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We study the spectral function of the two-dimensional Hubbard model using cluster perturbation theory, and
a density matrix renormalization group as a cluster solver. We reconstruct the two-dimensional dispersion at and
away from half-filling using 2 × L ladders, with L up to 80 sites, yielding results with unprecedented resolution
in excellent agreement with quantum Monte Carlo. The main features of the spectrum can be described with a
mean-field dispersion, with kinks and pseudogap traced back to scattering between spin and charge degrees of
freedom.
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I. INTRODUCTION

Mott insulators defy conventional paradigms, since the rigid
band picture behind the physics of semiconductors does not
apply: in strongly interacting systems, the bands change with
doping, giving rise to a complex phenomenology that includes
hole pockets, Fermi arcs, and kinks [1–4]. The spectral
properties near the Mott transition in the Hubbard model
have been studied extensively by a number of computational
techniques [5–37] and results indicate the emergence of
excitations in the Mott gap at finite doping. The “leaking”
of spectral weight into the gap has been explained a while ago
by a seminal work by Eskes et al. [38], reviewed in Ref. [39].

Previous numerical studies using cluster perturbation the-
ory (CPT) [35] indicate the survival of one-dimensional as-
pects in the spectrum of the fully two-dimensional system, and
suggest that some of the features observed in the experiments,
such as kink or waterfalls [1], could be attributed to spin-charge
separation and traced back adiabatically to spinon and holon
dispersion in one-dimensional chains.

In one-dimensional (1D) systems, the Fermi-liquid picture
breaks down: the natural excitations are described by Luttinger
liquid theory [40–42] as collective bosonic modes carrying
spin and charge, with each degree of freedom being charac-
terized by a different energy scale. Even though spin-charge
separation is intrinsically a manifestation of 1D physics, the
possibility of its presence in two dimensions or quasi-two-
dimensional (quasi-2D) systems has been extensively debated,
particularly within the context of high-temperature super-
conductivity [43]. Some numerical studies in this direction,
looking at two, three, and four-leg t-J ladders, indicate the
presence of spinon and holon excitations [44–48]. Whether
spin-charge separation, or electron-phonon interactions are
responsible for the unexpected spectral features such as kinks,
and “waterfalls” in cuprates, is still open to interpretation and
a topic of great debate.

Since CPT relies on the solution of small clusters, it
cannot describe long-range order. These shortcomings can
be overcome by using an extension of the method called the
variational cluster approximation (VCA) also referred to as
VCPT. The VCA extends the previous ideas by incorporating
additional ingredients, such as external fields, or even ad-
ditional cluster sites, and introducing a variational principle
to self-consistently determine the optimal symmetry-breaking

fields [22,25,49–52]. The variational principle is derived from
a general framework, the self-energy functional approach, that
has the power to unify several cluster methods, including
cluster (or cellular) dynamical mean field theory [53] and the
dynamical cluster approximation (DCA) [54,55], under the
same mathematical structure [56].

In this work, we use the time-dependent density matrix
renormalization group method (tDMRG) [57–60] as a solver
for CPT, and study the spectral function of the 2D Hubbard
model with unprecedented resolution at and away from half-
filling. The tDMRG allows us to couple clusters that are
already infinite (very large) in one spatial dimension, rep-
resenting a tremendous advance over traditional calculations
with small clusters, with typically 12–16 sites.

In Sec. II we introduce the methods, in Sec. III we describe
and analyze the results, and we conclude with a discussion.

II. METHODS

CPT is a technique that applies to problems with local
interactions, such as the Hubbard model [18,20,61]. It provides
an approximation to the single-particle Green’s function of the
problem in the thermodynamic limit by coupling clusters of
small size in a variant of strong coupling perturbation theory.
The main idea consists in dividing the lattice into small clusters
which can be solved exactly, and coupling them together to
reconstruct the original system. The single-particle Green’s
function for the thermodynamic limit is constructed by solving
a simple Dyson-like equation:

G−1 = G′−1 − T, (1)

where the bold symbols represent matrices: G is the Green’s
function we seek, G′ is the Green’s function in the cluster,
and T is a hopping matrix connecting the clusters. In the
following we assume that the symbol G refers to retarded
Green’s functions.

In this work, our cluster consists of a 2 × L ladder, and the
model is given by the usual Hubbard Hamiltonian:

H = −t
∑
i,λ,σ

(c†i,λσ ci+1,λσ + H.c.)

− t
∑
i,σ

(c†i2σ ci1σ + H.c.) + U
∑
i,λ

ni,λ↑ni,λ↓, (2)
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where the operator c
†
iλσ creates an electron on rung i and

leg λ = 1,2 with spin σ,niλσ is the electron number operator,
and t and U parametrize the hopping and Coulomb repulsion,
respectively. In the following we assume periodic boundary
conditions in the leg direction, and we will address the finite
size effects in the technical discussion below.

Since the cluster possesses translational invariance along
the leg direction x, we can readily Fourier transform our
Green’s functions as:

G′
λλ′(kx) =

∑
n

eikxnaG′
λλ′(x),

where a is the lattice spacing, x = na, and we have omitted
the spin index, since our problem is also invariant under a
spin inversion. This expression defines a Green’s function in
a hybrid representation, since the leg index λ still represents
a real space coordinate. However, Eq. (1) is diagonal in kx ,
meaning that G is a 2 × 2 matrix for each value of kx , which is
exactly equivalent to solving the CPT equations for a two-site
cluster:

G−1
λ,λ′ (kx,Q,ω) = G′−1

λ,λ′ (kx,ω) − Tλ,λ′(Q),

with

Tλ,λ′(Q) = −t[eiQδλ,2δλ′,1 + e−iQδλ,1δλ′,2]

and Q = 2ky introducing the dependence on ky . By restoring
the quasitranslational invariance, we obtain the CPT Green’s
function as

GCPT (kx,ky,ω) = 1

2

2∑
λ,λ′=1

e−iky (λ−λ′)Gλ,λ′ (kx,2ky,ω). (3)

In addition, by symmetry we obtain G11 = G22 and G21 =
G12, which reduces the number of required simulations. These
equations are clearly very simple, and the main challenge
consists in calculating the Green’s functions with tDMRG,
which can be readily done using well established methods,
extensively described in the literature [59], and reviewed
in Ref. [60]. The tDMRG method yields the single-particle
correlation function in real space and time, and the Green’s
functions are obtained by Fourier transforming the results
to momentum and frequency. The most subtle aspect of the
calculation concerns the use of open boundary conditions
along the x direction. As discussed in Refs. [57,59,62],
the finite size effects introduced by the boundaries can be
controlled in two ways: by convolving the Fourier transform
to momentum space with a smooth window that vanishes
at the boundaries, and by limiting the simulation time to
prevent reflections at the two ends of the ladder. In addition,
to avoid artifacts such as “ringing” in the Fourier transform to
frequency, we also convolve the results with a Hann window
along the time direction. This has the effect of introducing an
artificial broadening in the spectral function that is inversely
proportional to the width of the time window. Long simulation
time would reduce the broadening in frequency, with the price
of introducing ringing. These features are amplified when
the matrix is inverted and plugged into the CPT equation,
introducing instabilities that result, for instance, in negative
values of the spectral function. Therefore, our simulation time
(and Hann window width) is relatively short, tmax ∼ 15 in units

FIG. 1. Spectral function of a Hubbard ladder with L = 80 and
U/t = 8, at half-filling, obtained with tDMRG. Panels (a) and (b)
show the symmetric and antisymmetric sectors, respectively, which
are related by particle-hole symmetry.

of the inverse hopping, and makes the use of linear prediction
methods to extrapolate in time [63] completely unnecessary.

III. RESULTS

We have simulated a 2 × 80 Hubbard ladder with 600
DMRG states, and using a time window of width �t = 15,
a time step δt = 0.02, and a third order Suzuki-Trotter
decomposition of the evolution operator. (In the following,
we take t = 1 as our unit of energy.) In Figs. 1(a) and 1(b) we
show results for the bare spectral function of the ladder (before
CPT), at half-filling and for U/t = 8, as a function of kx , and
for the symmetric and antisymmetric sectors, represented by
ky = 0,π , respectively:

G′(kx,ky = 0,π,ω) = G′
11(kx,ω) ± G′

12(kx,ω),

where the ± signs correspond to the two values of ky .
Interestingly, the truncation errors are very small, of the order
of 10−7, which can be explained by noticing that the cluster
is gapped in both the charge and spin sectors. Curiously, and
to the best of our knowledge, there are no results with DMRG
for this ladder system in the literature, probably stemming
from previous observations that dynamical DMRG [64–66]
is computationally very expensive in this geometry, and only
recently has it been applied to t-J ladders [67].

Even though ladders are quasi-one-dimensional sys-
tems with spin-charge separation and Luther-Emery behav-
ior [68,69], the sharp features observed in chains, such as
shadow and spinon bands, are washed out and less discernible,
with most of the spectral weight concentrated in the holon
bands. The spinon band in the lower Hubbard band (LHB)
for ky = 0 shows a tendency to merge with the holon band
and forms a single quasiparticle dispersion, as one would
expect from a Fermi liquid. The dispersion presents a waterfall
that resembles a discontinuity in the dispersion at kx = π/2,
and could be attributed to a mixing between the charge and
spinon modes. The upper Hubbard band (UHB) displays a
sharp spinonlike dispersion centered at kx = π with very small
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FIG. 2. CPT spectral function of the U = 8 2D Hubbard model
at half-filling obtained using a 2 × 80 ladder as a cluster, and tDMRG
as a solver. The dashed line shows the Hartree-Fock dispersion.

bandwidth. These features are reversed for ky = π : Due to
particle-hole symmetry, the bands are reflected about the Fermi
energy and shifted in kx by π .

In Fig. 2(a), we present the tDMRG+CPT spectral function
of the 2D Hubbard model at half-filling with U/t = 8 along the
� → X → M path in the Brillouin zone. The CPT equations
along the X → M line will produce a mixture of G′

11(π,ω) and
G′

12(π,ω). The small cluster size in the transverse direction
yields very limited resolution along this line. However, in
a rotational invariant lattice, they should be identical to the
results for the ky = π boundary of the Brillouin zone, which
can be obtained with very high resolution. For this reason,
we have plotted the CPT spectrum for the ky = π along the
X → M segment, with the price of introducing an artificial
discontinuity at the X point.

The spectrum shows an uncanny resemblance to the
ladder’s, albeit with a weak renormalization. As explained in
Ref. [35], the CPT introduces a shift of spectral weight at high
energies while keeping the spectral weight near the Fermi level
almost unaffected, which makes the holonlike bands sharper
and the spinonlike bands weaker, yielding a dispersion that
resembles that of quasiparticles. The spinon features remain
as an incoherent background at low energies, while preserving
the waterfall at (π/2,π/2).

Following Ref. [16], the quasiparticle dispersion can be
fitted by a mean-field (Hartree-Fock) dispersion assuming a
Néel antiferromagnetic (AFM) order [16,70], given by the two
bands

E±(k) = ±
√

[−2t̃(cos kx + cos ky)]2 + �̃2,

as shown by the dashed line in the figure, where we take
the gap �̃ and t̃ as free fitting parameters. This indicates
that, despite its low dimensionality, the ladder cluster already
introduces features in the spectrum that contain information
about the onset of AFM order. Moreover, the spectral function
displays a remarkable agreement with the quantum Monte
Carlo (QMC) results from Refs. [10,11,15,16] but with much
better resolution. In particular, we observe similar features

FIG. 3. (a) CPT spectral function of the doped U = 8 2D
Hubbard model obtained using a 2 × 40 ladder as a cluster, with
n = 72 electrons. (b) Same results focusing on the kink and the
pseudogap region along the � → X line. (c) Pseudogap at the X

point.

such as the flat dispersion in the UHB and LHB centered at the
(π,0) point, and the weak spinonlike incoherent background
at low energies. The high-energy “bands” observed in QMC
can be associated to the shadow bands in the ladder dispersion,
echoes of one-dimensional physics. Remarkably, these same
features are also obtained using square clusters with CPT [35],
and VCPT [22,25], after introducing an external staggered
field to induce antiferromagnetic correlations in 2D clusters.
Putting together the results from this and previous works, the
evidence indicates that (i) these features are not artifacts of
the quasi-one-dimensional ladder, and (ii) they survive in the
presence of long-range order.

We now shift our attention toward the doped case. In
Fig. 3(a) we show a similar calculation for a 2 × 40 ladder
with 72 electrons, corresponding to 10% doping, which also
keeps us away from any charge-density wave instabilities. We
used a smaller cluster and more states (m = 1000), since now
the charge sector is gapless and introduces more entanglement
in the problem, making the simulations computationally more
expensive.

The spectrum looks very similar to the CPT results in small
clusters [35]: the waterfall is no longer a discontinuity but
a continuous feature resembling a “kink,” and there is clear
transfer of spectral weight above the Fermi energy centered
around the M point [Fig. 3(c)]. This kink is identical to the
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one obtained with the DCA in Ref. [26]. In addition, our results
show an additional “splitting” of the bands below and above
the Fermi energy along the ky = 0 line and centered at around
the X point. The splitting of the bands is accompanied by
an additional kink at the Fermi surface. This kink appears
at the onset of a branch of excitations that could be traced
back to the upper branch of the spinon-antiholon continuum
in the one-dimensional Hubbard model [33,35]. Remarkably,
these features also appear in DCA calculations [56] which in
principle should not have any “memory” of 1D physics and
spin-charge separation. The splitting, though it is more marked
in our results, can be interpreted as a pseudogap, as we can
clearly see in a cut along the frequency axes in Fig. 3(c), in
agreement with previous observations. We point out, however,
that CPT calculations on 4 × 4 clusters [35] show instead a
flat dispersion, similar to the one observed in the undoped
case. Although in Ref. [35] it is identified as a pseudogap,
it is not sufficiently resolved due to the small system
size.

IV. DISCUSSION

We have presented a study of the spectral properties of the
2D Hubbard model using the DMRG method as a cluster solver
for CPT. Our clusters are “infinite” (very long) two-leg ladders,
which already contain information about the thermodynamic
limit along the leg direction. In addition, it is reasonable
to expect that due to the large size of the ladders, charge
fluctuations inside the clusters are largely reduced. Results
show a remarkable resolution of the bands and allow us to
identify features such as waterfalls, kinks, and pseudogap, of
significance in the physics of cuprate superconductors. We
relate these aspects to one-dimensional physics that survives,

even in the presence of AFM correlations. We point out that
these features are also observed in simulations on 2D clusters,
and DCA, indicating that they likely are not artifacts of our
cluster choice, despite its breaking rotational symmetry.

Therefore, the main question one should ask is: What is the
fate of spin and charge separation in the presence of long-range
antiferromagnetic correlations? Whether our spectra display
genuine aspects of the physics of the 2D Hubbard model cannot
be determined with complete certainty from our results since
cluster perturbation theory does not account for the presence
of long-range antiferromagnetic order in two dimensions.
Ladders are gapped quasi-1D systems, with a fast decay of the
correlations (Hubbard ladders have a spin correlation length
of about four lattice spacings [71] for U = 8 at half-filling).
The spin gap and the correlation length decay quite rapidly
upon doping. In 2D, long-range AMF order is also expected to
be greatly suppressed away from half-filling. The remarkable
agreement with Monte Carlo [10,11,15,16], VCA [22,25], and
DCA [26] on square clusters, indicates that our ladders contain
a great deal of information and display features corresponding
to the 2D physics of the Hubbard model. In addition, 2D-AFM
long-range order exists only at zero temperature, so it is
conceivable that the CPT spectrum is a faithful representation
of the excitations of the system at finite T , after the correlation
length reduces to a few lattice spacings, as also suggested
by the aforementioned QMC results [16]. Further studies to
elucidate these questions may have to consider the artificial
addition of a staggered magnetic field à la VCA.
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