the dual quantum-dot model with attractive interaction
obtained by the parameter substitution I, i.e., by inverting
the energies as illustrated in Fig. 1(c). Therefore, we call |zi)
the inverted stationary state. Finally, the charge-decay rate
is self-dual, γc = � − Iγc = 1

2�{f +(ε) + f −(ε + U )} [33]
with f ±(ε) = (e±(ε−μ)/T + 1)−1. Its amplitude and mode (see
[47]) are thus also connected by the fermion-parity and the
dual model: (c′| = 2[PI|c)]†.

The existence of a decay mode with a rate � that
surprisingly only depends on the bare coupling was pointed
out in previous works [33–37]. However, it was not understood
where the independence from all physical attributes except
the “interface” property � stems from. The duality (4) sheds
an entirely new light onto this problem. It shows that the
constant decay rate � is fixed by the fundamental requirement
of probability conservation, via the duality based on the
fermion-parity superselection principle. Moreover, the duality
relates the complete decay dynamics to the stationary state
|zi) of the attractive dual model, as seen most explicitly in
(p′| = ((−1)Nzi|. It is this relation to the dual model which
dictates the amplitudes in the heat decay.

Heat decay. We now apply the results derived above to
study the transient heat current out of the dot after a sudden
switch of the level position ε0 → ε. In the Born-Markov limit,
we can evaluate this heat current [47] as IQ(t) = −∂t (H −
μN |ρ(t)), with ρ(t) given in Eq. (3), and all its ingredients
obtained by the duality, Eq. (4). This way, one not only finds
the announced double-exponential form of the heat current,
IQ(t) = ace

−γct + ape−γpt . Importantly, the amplitudes

ac =[
ε − μ + 1

2 (2 − Ni)U
]
(N0 − Nz)γc, (7)

ap =U
[

1
2 (Ni − 1)(N0 − 1) + 1

4 (pi + p0)
]
γp, (8)

can now also be expressed entirely in terms of quantities with a
clear physical meaning: assuming that the dot is initially in the
stationary state |ρ0) = |z(ε0)) with initial level position ε0, the

occupation number of the dot N0 = (N |ρ0) and the parity p0 =
((−1)N |ρ0) in the initial state carry all dependence on ε0, as
expected. However, the dependence on the final level position
ε enters not only through the stationary occupation Nz =
(N |z), but also through the occupation Ni = (N |zi) and parity
pi = ((−1)N |zi) of the inverted stationary state, governed by
attractive interactions. To illustrate the consequence of this
dependence, we plot the amplitudes ac,ap in Figs. 1(d) and
1(e) for a level switch ε0 → ε. Most prominently, both ac

and ap exhibit a very sharp, large change when tuning the
final level through ε − μ = −U/2. As revealed by Eqs. (7)
and (8), the reason for this jump is that all terms in the
heat current which relate to the Coulomb energy dissipation,
i.e., the parity amplitude ap and the correction ∝ U in ac,
are governed by the dual stationary occupation number Ni.
An attractive interaction, which here enters through the dual
model, is well known [38] to force Ni to jump directly from 0
to 2 at ε − μ = −U/2, avoiding Ni = 1 and keeping an even
parity pi = +1. By contrast, a sweep of the initial level ε0 − μ

causes the initial charge to traverse N0 = 0,1,2, and the parity
to alternate, p0 = 1, − 1,1. This yields sharp changes of ap

and ac at the expected energies for a repulsive system, the two
Coulomb resonances ε0 − μ = 0 or −U . We stress that while
the end result for IQ(t) also follows from a straightforward
calculation of left and right eigenvectors of W , it does not
lead to an equally concise, physically motivated form of ap

and ac. Most importantly, the peculiar ε dependence of these
amplitudes is only revealed by the duality.

Another notable feature of Figs. 1(d) and 1(e) is that the
parity mode dominates IQ(t) whenever it is excited: in the red
areas in Fig. 1(e), its amplitude assumes the constant, maximal
value ap = �U , whereas |ac| � 1

2�U [47] in Fig. 1(d). This
offers an interesting possibility of experimentally accessing
the decay dynamics of the parity mode. Measuring γp is a
nontrivial task, since the parity mode |(−1)N ) does not enter
single-particle observables like the average charge current,
which indeed decays at a single rate: IN (t) = −∂t (N |ρ(t)) =
(N0 − Nz) γc e−γct . Methods to detect γp have been proposed
in Refs. [34,37], by coupling the dot to a quantum point contact
or a sensor quantum dot. Figures 1(d) and 1(e) show that the
heat current provides a very natural and more direct way to
gain this information. In fact, IQ(t) can be obtained using a
pump-probe scheme by extending well-established techniques
of mesoscopic charge detection [49,50]. By measuring the rise
of the stationary electrode temperature as a function of the
delay time, one can extract the full time-resolved heat current.
Simultaneous measurement of the charge current then allows
one to demonstrate—without fitting—the predicted constancy
of the rate γp = � as well as the attractive-interaction signature
of ap, as sketched in [47].

An important insight for this kind of experiment is provided
again by the duality and is illustrated in Figs. 1(a)–1(c). For
U � T , the amplitude ap ≈ (zi|ρ0)U� essentially equals the
overlap of the initial state with the inverted stationary state.
To infer which switch excites the parity mode, one can thus
proceed as follows: given the targeted final level position
ε, one calculates the stationary state of the attractive dual
system, |zi(ε)), and chooses the initial level position ε0 such
that the initially prepared state |ρ0) = |z(ε0)) has the same
occupation as |zi(ε)).
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In such measurements of the heat current, one can resolve
in time that two sequentially tunneling electrons carry equal
charge but different energy. (Only for U = 0, the heat current
is simply “tightly coupled” to the particle current [13],
IQ ∝ IN since ap = 0.) For example, for an initially doubly
occupied dot and a switch expelling both electrons—the
situation at the cross in Figs. 1(d) and 1(e)—the heat current
simplifies to IQ(t) ≈ (ε − μ)IN (t) + U�e−γpt . While the
excess orbital energy ε − μ is carried by each of the two
electrons tunneling out, the charging energy U is dissipated
already with the first electron. Notably, when switching ε to
one of the two Coulomb resonances—e.g., at the open circle
in Figs. 1(d) and 1(e)—the heat current is even entirely due to
the tunneling of the first particle, taking place on the shortest,
temperature-independent time scale �−1.

General duality. We conclude by discussing the main
physical principles behind the general duality relation, Eq. (1).
The derivation of Eq. (1) is technical but straightforward3 if
one uses the insights established in [35,36]. The main point
is that in the wide-band limit, the best reference solution
for a perturbative calculation of the dynamics is not the

3Equation (1) follows by combining Eqs. (E-7), (E-8), and (G-6) of
[35] with Eqs. (38), (65), and (101) of [36]. The derivation is written
out in [47] [cf. Eqs. (S-61) and (S-71)].

uncoupled solution (H T = 0), but rather the exact solution
of the coupled system in the limit of infinite temperature
T → ∞. With respect to this solution, the propagator �(t)
for the density matrix of the system, ρ(t) = �(t)ρ0, needs
to be expanded in terms of only part of the coupling, as a
consequence of the fermion-parity superselection principle
[35,36]. What is crucial for the result, Eq. (1), is that the
adjoints of the operators occurring in this simpler expansion
can always be expressed in parity operations [47]. This
allows one to derive order by order the time-propagator
duality �(t ; H,H T,{μ})† = e−�tP�(t ; H̄ ,H̄ T,{μ̄})P . This is
equivalent to Eq. (1) and holds under the general conditions
stated in the introduction, i.e., it applies also to nontrivial
low-temperature, strong-coupling, nonequilibrium regimes of
complex multilevel fermionic systems. In the commonly used
expansion about the uncoupled system (H T = 0), the duality
remains completely elusive. Extending the duality beyond
the wide-band limit is challenging but seems possible using
[35,36].
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R. Sanchez, and the financial support of DFG project SCHO
641/7-1 (R.B.S.), the Swedish VR (J.Sc., J. Sp.), and the Knut
and Alice Wallenberg Foundation (J. Sp.).

J.Sc. and R.B.S. contributed equally to this work.

[1] K. Schwab, E. Henriksen, J. Worlock, and M. Roukes, Nature
(London) 404, 974 (2000).

[2] M. O. Scully, M. S. Zubairy, G. S. Agarwal, and H. Walther,
Science 299, 862 (2003).

[3] A. Bermudez, M. Bruderer, and M. B. Plenio, Phys. Rev. Lett.
111, 040601 (2013).

[4] O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler,
K. Singer, and E. Lutz, Phys. Rev. Lett. 109, 203006 (2012).

[5] R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014).
[6] E. Taylor and D. Segal, Phys. Rev. Lett. 114, 220401 (2015).
[7] B. Kubala, J. König, and J. Pekola, Phys. Rev. Lett. 100, 066801

(2008).
[8] C. Lotze, M. Corso, K. J. Franke, F. von Oppen, and J. I. Pascual,

Science 338, 779 (2012).
[9] N. M. Gergs, C. B. M. Hörig, M. R. Wegewijs, and D. Schuricht,

Phys. Rev. B 91, 201107 (2015).
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