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First-principles study of pyroelectricity in GaN and ZnO
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First-principles calculations are made for the primary pyroelectric coefficients of wurtzite GaN and ZnO.
The pyroelectricity is attributed to the quasiharmonic thermal shifts of internal strains (internal displacements
of cations and anions carrying their Born effective charges). The primary (zero-external-strain) pyroelectricity
dominates at low temperatures, while the secondary pyroelectricity (the correction from external thermal strains)
becomes comparable with the primary pyroelectricity at high temperatures. Contributions from the acoustic and
the optical phonon modes to the primary pyroelectric coefficient are only moderately well described by the
corresponding Debye and Einstein functions, respectively.
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I. INTRODUCTION

Pyroelectricity �p(T ), defined as temperature variation
of the spontaneous polarization �Ps , is a fundamental and
poorly understood property [1,2]. Among various applications,
pyroelectric materials are widely used in thermal infrared (IR)
detectors [3] for their sensitivity over a wide range of tem-
peratures. Among the nonferroelectric pyroelectrics, wurtzite
crystals exhibit spontaneous polarization and pyroelectricity
comparable to ferroelectric pyroelectrics, and are candidates
for high-temperature IR detection, because they do not have a
Curie temperature at which the spontaneous polarization can
be lost.

Crystals have specific free parameters that can vary without
altering symmetry. These are external strains and internal
strains. The external strains are components of the strain
tensor εαβ that have full crystalline symmetry (�V/V if
cubic, or �a/a and �c/c if hexagonal like wurtzite.) The
external strains will be denoted εi . The internal strains describe
degrees of freedom of atoms in the unit cell. An example is
the c-axis cation-anion spacing denoted uc in wurtzite, where
u is typically close to the “ideal” value 3

8 of perfect stacked
tetrahedra, a value not required by symmetry. The internal
strains will be denoted ui . Wurtzite is the highest symmetry
structure that can have spontaneous polarization, and has the
minimal number of two external strains and one internal strain.
The polarization is strongly affected by the internal strain [4]
u, and the pyroelectricity is closely related to its temperature
shift du/dT .

It is conventional to separate the total (at constant stress σ )
pyroelectric coefficient pσ (T ) into two parts [5,6]: the primary
(at constant strain ε) pε(T ) and the secondary p2(T ):

pσ (T ) =
(

dPs

dT

)
σ

=
(

∂Ps

∂T

)
ε

+
∑

i

(
∂Ps

∂εi

)
T

(
∂εi

∂T

)
σ

= pε(T ) + p2(T ). (1)

Here, we simplify the notation by assuming that polar-
ization �P = P ẑ occurs along a unique axis. The label
z for this axis is dropped when unnecessary. The pri-
mary part pε(T ) is the “clamped-lattice” pyroelectricity,
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where external strains are held fixed, but internal strains
relax thermally. The secondary part p2(T ) accounts for the
changes that occur when external strains are allowed to
develop.

II. ELEMENTARY THEORY

Harmonic vibrational normal modes are labeled by (�qλ),
wave vector, and branch index. The �q = 0 optic modes of
A1 symmetry (invariant under all point-group operations),
labeled (�0j ), are dynamic versions of the internal strains
uj . Lattice anharmonicity allows the amplitudes Q�0j [see
Appendix, Eq. (A3)] to develop static thermal internal strains
〈Q�0j (T )〉. This is one source of pyroelectric thermal shifts of
Ps . The other normal modes �qλ have no allowed first-order
static effect (〈Q�qλ〉 = 0), but their second-order static mean-
square amplitude 〈Q�qλQ−�qλ〉 increases with T in harmonic
approximation. These cause an additional electron-phonon
source of thermal renormalization of Ps even in the absence
of internal and external strains. Both quasiharmonic internal
strain and electron-phonon contributions to pyroelectricity are
mentioned by Born [5] and Szigeti [6]. After Szigeti’s work,
the electron-phonon part has been generally discounted as
less important, and will be ignored in our work. Then, to
first approximation, the temperature-dependent spontaneous
polarization Ps(T ) varies linearly with internal strain. For the
primary term, this is

Ps,ε(T ) = Ps,ε(0) +
∑

j

∂Ps,ε

∂Q�0j

〈Q�0j 〉. (2)

The sum goes over all the “active” �qj = �0j phonons (A1

modes). In wurtzite, the one relevant A1 mode has opposite
displacements �uκz of anions and cations (labeled by κ)
along the polar c or ẑ axis. The connection between static
displacement 〈�uκz〉 of atom κ in each cell and normal mode
amplitude 〈Q�0j 〉 is

〈uκz〉 =
∑

j

〈Q�0j 〉ε�0j (κz)/
√

Mκ, (3)

where ε�0j (κα) is the normalized α-Cartesian component of

the (�0j ) eigenvector of the usual (mass-weighted) harmonic
dynamical matrix. The dependence of Ps on the internal
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displacement defines the “Born effective charge” Z∗,

eZαβ
κ



= ∂P α

s,ε

∂uκβ

, (4)

where 
 is the unit-cell volume. The magnitude of Z∗ governs
the zone-center LO/TO splitting [7]. The primary pyroelectric
coefficient is given by

pβ
ε (T ) = e




∑
j,κα

Zβα
κ

duκα(�0j )

dT
. (5)

This ignores the electron-phonon term. In wurtzite, it sim-
plifies to pε(T ) = (2e/
)Z∗d(uc)/dT , where Z∗ is the
Born effective charge of the cation (the anion’s is opposite
by definition), and the factor of 2 recognizes the two
molecules per unit cell. Further details are given in the
Appendix.

III. NOTIONS AND EVIDENCE

Born [5] and Szigeti [6] present different-looking formulas
of the temperature shift in Eq. (5). We find that they are
equivalent. An interesting experiment on wurtzite ZnO by
Albertsson et al. [8] measures the internal parameter shift
du/dT directly. They find that Eq. (5) matches pσ (T ) provided
Z∗ = 0.2 is used. We believe that they have misdefined Z∗ and
that the correct definition makes the empirical Z∗ larger by 4, or
Z∗ = 0.8. Our results presented following are the first micro-
scopic calculations of thermal shift of internal parameters. Our
results for du/dT are smaller than the Albertsson experiment
by ≈2, and our computed Z∗ = 2.2 is larger (agreeing with all
modern calculations). We are not able to identify the source
of the discrepancy, but our results also indicate that Eq. (5) is
satisfactory.

Recent developments include the measurement of signif-
icant pyroelectricity of c-plane GaN at room temperature
[9,10]. Peng and Cohen [11] studied the origin of pyroelec-
tricity in LiNbO3 using molecular dynamics with a first-
principles-based shell-model potential. They found that the
primary pyroelectric effect is the major part of the pyroelec-
tricity, and comes from the anharmonic atomic displacement of
participating ions carrying Born effective charges. This agrees
with the estimate of Zook and Liu [12] that the effects of clamp-
ing are negligible for the ferroelectric pyroelectrics. However,
they [12] estimate a more significant secondary effect for the
nonferroelectric wurtzite pyroelectrics. Spontaneous polariza-
tion at T = 0 can now be predicted at the first-principles level
[13]. However, predictions for pyroelectricity have not yet
reached “first-principles level.” Here, we give a first-principles
quasiharmonic theory for pyroelectricity in wurtzite GaN and
ZnO.

IV. COMPUTATIONAL METHOD

Following Szigeti [6], as derived in the Appendix, the primary
pyroelectric coefficient reads as

pβ
ε (T ) =

∑
κα

∑
�0j

∑
�qλ

eZβα
κ




2

�ω�0j

√
�

2Mκω�0j

× εκα(�0j )V3

(�0 �q −�q
j λ λ

)
∂(2n�qλ + 1)

∂T
. (6)

Here, β labels the direction of the spontaneous polarization,
and V3 is the third-order anharmonic coefficient for the active
mode �0j (see Appendix). The sum on �qλ runs over all phonon
branches in the Brillouin zone. The Appendix shows that the
anharmonic V3 coefficient is related to “internal” Grüneisen
parameters defined as γ�qλ(�0j ) = −d ln ω�qλ/d ln Q�0j . These
measure the shift of phonon frequency ω�qλ per unit change in
the amplitude Q�0j of the active modes. They have been defined
previously by Gibbons [14]. This part of the theory ignores the
influence of external strains (the “secondary” effect), which
will be added later using measured external strains εi(T ) and
computed piezoelectric coefficients [11,12].

In wurtzite structure, the active A1 mode is split. When �q
approaches 0 along the c or ẑ axis, it is a high-frequency lon-
gitudinal branch denoted A1(LO). When �q approaches 0 along
lines in the xy plane, it is an intermediate frequency transverse
branch labeled A1(TO). The difference ω2(A1-TO) − ω2(A1-
LO) comes from the long-range E field of the LO polar
vibration [15]. The frequency ω�0j in the denominator of Eq. (6)
contains the Born-Oppenheimer restoring force restraining the
thermal internal stress. The rule is to use the TO frequency,
which corresponds to a pyroelectric distortion in zero electric
field.

Electronic-structure calculations are performed using the
QUANTUM ESPRESSO package [16] within the local den-
sity approximation (LDA) [17]. We use norm-conserving
Troullier-Martins pseudopotentials [18] in our calculations.
The electronic wave functions are expanded in a plane-wave
basis with a kinetic energy cutoff of 180 Ry. Ga-3d and
Zn-3d states are treated explicitly as valence states. We
use a 6 × 6 × 4 k-point mesh for Brillouin-zone sampling.
Phonons are calculated using density-functional perturbation
theory (DFPT) [7]. The third-order anharmonic coefficients
V3(0j,�qλ, − �qλ′) are computed on an 8 × 8 × 6 q-point mesh
through the finite difference of the dynamical matrix by
displacing atoms along the displacement pattern uκα(�0j ). The
quasiharmonic internal shift 〈Q�0j 〉, derived from the “internal”

Grüneisen parameter γ�qλ(�0j ), involves only diagonal compo-
nents (�qλ = −�qλ′). This is derived in the Appendix, Eq. (A13).

V. RESULTS AND DISCUSSION

Computed properties of GaN and ZnO are summarized in Table
I. In Figs. 1 and 2, we show the calculated primary pyroelectric
coefficients pε(T ) and the experimental total pyroelectric co-
efficient pσ (T ) for GaN [9,10] and ZnO [19], respectively. The
secondary pyroelectric coefficient p2(T ) = 2e31α1 + e33α3

is calculated using the measured linear thermal expansion
coefficients α1,α3 [20] and the calculated piezoelectric stress
constants e31,e33 [13]. However, it is reported that for GaN
and ZnO the computed piezoelectric constants are uncertain
by as much as 30% [21,22]. Therefore, the calculated p2(T )
should be considered rough estimates. From Eq. (6), it is
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TABLE I. The calculated lattice constants, Born effective charge,
and long-wavelength A1(TO) phonon frequency for GaN and ZnO.
Experimental values are shown in parentheses except for Born
effective charge where theoretical values are shown instead.

a (Å) c (Å) Z33 (e) ωTO (cm−1)

GaN 3.182 (3.187a) 5.189 (5.186a) 2.77 (2.72b) 534 (533.8c)
ZnO 3.219 (3.25a) 5.195 (5.207a) 2.28 (2.11b) 390 (378d)

aReference [20], x-ray powder diffractometry at 300 K.
bReference [13], first-principles calculations in the local density
approximation.
cReference [23], Raman spectra at 6 K.
dReference [24], inelastic neutron scattering spectra at 10 K.

clear that pε(T ) follows the form of specific heat. Therefore,
pε(T ) vanishes as T 3 at low temperatures and saturates at
high temperatures. Above room temperature, the secondary
pyroelectric effect is comparable with the primary effect. This
differs from ferroelectric pyroelectrics, where the primary
pyroelectricity dominates [11]. For GaN, disagreement in the
experimentally measured pyroelectric coefficients is reported
[9,10], possibly due to the piezoelectric contribution from the
strain introduced by the substrates. For ZnO, our calculated
total pyroelectricity is lower than the experimental data,
indicating the possible contribution from the electron-phonon
effect, which is left out in our first-principles calculations.

Figure 3 shows the predicted and the experimentally
measured values of the internal parameter u of ZnO. The
theory for pyroelectricity also generates a formula for the
internal strain u(T ) which is closely parallel to the Grüneisen
quasiharmonic theory of volume expansion [14]:

�u

u
= 1

2Mredω
2
0c

2u2

∑
�qj

(
n�qj + 1

2

)
�ω�qj γ�qj (0), (7)

where the label 0 on ω0 and on the internal Grüneisen
parameter γ�qj (0) indicates the A1(TO) mode. This formula
gives only the part of u(T ) that occurs when external strains

FIG. 1. The pyroelectric coefficient of GaN. Experimental values
are from Refs. [9] (triangle) and [10] (square).

FIG. 2. The pyroelectric coefficient of ZnO. Experimental values
are from Ref. [19].

are absent. The full result is

u(T ) = u(0) + [�u(T ) − �u(0)] +
(

∂u

∂a

)
BO

[a(T ) − a(0)]

+
(

∂u

∂c

)
BO

[c(T ) − c(0)]. (8)

The value u(0) from experiment contains all zero-point shifts.
The factor [�u(T ) − �u(0)] comes from the theory of Eq. (7),
and the factors [a(T ) − a(0)] and [c(T ) − c(0)] come from
experiment [20]. For ZnO, the theoretical values of ∂u/∂a and

∂u/∂c are 0.083 and −0.051 Å
−1

, respectively, coming from
our DFT Born-Oppenheimer calculations. In Fig. 3, we show
for ZnO the thermal shift of the internal parameter �u(T ). Our
calculated thermal displacement increases monotonically with
increasing temperature, while experimentally u(T ) remains
unchanged between 20 and 300 K. Except for this discrepancy
at low T , the overall agreement is satisfactory.

FIG. 3. Thermal shift of the ZnO internal parameter u. The
measured zero-temperature value is 0.382 [25,26], close to the “ideal”
value of 3

8 . Experimental values are from Ref. [8].
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FIG. 4. The primary pyroelectric coefficient of ZnO: acoustic and
optic branches.

Yan et al. [27] conjecture a temperature dependence of
the primary pyroelectric coefficient pε(T ) of GaN as a sum
of Debye and Einstein functions. In Fig. 4, we show for ZnO
our calculated contributions from acoustic and optic branches,
respectively. At low temperatures, only the acoustic phonon
modes are sufficiently excited, while at high temperatures,
contributions from the optic phonon modes become important.
Our calculations indicate that for wurtzite ZnO, contributions
from acoustic and optic branches are more complicated than
Debye and Einstein functions, especially at low temperatures.
In Fig. 5, we show for ZnO the vibrational density of
states D(ω) together with the frequency-distributed internal
Grüneisen parameter γu(ω) defined as

γu(ω)D(ω) =
∑
�qλ

γ�qλ(�0j )δ(ω − ω�qλ). (9)

FIG. 5. Vibrational density of states D(ω) and internal Grüneisen
parameter γu(ω) of ZnO.

As an example of the use of this definition, the pyroelectric
coefficient of wurtzite materials, Eq. (6), is

p(T ) = eZ∗

2Mredω
2
0cu

∫∫ ∞

0
dω D(ω)γu(ω)C(ω), (10)

where C(ω) is the harmonic specific heat of a mode of
frequency ω, �ω(dn/dT )/
. The total contribution to p(T ) is
a complicated mix of contributions of both signs from acoustic
and optic branches.

VI. CONCLUSIONS

In summary, we have calculated the primary pyroelectric
coefficients for wurtzite GaN and ZnO from first principles.
For wurtzite crystals, the pyroelectricity was attributed to
the anharmonic atomic displacements of the Born effective
charges on the cations and anions. Good agreement was found
between our first-principles calculations and the experimental
data. We have shown that the primary pyroelectricity con-
tributes the major part of the total pyroelectricity at low
temperatures, while the secondary pyroelectricity becomes
comparable with the primary pyroelectricity at high temper-
atures. The primary pyroelectric coefficient can be separated
into contributions from acoustic and optic phonon modes, but
these contributions can be only moderately well described
by Debye and Einstein functions, respectively. This study
offers evidence that theory and computation can predict
pyroelectricity with some reliability over a wide range of
temperatures.
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APPENDIX: PRIMARY PYROELECTRIC EFFECT:
CONTRIBUTION FROM THE ANHARMONIC

ATOMIC DISPLACEMENT

The temperature-dependent spontaneous polarization
Ps(T ) can be expanded in terms of atomic displacement as

Ps(T ) = Ps(0) +
∑
�qλ

∂Ps

∂Q�qλ

〈Q�qλ〉

+
∑
�qλ�q ′λ′

∂2Ps

∂Q�qλ∂Q�q ′λ′
〈Q�qλQ�q ′λ′ 〉, (A1)

where Ps(0) is the spontaneous polarization at T = 0 K. Under
the rigid-ion approximation, the second-order expansion term
is neglected since the electron cloud follows the ion rigidly
without deformation. The atomic displacement is written in
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terms of the phonon creation and annihilation operators

ul
κα =

∑
�qλ

√
�

2Mκω�qλ

[â�qλ + â+
−�qλ

]εκα(�qλ)ei �q· �Rl . (A2)

The connection between ul
κα and normal mode amplitude reads

as

ul
κα =

∑
�qλ

√
1

Mκ

Q�qλε�qλ(κα)ei �q·l . (A3)

Only zone-center phonon terms are left after taking the
thermodynamic average. The primary pyroelectric coefficient
then reads as

pβ(T ) =
∑
j,κα

eZβα
κ




∂〈uκα(�0j )〉
∂T

. (A4)

In order to evaluate the mean displacement, the potential
energy is expanded in terms of atomic displacement to third

order

V (3) = 1

3!

∑
�q �q ′ �q ′′jj ′j ′′

V3

(�q �q ′ �q ′′
j j ′ j ′′

)
(â�qj

+ â+
−�qj

)(â�q ′j ′ + â+
−�q ′j ′ )(â�q ′′j ′′ + â+

−�q ′′j ′′ ). (A5)

Treating the cubic anharmonicity as a perturbation, the
perturbed phonon wave function reads as

φ
(1)
ñ = φ

(0)
ñ +

∑
ñ′

〈ñ′(0)|V (3)|ñ(0)〉
E

(0)
ñ − E

(0)
ñ′

φ
(0)
ñ′ . (A6)

The atomic displacement is then

〈Q�0j 〉 =
2
∑
ñ

e−β(n+ 1
2 )�ω

∑
ñ′

〈ñ(0)|Q�0j |ñ′(0)〉〈ñ′(0)|V (3)|ñ(0)〉
E

(0)
ñ −E

(0)
ñ′∑

ñ

e−β(n+ 1
2 )�ω

. (A7)

The first Dirac bracket is nonzero only for ñ′ = ñ ± 1. There-
fore, the second Dirac bracket reduces to terms containing
â�0j â�qλâ

+
−�qλ

, â�0j â
+
�qλ

â−�qλ, â+
�0j

â�qλâ
+
−�qλ

, and â+
�0j

â+
�qλ

â−�qλ:

〈Q�0j 〉 = −
∑
�qλ

2n�qλ + 1

�ω�0j

Q�0jV3

( �0 �q −�q
j λ λ

)
. (A8)

More specifically,

〈uκα(�0j )〉 = −
∑
�qλ

2n�qλ + 1

�ω�0j

√
�

2Mκω�0j

εκα(�0j )V3

(�0 �q −�q
j λ λ

)
, (A9)

where the anharmonic coefficient V is given by the third derivative of the total energy with respect to the atomic displacement as

V3

(�0 �q −�q
j λ λ′

)
=

∑
κ0κ1κ2,α0α1α2

√
�3

8Mκ0Mκ1Mκ2ω�0jω�qλω−�qλ′
εκ0α0 (�0j )εκ1α1 (�qλ)εκ2α2 (−�qλ′)

×
( ∑

l1l2

∂3E

∂u
l0
κ0α0∂u

l1
κ1α1∂u

l2
κ2α2

ei �q·(τl1 −τl2 )
)

. (A10)

V3(�0j,�qλ, − �qλ′) can also be obtained from the derivative of the dynamical matrix Dα1α2 (κ1κ2,�q) with respect to the displacement
pattern Q�0j as

V3

(�0 �q −�q
j λ λ′

)
=

√
�3

8ω�0jω�qλω−�qλ′

∑
κ1κ2,α1α2

εκ1α1 (�qλ)εκ2α2 (−�qλ′)
(

∂

∂Q�0j

∑
l1l2

1√
Mκ1Mκ2

∂2E

∂u
l1
κ1α1∂u

l2
κ2α2

ei �q·(τl1 −τl2 )
)

. (A11)

Through the diagonalization of the dynamical matrix Dα1α2 (κ1κ2,�q) we have

∑
κ1κ2,α1α2

εκ1α1 (�qλ)

(∑
l1l2

1√
Mκ1Mκ2

∂2E

∂u
l1
κ1α1∂u

l2
κ2α2

ei �q·(τl1 −τl2 )

)
εκ2α2 (−�qλ′) = ω2

�qλδλλ′ . (A12)

The relation between V3(0j,�qλ, − �qλ) and the “internal”
Grüneisen parameter reads as

V3

(�0 �q −�q
j λ λ

)
=

√
�3

8ω�0jω�qλω−�qλ

∂ω2
�qλ

∂Q�0j

= −
(

�

2ω�0j

)1/2
�ω�qλ

2Q�0j

γ�qλ(�0j ), (A13)

where the internal Grüneisen parameter is defined as

γ�qλ(�0j ) = −Q�0j

ω�qλ

∂ω�qλ

∂Q�0j

. (A14)

Combining (A8), (A13), and (A14), the temperature-
dependent atomic displacement reduces to

〈Q�0j 〉 = −
∑
�qλ

�

2

2n�qλ + 1

ω2
�0j

∂ω�qλ

∂Q�0j

. (A15)
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Here is an alternative derivation of Eq. (A15). Under the
“clamped-lattice” condition, the Born-Oppenheimer potential
energy is harmonic with respect to uκα(�0j ):

UBO = U0 + 1
2ω2

�0j
Q2

�0j
, (A16)

where Q�0j is the normal coordinate
√∑

κα

Mκu2
κα(�0j ), and uκα

is the atomic displacement of κth atom in the α direction. The

Helmholtz free energy reads as

F = UBO + kBT
∑
�qλ

ln

(
2 sinh

�ω�qλ

2kBT

)
. (A17)

The temperature-dependent atomic displacement 〈uκα(�0j )〉
minimizes the Helmholtz free energy F . We then have

ω2
�0j

〈Q�0j 〉 = −
∑
�qλ

�

2
(2n�qλ + 1)

∂ω�qλ

∂Q�0j

. (A18)
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