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Coherent control of current injection in zigzag graphene nanoribbons
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We present Fermi’s “golden rule” calculations of the optical carrier injection and the coherent control of
current injection in graphene nanoribbons with zigzag geometry, using an envelope function approach. This
system possesses strongly localized states (flat bands) with a large joint density of states at low photon energies;
for ribbons with widths above a few tens of nanometers, this system also posses large number of (nonflat) states
with maxima and minima close to the Fermi level. Consequently, even with small dopings the occupation of these
localized states can be significantly altered. In this work, we calculate the relevant quantities for coherent control
at different chemical potentials, showing the sensitivity of this system to the occupation of the edge states. We
consider coherent control scenarios arising from the interference of one-photon absorption at 2w with two-photon
absorption at w, and those arising from the interference of one-photon absorption at e with stimulated electronic
Raman scattering (virtual absorption at 2w followed by emission at hw). Although at large photon energies these
processes follow an energy-dependence similar to that of 2D graphene, the zigzag nanoribbons exhibit a richer
structure at low photon energies, arising from divergences of the joint density of states and from resonant absorp-
tion processes, which can be strongly modified by doping. As a figure of merit for the injected carrier currents,
we calculate the resulting swarm velocities. Finally, we provide estimates for the limits of validity of our model.
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I. INTRODUCTION

The electronic properties of low-dimensional materials
depend strongly on the size and geometry of the system
[1,2]. For instance, the band structure of a monolayer and
a stripe of graphene are significantly different. A stripe of
graphene is usually referred as a graphene nanoribbon, where
the boundaries impose novel conditions on the wave functions;
for a zigzag graphene nanoribbon (ZGNR), the wave function
vanishes on a single sublattice, A or B, at each edge. As
shown earlier [2—4], in ZGNR, there are confined states that
extend across the width of the system, incorporating states
from both sublattices. There is also another class of states
strongly localized at each edge, which incorporate states from
either one or the other sublattice; these states are known
as edge states. Although confined states are also found in
other types of ribbons, such as armchair, the edge states are
present only for zigzag ribbons. These edge and confined states
provide many of the novel characteristics seen in ZGNR.
Moreover, the energy of these states can be easily tuned
by changing the ribbon width, applying external fields, and
functionalizing the system [5,6]. Since for an undoped ZGNR
the Fermi level coincides with the flat part of the edge states,
then tuning the doping level allows to easily control the
contribution of the edge states. Given that a 2D graphene
sheet lacks of these localized states, a ZGNR offers the
advantage of having optical responses that are easily tuneable.
Over the last years, a number of studies have reported the
special properties of these localized states [2—4,7-10] and
recent investigations have described more novel properties and
applications [11-16]. At zero energy they have an important
role in the electronic transport properties of both clean
and disordered ZGNR, as Luck et al. [12] (and references
therein) have recently shown using a tight-binding formalism
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with a transfer-matrix approach. A detailed review of these
localized states in graphene-like systems can be found in Lado
et al. [17]. The optical properties of ZGNR and graphene
nanoflakes have been studied from a number of perspectives
[7,13,18-23], always showing the strong influence of the edge
states in the dielectric function. First-principles studies of
functionalization in graphene ribbons have shown [5] that
the low-energy m electrons at the edges of the ZGNR lead
to higher binding energies as compared with ribbons of
different shape edges. Similar studies indicate [6] that the
optical response of functionalized ZGNR depends strongly
on the size, shape and location of the deposited molecule,
suggesting functionalization as an effective way of fine-tuning
the electronic and optical properties of ZGNR.

In this work, we investigate the optical injection of carriers
and currents in graphene nanoribbons by means of coherent
light fields at @ and 2w. In general, for arbitrary beams, this
technique is referred as coherent current control. It is based
on the fundamental feature that if the quantum evolution of a
system can proceed via several pathways, then the interference
between such pathways can play a determining role in the
final state of the system [24,25]. In a semiconductor, it is
possible to control the injection of carriers [26-29], spins,
electrical current [30], spin current [31], and even valley
current [32], using phase-dependent perturbations, usually
involving coherent beams or pulses of light. In a one-color
scheme, the interference is between transition amplitudes
associated with different polarizations [26]. Although carrier
injection can be achieved with one-color excitation, current
injection cannot. This is due to symmetry considerations, since
one-color current injection is characterized by a third-rank
tensor, hence it is only allowed in systems that lack inversion
symmetry [26]. Due to the inversion symmetry in zigzag
graphene ribbons, the one-color coherent control process is
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forbidden. In a two-color scheme, the interference is between
pathways related to photon absorption processes arising from
different phase related beams, one at w and the other at 2w.
In this case, current injection is characterized by a fourth-rank
tensor, hence it is nonzero for a ZGNR. In both schemes,
the different pathways connect the same initial and final
states. Here our focus is on two-color current injection, and
we consider two classes of processes: the first class arises
from the interference of one-photon absorption at 2hw with
two-photon absorption at hw, and the second class arises
from the interference of one-photon absorption at fw with
stimulated electronic Raman scattering at hw. In general,
coherent control injection allows for the placement of electrons
and holes in different bands and portions of the Brillouin Zone
as o is varied. Thus, as we will show, the current injection is
very sensitive to the presence of both confined and edge states.
In line with plausible experiments, we consider nanoribbons
with a width on the order of 20 nanometers, which leads
to unit cells containing a few hundreds of atoms. For this
reason, we employ an envelope function strategy to calculate
the relevant energies and velocity matrix elements; the rest of
the calculation follows a conventional Fermi’s “golden rule”
approach to calculate the absorption coefficients.

The article is organized as follows. In Sec. II, we describe
the model Hamiltonian employed to describe the wave
functions, the resulting band structure, and the selection rules
for the velocity matrix elements. In Sec. III, we describe the
different carrier injection and current injection coefficients,
including the conventional and Raman contributions. In
Sec. IV, we revisit these calculations, but for a p-doped system.
This allows us to show the significant change in the signals
that can be accomplished by altering the occupation of the
edge states. In Sec. V, we provide an estimate of the limits
of validity of the model employed in this work. Finally, in
Sec. VI, we present our final discussions and conclusions.

II. THEORETICAL MODEL
A. Model Hamiltonian

A zigzag graphene nanoribbon (ZGNR) is a strip of
monolayer graphene [33,34] that has been cut such that the
edges along its length have a zigzag shape, as shown in Fig. 1.
We take the ribbon to lie in the (xy) plane, with £ as the
longitudinal direction along which the ribbon extends over all
space; y then identifies the direction across the ribbon, along
which the electron states are confined.

We assume passivated carbon atoms at the longitudinal
boundaries, as if hydrogen atoms were adsorbed [4,13]; this
allows the passivation of any dangling edge states and the
neutralization of the spin moments at the edges [13]. We take
W = a3 (2N + 2)/6 as the effective width, where N is the
total number of atoms in the unit cell, a = ac.+/3 = 0.246 nm
is the graphene lattice constant, and a.. is the carbon-carbon
distance (see Fig. 1). The edge at y = a/+/3 is formed by
A atoms, while the edge at y = W — a/+/3 is formed by B
atoms. The lattice vector is @ = aX and the atomic sites are set
in terms of the graphene lattice vectors, a; = (X — \/gjr) a/?2
and a; = (—& — +/39)a/2. The Dirac points of monolayer
graphene are projected [4] into the one-dimensional Brillouin
zone of the ZGNR, [—Z,%), as K = £ and K' = — 2. We
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FIG. 1. Illustration of the lattice structure of a zigzag graphene
nanoribbon extended along % and confined along y. Passivation
atoms and carbon atoms are represented by unfilled and filled circles,
respectively; A (B) sites are colored red (cyan) and the unit cell is
represented in grey.

O’ @= A-site

O @ = B-site

express the total wave functions as linear combinations of
atomic orbitals ¢ that are centered at atomic sites A and B,

W)=Y YaR)e(r — Ra)+ Y ¥s(Rp)p(r — Rp).

R4 Ry
(1)

Then, following Marconcini and Macucci [4], we employ the
semiempirical k - p method to describe W(r) with a smooth
envelope function approach. The coefficients ¥4 and ¥ in
Eq. (1) can be written as

Valr) = STFE(r) + KT FE (), (2a)

Yp(r) = =S FR(r) + T F (), (2b)
where the Ff(gi’)(r) are the envelope function components
associated with the K(K’) Dirac point and the orbital at atom
A(B) [35]. In writing Eq. (2), we have replaced ¥,;(R;) —
Y;(r) for i = {A, B}, on the basis of two assumptions. First,
we assume that atomic orbitals are strongly localized at their
corresponding atom, and second, we assume that the envelope
functions are slow-varying functions of r near the K (K’) Dirac
point. These envelope functions satisfy the Dirac equation,

0 —idy — dy 0 0
—idy + dy 0 0 0
0 0 0 —id, + 0,
0 0 —id, — 0, 0
FX) FX@)
FE(r) E | FR()
X K = — K 3 (3)
FXm) | v | F¥@)
FX(r) FX(r)

where y = (v/3/2)ta, t =2.70 eV is the nearest-neighbor
hopping parameter and vy = yh~' is the graphene Fermi
velocity. Because of the translational symmetry along %,
each envelope function can be factorized as the product of
a propagating plane wave along the length direction (%), and
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a function confined along the width direction (3),

K — F}‘((l‘) _ ikyx ¢§(y)

F%(r)= |:Fl'§(r):| =e |:CI)I§(y) ; “
Koo _|FR@O| o [OFD

F%(r)= [F}f(r)} =e [@‘é'(y) , )

where k, («) is the wave vector along the length of the ribbon,
measured from the Dirac point K (K’). The passivation of the
carbon atoms at the edges terminates the m orbitals thereat,
thus it is reasonable to assume that the full wave function
vanishes at the lattice sites located at the effective edges. This
leads to the following boundary conditions for the confined
part of the envelope functions [4],

PEG=0=0, oXy=w)=0, (62)

Fy=0=0 ofpy=w)=0. (6b)

These boundary conditions and the block diagonal form of
the matrix in Eq. (3) cause the envelope functions at K to be
uncoupled from their counterparts at K'; therefore they can be
studied separately. With the use of Eq. (4), the Dirac equation
for the K valley is

0 k- [K»]  _[e¥m
V[Kx + 9, 0 ]|:¢I§(y):| B E|:<I>Il§(y) -0
The solutions of Eq. (7) are of the form [4]
QKO = Llle, = )AL + (e, + )BT, (8)

DR (y) = A + BT, ©)

where K = ,/k2 — (E/y)?. Under the boundary conditions
[Eq. (6a)], this leads to a relation between the transverse ()
and the longitudinal (x,) wave numbers,

akw _ ke =K
= , 10
e o1 K (10)

which shows that they are coupled for ZGNR. If I is taken to
be real, then Eq. (10) reduces to

Ky = K coth(WK), an

and without loss of generality we assume X to be positive.
Equation (11) supports two eigensolutions for «, > W1,
which we label as n = 1 for positive energies and n = —1 for
negative energies; both correspond to states strongly confined
at the edges, henceforth referred as edge states [4],

Ph(y) = ;—%Ae“ge £ sinh [KE5(W — y)l,  (12)

2
PH(y) = ﬁAedge sinh[K**¢°y], (13)

g“,‘fdge =n, for

n=+l, (14)

where L is a normalization length along the £ direction. We
have also set K — kC®9¢¢ and A®¢€ is the usual wave-function
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normalization coefficient,

Aedge B ]Cedge/z
~ | sinh(2Kedge W) — (2Kedee W)’

s)

and the eigenenergy is

ES% =y k2 — (Kedze)2, (16)

Conversely, if we consider solutions of Eq. (10) with IC
purely imaginary, of the form i /C,, with /C, real, then Eq. (10)
reduces to

Kx = ’Cn COt(WICn)s 17

where, without loss of generality, we take /C, to be positive.
These solutions give states that extend over the full width of
the ribbon, and are known simply as confined states; for these
we set K, — K¢ and label them by n = +1, £2, +£3, ..,
starting with +1 for those with energies closest to zero.
These confined states exist for any real «, except those with
band index n = %1, which exist only for «, < WL, The
dispersion relations of the confined states with band index
n = %1 connect with that of the edge states; both share the
band index n = =1 (transition from the red to the blue traces
in Fig. 3). The confined states have the form

2 f : con
PH(y) = —i —= AL ¢ sin [KM(W — y)], (18)

ﬁ n
oK(y) = i%A;"“f sin [KC5"y ], (19)
oM = (=) sgn(n), (20)

where

Aconf _ ]Czonf/z
"\ —sin (2K W) + (2Kt W)’

E = sgn(n)y /12 + (Konf)?. 22)

We can indicate any of the edge or confined states simply by
|nky), where if |n| > 2 the state is confined, while if |n| = 1
then the state is confined for x, <W~!, but it is an edge state
if, > WL

Equations (16) and (22) describe the band structure of
ZGNR, shown in Figs. 2 and 3. The edge states are flattened
towards the zero energy level for x, > W~! (Fig. 3), whereas
the confined states have a parabolic structure around the Dirac
points, with an axis of symmetry at x, = W~!, except for the
two confined states nearest to zero energy, with band index
n==1 and k, < W~! (Fig. 3). These confined states are
associated with the Dirac cones of 2D graphene. Since the
extrema of the confined states occur at x, = W1, we can
express the band energies at such value of «, as

2y

Eq(Wh=+yw, (23a)

EL, (W~ +yW '\ 1+x2(n—-1)°,  (23b)

for the edge and confined states, respectively. This indicates
that the band gap scales as W~! and provides an estimate
of the photon energy at which the absorption edge occurs
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FIG. 2. Zigzag nanoribbon bandstructure with 95 zigzag lines
(about 20 nm width). Solid and dashed lines distinguish the polarity
of the states. The confined states are shown in red and red-dashed
lines, while the edge states are shown in blue and blue-dashed lines.
The latter are flattened towards zero energy. The different polarities
of these edge states is more distinguishable in the inset given in Fig. 3.
The horizontal axis corresponds to the total wavevectors k, , measured
from the Brillouin zone center, cf. Fig. 3.

with respect to the ribbon width W. It turns out that the sign
functions appearing in the expressions for <I>I§(y) [Eq. (12)
for edge states and Eq. (18) for confined states] alternate
for consecutive states, being +1 for the first state above zero
energy, —1 for the next up, and so on; the situation is reversed

Energy [eV]

_04 | | |

FIG. 3. Depiction of the conventional coherent control (CC)
scheme (set of arrows on the right) and the ERS CC (left arrows).
Confined and edge states are shown in red and blue lines, respectively;
solid and dashed lines distinguish the polarity of the states (see also
Fig. 2). The initial (final) state is m (n) and £ is a virtual state.
Form = —3, n =2, and £ = —1, the three purple dots along k, = 0
pinpoint three states at which both the conventional and the ERS
current injection are resonant. The upper boundaries of the grey
areas depict Fermi levels of u; = —0.10 eV and pu, = —0.20 eV
(p-doped system). The horizontal axis corresponds to wave vectors
k&, measured from the Dirac point K, cf. Fig. 2. The vertices of the
parabolic (confined) states occur at k, = W~!.
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for negative energies. This sign factor plays an important role
in the selection rules of the quantities we calculate. Therefore
we indicate these sign factors on the band structure diagram
(Figs. 2 and 3): a solid line indicates that the confined part of
an A-site component of the envelope function has ¢, = +1,
whereas a dashed trace means it has ¢, = —1.

B. Velocity matrix elements

‘We employ the envelope functions given by Eq. (4) in order
to calculate the velocity matrix elements (VME) that describe
the coupling between two states |n,k,) and |m, k) as

Dam(Ks) = / dr [F¥ () o[ FX (), (24)

where «, is a wave number and n, m are band indices. The
velocity operator is given by v = [r, H]/(i h), which, together
with the Hamiltonian in Eq. (7) for the K valley,

_ 0 —io 0,
= ”[—iax +a, 0 } ()

leads to v = vp(oy,0,), where o, and o, are the Pauli matrices
and vp = y/h is graphene’s Fermi velocity. The resulting
expressions are given in Appendix A, Table II, and obey the
following selection rules:

vy, (k) =0
vy, (k) =0

(26a)
(26b)

if ;I‘l # §m7
if &n = G-

We close this section by mentioning that the solutions
corresponding to the Dirac point K’ are analogous to those
presented here for K. As shown by Marconcini et al. [4],
the wave functions for the A sites, Egs. (12) and (18), at the
K’ differ by a sign factor from those at K. Moreover, the
velocity operator at the K’ has the form v = vr(oy, — oy).
This, together with the properties of the envelope functions at
both valleys, causes the x component of the VME at K’ to have
opposite sign of those at K; the y components of the VME are
the same near K as near K'.

III. COHERENT INJECTION AND CONTROL
A. Framework

In this section, we describe the general framework of
the two-color coherent control scheme. As mentioned in the
Introduction, the quantum interference is between pathways
associated with photon absorption processes arising from
different phase related beams. These pathways connect the
same initial and final states, as shown for the processes in
Fig. 3, where we consider the two-color scheme with beams at
w and at 2w. This figure depicts the two classes of processes
we study in this paper.

The first, conventional processes, are those where current
injection arises due to the interference of one-photon absorp-
tion (OPA) at 2hw and two-photon absorption (TPA) of (two)
photons with energy hw [26]; this is depicted with the set of
arrows on the right of Fig. 3, under the label “CONV.” In the
remaining of the discussion, we label variables associated with
conventional processes with a subindex ‘C’.

The second class of processes arise in experiments on
narrow band gap or gapless materials, with hw > E,, where E,
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is the energy band gap. Under this condition, current injection
can arise due to the interference of OPA at iw and stimulated
electronic Raman scattering (ERS) at iw [36]. This ERS is
indicated by the set of arrows at 2/iw and fw on the left of Fig. 3,
under the label “ERS.” We refer to variables associated with
this Raman processes with a subindex ‘R’. We mention that in
coherent control experiments on typical semiconductors, the
beam frequencies employed are such that hw < E, < 2hw,
and, consequently, the ERS current is absent because OPA at
hw is impossible.

Following van Driel and Sipe [26,37], we calculate the one-
and two-photon carrier injection and current injection rates
due to the interaction with a classical electromagnetic field

E(t) = E(w)e ™" + EQw)e ' +c.c., (27)

in the long wavelength limit, where w is the fundamental fre-
quency. The interaction between the electric field and the elec-
tron system is accounted by the minimal coupling prescription
in the Hamiltonian of Eq. (25); we do the usual replacement

pj — pj —eA;(t), for j=(x,y), with p; = —ihd;, and
obtain the interaction Hamiltonian that acts as the perturbation,

Hin(t) = —ev - A(1), (28)
where e = —|e| is the electron charge and A(¢) is the vector

potential associated with the electric field, E(t) = —d A(¢)/0t.
We treat this problem using standard time-dependent perturba-
tion theory and Fermi’s “golden rule.” Since we are interested
in OPA, TPA, and ERS processes, the unitary evolution
operator U (t) is expanded perturbatively up to second order,

U(t) = e M U(1), (29)

where

Un®) = 1 + (i)~ /

—0Q

t

Vin(t1)d 1

(i) / Vit / Vo)t + .. (30)

and

Vin(r) = ™01 Hiy (1) e~ T 3D
Under the perturbation of Eq. (28), the evolution of the
system’s state | 1) is not just the ground state |0}, but it also
contains an amplitude of the excited state |nmk,) (this ket
corresponds to a state with an electron-hole pair),

1T(2)) = co(t)|0) + Comc, (D|nmice) + ..., (32)

where |c,,,,,,cx(t)|2 is the probability that the system is at
|nmk,); the missing terms in Eq. (32) correspond to higher
order excitations, which we neglect in this work. The carrier
injection and the current injection rates are given by

== Z ;cnmm (33)
o LN e : i
= X et~ el e O, G4

nmky

respectively, where L is the normalization length introduced
below Eq. (14). To describe the optical processes we are
interested, we compute Cpp (f) up to second order (a tutorial
derivation can be found in Ref. [26]; see also Ref. [36]). Then,
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the macroscopic expressions for these injection rates get the
form

WV = (W) E*(—w)EY (o), (35)

2? £ () E () EN(—0)E (@) E (), (36)
1 = E35(w) EN(—2w) E(—0) EC Q) E(w),  (37)

J"’ = na""d(w) EY(—w0)ES(—0)E?Qw) + cc.,  (38)

where repeated indexes indicate summation, w 1s the
fundamental frequency, 7" and nC(R) account for the first-
and second-order absorption processes, respectively; overall
n refers to the rate of injected carriers per unit length along
the ribbon (carriers per unit length per unit time). The OPA
coefficient is described by a second-order tensor, E”b , while
the TPA and the ERS absorption coefficients are described
by fourth-order tensors, £&°¢ and &5, respectively. Here,
J¢ includes the electron and hole contributions to the current
(charge per unit time), injected per unit time along the ribbon.
The current injection coefficient n(w) in Eq. (38) includes
the conventional and the ERS contributions, i.e., n(w) =
ne(w) + nr(w). In the following sections, we give the full
expressions for these coefficients. Note that the coefficients can
be chosen such that %-abcd %-bacd %-badc and nabcd — nacbd'

B. First-order absorption process

We calculate the expressions for the coefficients £ and 7
appearing in Eq. (35)—(38) using Fermi’s “golden rule.” For
the one-photon absorption coefficient, we obtain

dicy V2, (k) 2 (ky)
K)o
2 Wi, (Kx)

X 8(wnm (x) — w), (39)

where we have gone from a sum over states to an integral
over reciprocal space by L~!'Y" — (27)7! [dk,. In this
expression, the sum ) runs over -all bands, filled and empty
(similarly for the other response functions considered here);
W (Kx) = h_lEnm(Kx) and E,,(ky) = E,(kx) — Epn(y) i
the energy difference between two states at a given «,. A
factor of two has been included to account for spin degeneracy,
which we do throughout the paper. The x components of the
VME at the K and K’ valleys differ just by a sign while the
y components of the VME are the same. Consequently, since
all integrals over reciprocal space include pairs of VME, the
integration over k, can be restricted to a single valley, K, and
another factor of two included to account for the contribution
of the K’ valley.

The occupation of the states is described by the Fermi-
Dirac distribution. In all of our integrals over recipro-
cal space, fun(iy) = fin(kx) — fulky), with f(x) =[1 +
eEnc)=w/ksT)) =1 3t temperature T and chemical potential
w. Until the end of Sec. IV, we confine ourselves to zero
temperature, hence f,(x,) = 6(E,(x;) — ), where 0 is the
Heaviside step function. Because of the selection rules for
the VME, Eq. (26), the only nonzero components of the
one-photon coefficient are £* and £77, which we plot in Fig. 4
for a system at zero chemical potential. As a comparison [38],
we include plots of W&, where W is the effective width of

E%(w) =
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FIG. 4. One photon absorption spectrum for a ZGNR of 95
zigzag lines (about 20 nm width). The definitions of the full and
edge contributions are given in the last paragraph of Sec. II B.
For comparison, we include W&;3 (red dot-dashed curves), where

33 = &7 is the OPA coefficient for graphene [28], given by Eq. (40).
The green ticks along the horizontal axis indicate photon energies at
which JDOS divergences occur, which are numbered in concordance
with Table I.

the ribbon,
£33 () = 200(hw) ™", (40)

and &7 = &7 is the OPA coefficient for a 2D monolayer
of graphene [28]; here, oy = gs8ve’/(16h) is the universal
optical conductivity of graphene, and g, = 2, g, = 2 are the
spin and valley degeneracies, respectively. For ZGNR, the
main difference between the two OPA coefficients is that &>
diverges at zero photon energy, due to a divergence in the joint
density of states (JDOS) between bands n = +1 andn = —1.
In contrast, for such a pair of bands £&** is identically zero,
due to the VME selection rules. For an undoped ZGNR, &**
displays its first divergence at about 0.15 eV, which is the value
of the band gap at zero Fermi level, and corresponds to the
onset of the transitions (2,—1) and (1,—2) at k, = W~!; these
four states give the initiation energy for £**. In the following,
we indicate a transition from band m to band n by (n,m);
hence, for zero chemical potential and zero temperature, the
possible transitions have m < —1 and n > 1. In general, the
£ and &Y OPA coefficients possess an infinite number of
divergences that arise due to the infinite number of parabolic
bands in the band structure. Indeed, the JDOS between states
with band index » and m,

IDOSun(E) = g,0 / dic, S(E — Emn(c)), (41

can be shown to diverge as (E — E5y)~'/? for the confined
states, and as E~! for edge states, where E is the photon energy
and ES,) is the energy band gap between bands n and m. In
frequency space, these divergences occur at photon energies E
suchthat E = EEP®:in reciprocal space, they occur at k,, points
where argument of the delta function has a zero derivative.
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TABLE I. Onset energies for the lowest-energy transitions for an
undoped cold ZGNR. Tuples (n,m) indicate a transition from band
m to band n and every onset energy indicates the position of a JDOS
divergence. The peak number is as indicated in Fig. 4.

XX g
Peak number FE (eV) Transition E (eV) Transition
1 0.1499 (2,-1),(1,-2) 0.000 1,-1)
2 0323 &,-D,(1,-4) 0236 (3,—-1),(1,-3)
3 0.350 (3,-2),(2,-3) 0410 (5,—1),(1,-5)
4 0.439

0.498  (6,—1),(1,—6) 4,-2),(2,—-4)

The absorption coefficients inherit these JDOS divergences
if the associated velocity matrix elements are nonzero at the
Kk, at which d E,,,, /dk, = 0. The sensitivity of an experiment
to these divergences would depend on the resolution of the
photon energy and on the magnitude of the velocity matrix
elements, as well as on the presence of scattering effects that
are not included in this simple treatment. In every pertaining
figure, we signal the location of these JDOS divergences by
small green ticks. An interesting characteristic of £** and &>~
is that the divergence at the initiation energy always involves
an edge state (see Table I); this is reasonable, as these states
are involved in the minimum band gap for an undoped system.
As mentioned above, the sum over states runs over all bands,
filled and empty, but for a given photon energy range (e.g.,
0-0.5eV, asinFig. 4) the sumrequires a finite number of bands.
We refer to this as the “full” response. In order to highlight the
contribution of the edge states, we also compute the response
coefficients with a restricted sum over states ., such that
normare £1,e.g.,(n,m) = {(1,—1),(1,-2),(2,—1), ...}; we
refer to this as the “edge” contribution and in the appropriate
figures we plot it with black-dashed lines. This allows us to
easily identify the contribution to OPA from states at bands
+1. At low photon energies such contribution is dominant: for
&, all transitions at photon energies iw < 0.350eV are from
or to edge states; for &7, all transitions at photon energies
hw < 0.439¢eV are from or to edge states. Consequently, at
low-photon energies the “full” and “edge” contributions are
indistinguishable. This is shown in Fig. 4 (see also Table I),
where for comparison we also plot W&37, where &5 is the
OPA coefficient of graphene calculated [28] at the same level of
approximation adopted here; it is clear how the presence of the
edge states in ZGNR significantly modifies the OPA. Finally,
we mention that the Dirac delta functions appearing in all our
expressions are treated with an interpolation scheme [39].

C. Second-order absorption processes
1. Conventional process

In this section, we start by considering the second order
process related to the absorption of two photons of energy
hw, indicated by the rightmost arrows in Fig. 3. Carrying the
perturbation calculation up the second order, we obtain the
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two-photon absorption (TPA) coefficient,

Eabcd( )_ 647[6 Z/ dK’C vg‘b:m VC nm

W)
X 8(a)nm (Kx) - 2(1)): (42)
where
v} + v, vl
— FL nZ Im nt “4m , 43
Veam = ZZEe E, — E,, +ifc “3)

which we regard as the effective velocity matrix element
(effective VME) for the second-order conventional process (C)
process. Here, B¢ is a small constant introduced to broaden
resonant processes (discussed below) and the sum over £ cor-
responds to the virtual electron and virtual hole contributions
[26]. Although this sum runs over all bands (filled and empty),
a converged value is obtained for £ = 20 bands for a photon
energy range of 0—1 eV. From the selection rules for the regular
VME, Eq. (26), we obtain the selection rules for V),

C nm = 0 if é’f’l # ;mv (443)
VC o =0 1f &y # Cp, (44b)
V2L =0 i =g, (44c)

and from this we identify eight nonzero £/ abed components, four
of them independent, namely, £5 & = (£2)" &7
g7 =87 =17, and £, which we show in Flg. 5.
A feature of these coefficients is that the onset of the two-
photon absorption signal is at the minimum band gap between
bands (2,—1), except for £-, which has its onset at 0 eV;
this follows from the selectlon rules for the effective VME,
which are inherited from the usual VME, and indicate that the
transition (1,—1) is allowed.

As we found for the OPA coefficients & ab  the TPA
coefficients £&°°¢ suffer from divergences, but for the TPA
coefficients they are of two types: JDOS divergences and
effective-VME-divergences. The latter results when the nomi-
nal virtual state lies at the average of the energies between two
transition states, |nk,) and |mk,), i.e., when [see Eq. (43)]

Such condition corresponds to a resonant TPA and an instance
where this occurs is indicated on Fig. 3 by the three dots along
the vertical line at k, = 0. In Fig. 5, we distinguish these two
types of divergences by small vertical lines of different color;
a green tick indicates the presence of a JDOS-divergence,
while a red tick indicates the presence of an effective-VME-
divergence. In order to broaden the latter resonances, a small
damping constant B¢ of 20 meV was introduced in the
denominator of Eq. (43). This value, which is close to the
thermal energy kpT associated with room temperature, was
chosen arbitrarily. A more detailed theory would be necessary
to indicate how these resonances are really broadened; the
choice we make here simply allows us to identify easily where
these resonances occur in our calculations. We mention that
the onset of £5*** is due to the transitions (2,—1) and (1,—2),
which are free from resonances because the matrix elements to
the intermediate states (one of the edge bands %1 that would
lead to a divergent condition) are forbidden by the selection
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FIG. 5. Nonzero two photon absorption coefficients £2°¢ for a
ZGNR with 95 zigzag-lines (about 20 nm width). The definitions
of the full and edge contributions are given in the last paragraph of
Sec. II B. On each panel, we include W&5; abed (red dot-dashed curves),
where £55/ (Eq. (46) and text below) is for a graphene sheet [28].
The green (red) ticks along the horizontal axis indicate the photon
energies at which JDOS divergences (resonances) occur.

rules. Therefore, in the photon energy range 0 to 0.15 eV, the
coefficient £5*** is free of resonances.

We present the £ abed coefficients in Fig. 5, and identify the
edge contributions to them (black-dashed lines). As we found
for £7°, for £2><¢ the edge states make a dominant contribution
at low photon energies, and are involved at the onset of TPA.
As a comparison [38], in Fig. 5, we include plots of W&; "b”d,
where W is the effective width of the ribbon,

S5 () = 8g,g,ie*vE(2hw) ™, (46)

and POV g O g are the TPA
coefficients for a 2D monolayer of graphene [28]; as before,
g =2 and g, =2 are the spin and valley degeneracies,
respectively.

Sxxxx _
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2. ERS process

Now we consider another second order process involving
light at 2w and light at w, stimulated electronic Raman
scattering, which can be characterized as virtual absorption at
2hw followed by emission at fiw; see the left diagram in Fig. 3.
This process exists in semiconductors when the fundamental
photon energy is larger than the band gap, which is always the
case for an undoped ZGNR, because the edge states provide a
zero-gap system. Following an earlier treatment of graphene
[36], we find the ERS carrier injection to be

2met de Viim Vit
%-abcd( ) — Z / mn R; - R;
wnm
X S(wnm(’(x) - a)), (47)
where the effective VME for the ERS process are

an = hz (Eln

i
Ve Vem
Enm + lﬂR

Vat Vm
Elm + Enm + lIBR -
(48)
As in Eq. (43), Br is a small constant introduced to broaden
resonant processes and the sum over ¢ runs over all bands

(filled and empty), but a converged value is obtained for £ = 30
bands for a photon energy range of 0—1 eV. The first term

) — 71—
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in the sum of Eq. (48) corresponds to photo-emission by an
electron, and the second to photo-emission by a hole [36].
Note that due to the different frequencies involved in Eq. (37),
symmetrization of VJ is unnecessary. The selection rules for
VJ are the same as those for V” [Eq. (44)]; note, however,
that Vlg # %8 although Vlg and Vf{ satisfy the same selection
rule. From this, we identify six nonzero terms for the ERS
carrier injection coefficient, £, &7 = (&3) & =
(ERY) &7 63, and 37, As do the conventional coef-
ficients, the ERS coefficients suffer from JDOS and effective-
VME divergences, the later arising whenever

E,=2E,—E, or
E, =2E, —

(49a)
(49b)

is satisfied. These conditions correspond to resonant processes,
when a state is located at an energy |E,,,(k,)| above (below)
the final (initial) state n (m). As in Eq. (43), a small damping
constant Sg of 20 meV was introduced in the denominators of
Eq. (48). All of these ERS coefficients present a large number
of these resonances, causing sgbcd to be highly sensitive to the
value of the Br parameter. However, these resonances are of
small magnitude for the energy range chosen for Fig. 6, hence
they are not apparent. As shown, three of these components
have their onset at zero photon energy, because the symmetry
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FIG. 6. ERS carrier injection tensor, as given by Eq. (47). The definitions of the full and edge contributions are given in the last paragraph
of Sec. II B. Notice that the edge states play a dominant contribution to the ERS absorption process, due to the large amount of resonant states.
The green (red) ticks along the horizontal axis indicate the photon energies at which JDOS divergences (resonances) occur. The red dot-dashed

lines indicate the ERS processes for 2D graphene [36].
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properties of the involved matrix elements allow for transitions
between the two edge states.

D. Current injection
1. Injection coefficients

We begin with the expression for 7¢, the current injection
coefficient characterizing the conventional process. Here the
interference between the TPA at hw with OPA at 2hw (see
the right diagram in Fig. 3) leads to net current injection
coefficients (including electron and hole contributions) given

by [26]
dKX nn - )V(b:cl;km nm
fmn a)3

X 8wy (ky) — 2w). (50)

From the selection rules for the regular and the effective VME,
Egs. (26) and (44), we identify three nonzero current injection
coefficients, n&™*, ne”", and ne"” = ng™. Notice that for
all these tensors the first Cartesian component is x. Due to the
confinement of the ribbons along the § direction (see Fig. 1),
the current injection can only flow along the % direction, and
all tensor components 5*** are zero. Turning to the expression
for ng, the current injection coefficient characterizing the
interference between the ERS discussed above and the OPA at
w (see the left diagram in Fig. 3), including both electron and
hole contributions, we find

2ime* dk (v“ —ve )
abcd _ X nn mm
77R (a)) - h3 Z / f;nn 27_[ a)ﬁm

( o VR nm + UC* VR nm) 8(wnm(Kx)

where Vg is given by Eq. (48). On the basis of the matrix
elements selection rules, we identify three nonzero ERS
current injection coefficients, ng™*, ng”", and gz = n"™".

Over the frequency range shown in Flg. 7, the conventional
and the ERS current injection coefficients are of the same order,
dropping off as the inverse of the third power of the photon
energy, as do the coefficients for graphene [36]. Thus we only
plot the total injection coefficients %Y = nc(w) + nr(w). For
comparison, we include plots of Wn“de (with the respective

values of the Cartesian indices), where

—w), (51)

3
mip (@) =i7ggue 07 (2hw) 3, (52)

XXXX XXyy xXyyx

and 5™ =3n,y° =3n,y are the net current injection
coefﬁc1ents for a 2D monolayer of graphene [36]; as before,
g =2 and g, =2 are the spin and valley degeneracies,
respectively. As we saw for carrier injection, the edge states
provide the strongest contribution at the onset of current
injection. Another characteristic of these coefficients is that
n*™*** has its onset at the band gap between bands (2,—1),
while n**Y and n*>** have their onset at 0 eV. This is due to
the selection rules that the matrix elements involved in both
the conventional and ERS process satisfy, allowing transitions
between bands (1,—1). An important characteristic of the
current injection coefficients is that they are free of JDOS
divergences, because the diagonal matrix elements in their
respective expressions, Eqgs. (50) and (51), are identically
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FIG. 7. Nonzero net current injection coefficients, including the
conventional and ERS contributions, i.e., n(w) = nc(w) + nr(w). The
definitions of the full and edge contributions are given in the last
paragraph of Sec. II B. On each panel, we include Wn$2 (dot-
dashed red curves), where n"””d [Eqg. (52) and text below] is for a
graphene sheet [36]. The red ticks along the horizontal axis indicate
the energies at which resonances occur; adamping constant of 20 meV
is introduced to broaden such resonances. The dips observed in these
coefficients arise due to negative contributions to the conventional
and ERS currents, in turn due to the shape of the involved matrix
elements.

zero at the «, at which the minimum gap occurs. However,
a number of effective VME resonances do exist at photon
energies indicated by the small red ticks in Fig. 7, such that
Eq. (45) is satisfied. As explained before, the magnitude of
these resonances is broadened by a small damping constant.
These coefficients are shown in Fig. 7, where we present the net
current injection arising from the addition of the conventional
and ERS contributions, i.e., n(w) = nc(w) + nr(w).

2. Swarm velocities

The numerical values of the coefficients £9°, 5&’3{?, and

nc(“’ do not immediately give a sense of the average velocities
with which the electrons and holes are injected. Sometimes
an average, or swarm velocity is introduced to indicate this
[26]. In the system considered here, we could introduce a
swarm velocity for both the conventional and ERS processes,
according to

1 Jew)(@)

Vew) = =
e nM(Q) + nC(R)(w)

(53)
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where Q = 2w for V¢ because J ¢ arises from the interference
of OPA at 2w with TPA at w, while 2 = w for Vi because
J r arises from the interference of OPA at w with the ERS
described above. Besides describing an average speed that
characterizes the injected carriers, one can consider maximiz-
ing Eq. (53) by using appropriate phases in the optical beams,
and adjusting the relative amplitudes of the light at @ and
2w. Considering just the swarm velocity of the conventional
process, such optimization leads to equal OPA and TPA, and
it follows that the intensity of the fundamental beam at w
should be about half an order of magnitude larger that of
the beam at 2w, for a fundamental photon energy of about
0.4eV. In contrast, the swarm velocity of the ERS process
depends only on the intensity of the beam at 2w. Further,
in trying to optimize the net swarm velocity, determined by
the total current injected divided by the total carrier density
injected, one finds that the beam at 2w should have an intensity
about an order of magnitude larger than the beam at w.
Since in typical experiments the beam at 2w is obtained by
second harmonic generation of part of the beam at w, this
would be impractical. Thus we calculate the conventional and
Raman swarm velocities for typical [27] beam intensities of
the fundamental and second harmonic fields, shown in Fig. 8.
We complement these carrier velocities with the total average
velocity of the injected carriers

1 Jr(@) + Jc()
e iM(w) + D Q2w) + 1P (@) + 1f (@)

(54)

tot =

also evaluated at typical [27] beam intensities. These carrier
velocities are shown in Fig. 8. As a reference, at the
photon energy of 0.25 eV, the maximum swarm velocity
of the conventional process for a monolayer of graphene is
2.9 x 10° ms~!. Hence the carrier velocities in ZGNR are
comparable to those on a monolayer of graphene, as might be
expected.

B —
— 4r x10 Conv swarm (a) ]
. 3 ERS swarm
E ? - Weighted Average e T o
§ 0 e e "'--- e N, 7 .
Eoaf ]
- | N N | T
1 : : — : : - . —
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z ERS A P 1
éi Total ===+ 1} N H H
— AN N |
e ' S Pt ]
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FIG. 8. Swarm and (weighted) average velocities (top), accom-
panied by the carrier density rates (bottom) along X due to n**** for
typical [27] beam intensities of the fundamental and second harmonic
fields. The average carrier velocities (black-dashed line) for ¥ and
¥ are of the same order, but their net components have a smooth
onset at zero photon energy.
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FIG. 9. One photon absorption coefficients as a function of the
photon energy for selected Fermi levels corresponding to p-doped
samples. The ZGNR has 95 zigzag lines (about 20 nm width). For
nonzero chemical potentials, some transitions become impossible and
some new transitions arise, possibly leading to new JDOS divergences
(e.g., divergences 5 and 6). Divergences 1-4 are the same as in Fig. 4.

IV. DOPING

In the previous sections, we investigated the carrier and
current injection at zero chemical potential. Since the dis-
persion relations of the edge states in ZGNR have a zero
band gap and are flattened for k, > W~! (Fig. 3), those states
are always involved at the onset energy of all of the optical
response coefficients studied here. This suggests that doping is
an effective method to alter the population of these two bands
and the current that can be injected by the optical transitions
between them. In this section, we revisit the calculations
of £, Egé’,‘é’f and n“*“? for a negative chemical potential,
corresponding to a p-doped system. Besides the modified
contribution from the edge states, we will also see significant
modification in the contributions from other bands, particularly
in the region near the K and K’ points, where doping leads to
either a “valley” of filled states (n-doped), or a “hill” of unfilled
states (p-doped); see Fig. 3.

We consider two negative Fermi levels, u; = —0.1 eV
and up, = —0.2 eV, which in Fig. 3 we indicate by the
upper boundaries of the grey areas. The value of —0.1 eV
is interesting because, at this chemical potential, the flat part
of band —1 (i.e., the region where «, > W1, cf. Fig. 3)
contains empty states; this condition allows transitions from
lower energy bands with final states in band —1, but also
disables transitions from band —1 to upper bands. The second
value, u = —0.2 eV, is interesting because at this potential a
“hill” of unfilled states arises in the first parabolic band (band
—2 in Fig. 3) at energies below our nominal value of zero.

We present the results of the calculations of OPA coef-
ficients for those values of the chemical potential in Fig. 9.
In an undoped sample, the JDOS divergences in £** at
low photon energies are due to the onset of the transitions
2,-1),(1,-2),(4,—1), and (1,—4) (see Table I and Fig. 4).
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Since all of these transitions involve bands £1, any nonzero
chemical potential has the capacity to significantly alter the
OPA at these photon energies. For instance, if the Fermi
level is at —0.1 eV, then the flat part of band —1 contains
empty states, and the low photon energy divergences are
removed. In addition, at this chemical potential transitions of
the type (—1,n), for n odd and < —1 are permitted. However,
the contributions to the OPA from these new transitions are
of smaller magnitude than the contribution from the (1,—2)
transition, which is unaffected by the —0.1 eV doping. For this
reason, the (1,—2) transition remains as the main contribution
to the £** coefficient at low photon energies at this chemical
potential (see Fig. 9).

At the Fermi level —0.2 eV, the edge states are completely
empty, as are the states at the higher points of band —2 near the
K and K’ points. This condition allows transitions of the type
(=2,n), for n even and < —2, and also forbids transitions of
the type (n, — 2), for n odd and > 1, and «, near the K and K’
points. It is this latter restriction which significantly changes
the &* coefficient near its onset. A further decrease in the
Fermi level would consistently remove the divergences in £**
at low photon energies. All these observations were confirmed
with a band-by-band calculation of £**.

The effect of doping the system has a larger influence on
the onset energy of £°7 that on that of £**. This is because
the JDOS divergences at low photon energies relevant for
&YV are due to the transitions (1,—1), (3,—1), and (1,—3)
(cf. Table I). Therefore, even for small doping, the large
contribution coming from the transitions between the two edge
states (bands £1, k, > W) is significantly decreased, and
leads to a greater change of the magnitude of £~ than of the
magnitude of £%*. A special signature of £ for u = —0.2eV
[dark-violet signal, Fig. 9(b)] is the presence of two narrow
peaks at 0.045 and 0.075 eVi; the first of these peaks is due to
the (—1,—2) transition, while the second is from the (—2,—3)
transition. These two transitions are active only for those i,
states at which the “hill” of band —2 is empty (see Fig. 3).
Notably, the transition (—2,—3) brings a new JDOS divergence
because it is active over a range of reciprocal space that
includes x, = W™, where both bands have their maximum
and their energy difference E,,, («,) has a zero derivative [see
the discussion below Eq. (41)].

In general, all these new transitions involve more JDOS
divergences if the range of x, over which they are active
includes the «, at which the band pairs have their maxima
or minima. For instance, the divergences 1-4 in Fig. 9 are the
same as those in Fig. 4 and Table I, but the divergences 5-6
arise due to the new transitions allowed at nonzero chemical
potentials: in Fig. 9(a), at the chemical potential —0.20 eV, the
divergence 5 at 0.179 eV is due to the transition (—2,—4),
which is active over a range of «, that includes the «,
at which bands (—2,—4) have their maxima, hence a new
JDOS divergence appears. Likewise for £ in Fig. 9(b) at
w = —0.20 eV: divergences 5 at 0.089 eV and 6 at 0.268 eV
exist because the transitions (—2,—3) and (—2,—5) are active
over regions of reciprocal space that include the «, at which
such bands have their maxima.

In Figs. 10, 11, and 12, we present the nonzero £&°°,

abed "and nebed coefficients for selected nonzero Fermi levels.
As was seen for £*°, doping the ZGNR has the effect of
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FIG. 10. Two photon absorption coefficients for selected Fermi
levels corresponding to p-doped samples. The ZGNR has 95 zigzag
lines (about 20 nm width). For panels where two different vertical
scales are present, i.e., panel (d), the scale on the left (right) is
for undoped (doped) cases (arrows below the factors indicate the
ordinate for which they apply). A damping constant Sc = 20 meV
was introduced.

modifying the responses around their onset energy, either due
to the removal of some transitions, or due to the appearance
of new ones, which in the undoped system were forbidden
because the initial and final states were filled [e.g., (—1,—2)
or (—1,—3)]. This shows that doping is an effective way of
modifying the carrier and current injection in ZGNR, where
the most significant changes are due to the removal of density
of states at the edge bands.

We close this section by mentioning that we performed
finite temperature calculations at room temperature; this was
achieved by implementing a temperature dependence of the
Fermi factors through the Fermi-Dirac distribution. We found
that the only significant change is in that the onset energy of
the coefficients £, ég?,cg, and ¢ are smaller. However, the
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FIG. 11. ERS carrier injection coefficients for selected Fermi levels corresponding to p-doped samples. The ZGNR has 95 zigzag lines
(about 20 nm width). For panels where two different vertical scales are present, i.e., (c) and (d), the scale on the left (right) is for undoped
(doped) cases (arrows below the factors indicate the ordinate for which they apply). Notice that at © = —0.20 meV some resonances are absent,
e.g.,at 0.15 eV in (a) and (f); this is because, at this Fermi level, the states at which these resonances are present for the undoped system, now

contain empty states. A damping constant Sc = 20 meV was introduced.

magnitudes of the coefficients at energies near the lower onsets
are several orders of magnitude smaller that the magnitudes of
the corresponding coefficients at zero temperature near their
energy onsets.

V. LIMITS OF THE MODEL

The model employed in this work inherits the limits of
applicability of time-dependent perturbation theory, which is
restricted to situations of low electron-hole pair densities [40]
(for high injection densities a density matrix formalism could
be employed to study the dynamics). The regime of validity
of the perturbation treatment used here can be estimated: we
require the populated fraction of excited states accessible to a
typical Gaussian pulse to be small.

A. Graphene sheet

As a reference, we first consider monolayer graphene.
When the electric fields of the optical beams are all aligned
along X, the one- and two-photon injection coefficients for a
2D graphene sheet are [28] given by Egs. (40) and (46). For
each of &5 and &;7**, we set the number of carriers injected
per unit area to be less than the number of states per unit area
accessible to the optical beam. Then taking the beam intensity

as I(w) = 260c|E(a))|2, we arrive to

€pCcow

120 < s e (55)
2 (2€p¢)?aw
) < ane @) (56)

where « is the time-bandwidth product for the optical beam
(which we take as 0.44, typical for a Gaussian beam), At
is the pulse-duration, and vy ~ 10° m/s is graphene’s Fermi
velocity.

B. Zigzag nanoribbons

The estimate for the nanoribbon case is similar to the
graphene sheet, aside from the fact that the areal ratios become
length ratios, i.e., for each one of OPA and TPA coefficients
we set the number of carriers injected per unit length to be
less than the number of states per unit length accessible to the
optical beam, giving us

1Qw) < oc , (57)
T(AD2E*2w)(|ve| + |val)
2
(@) < (2€oc)” o (58)

T (AD2ES R @)([vel + [un])’
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FIG. 12. Net current injection tensors (conventional plus ERS
contributions) for selected Fermi levels corresponding to p-doped
samples. The ZGNR has 95 zigzag lines (about 20 nm width). For
panels where two different vertical scales are present, i.e., (b) and (c),
the scale on the left (right) is for undoped (doped) cases (arrows below
the factors indicate the ordinate for which they apply). A damping
constant of 20 meV was introduced.

where o and At where defined previously, v, is the velocity
of the injected electrons in the conduction band, given by the
matrix element v,,, and vj, is the velocity of the holes injected
in the valence band, given by v,,,,,. Equation (58) provides the
expression for the conventional (C) and ERS processes (R).
In order to compare the limiting intensities of our model
for a graphene sheet and for ZGNR, we assume a typical pulse
duration of 220 fs and beam wavelengths of 3.2 and 1.6 um
for the w and 2w beams [27]. Then we identify the states that
contribute at these two wavelengths, and find that, on average,
[ve| + |vn| = vp. From Egs. (55) and (57), at A = 1.6 um,

IGraphene(zw) w EQw)
| _ ~ 2.6, 59
IRibbOIS (D)) Dy p £33 (20)

and from Eqgs. (56) and (58), at A = 3.2 um,

IGraphene XXXX
@) _ oo e (60)
IRlbbons(w) 21)1: %-écl,)r,m (a))

Equations (59) and (60) indicate that the limiting intensities of
our model are similar for a graphene sheet and for a ZGNR,
within an order of magnitude.
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We find that, under the assumptions made in this section,
the estimated limit for the beam intensities at w in the ZGNR
and the 2D graphene are about two orders of magnitude below
the intensities used in some experiments [27] on 2D graphene,
where coherent current injection was observed. Due to re-
laxation processes, of course, the number of allowed carrier
excitations below saturation is expected to be higher than our
estimates, leading to larger values of the beam intensities for
which a perturbation approach would be valid. Based on the
estimates in Egs. (59) and (60), if relaxation processes affect
the ribbon samples as effectively as they do for 2D samples,
we can expect coherent control in ZGNR to be observable at
the higher intensities used in 2D graphene experiments.

VI. SUMMARY AND DISCUSSION

We have calculated the response coefficients for one-
and two-photon charge injection and the two-color current
injection in a graphene zigzag nanoribbon; we use the
semiempirical k - p method to describe the electron wave
functions by smooth envelope functions.

The only nonzero one-photon injection coefficients cor-
respond to the case of all-x or all-y aligned fields, i.e., £**
and &77. These two coefficients possess a rich structure of
divergences, caused by divergences of the joint-density-of-
states originating from the infinite set of parabolic bands
present in the zigzag nanoribbon. These two coefficients have
distinct selection rules for the allowed transitions.

The two-photon carrier injection coefficients drop off
as the fifth power of the photon energy at large photon
energies, as they do for monolayer graphene. Moreover, these
coefficients possess two classes of divergencies. One corre-
sponds to the joint-density-of-states divergences associated
with the parabolic bands. The second class corresponds to
divergences arising from resonant conditions, when the two-
photon absorption processes arise from sequential one-photon
absorption processes between real states. In our calculation
here, we broadened these resonances phenomenologically, but
a more sophisticated treatment of these resonantly enhanced
transitions is an outstanding problem on which we hope this
work will encourage further study. The onset of the signals is
determined by the minimum energy band gap and the selection
rules for these coefficients.

We calculated the electron and hole contributions to the
conventional and the stimulated electronic Raman scattering
(ERS) current injection processes, finding that the only
nonzero components are associated with current injected along
the length of the nanoribbon, as expected. The behavior of
these coefficients as a function of the photon energy follows the
behavior of 2D graphene [~ (hw)~3] at large photon energies,
aside of the resonances present in the ribbons. We have
also calculated the so-called swarm velocity of the injected
electrons, which inherits a rich structure as a function of the
photon energy due to the details of the structure of the injection
coefficients. All these calculations were presented for a system
at zero Fermi level and zero temperature. However, we also
carried finite temperature calculations and found that, within
this model, finite temperatures only account for changes at the
onset of the signals, which are several orders of magnitude
smaller than the nominal values at zero temperature.
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Lower bound estimates on the permissible incident intensi-
ties for which the calculations here can be valid were presented.
They are similar to those of monolayer graphene, where
coherent current injection has been observed at much higher
intensities than these simple estimates, which do not take
into account the relaxation effects in the excited populations.
Thus experiments to demonstrate coherent current injection in
ZGNR seem to us to be in order.

For experiments contemplated for ribbons of different
width than those studied here, it is important to note that
simple scaling arguments show that the wider the ribbon, the
stronger the confinement of the energy bands. As shown in
this work, at low photon energies, the band gap follows a
linear relation with respect to the inverse of the ribbon width.
Consequently, increasing the width of the ribbon decreases
the energy band gap between any pair of bands. This in turn
shifts the onset energy of the response coefficients towards
zero energy and increases the number of JDOS divergences
per photon energy. For instance, the onset of the response
coefficients when light is polarized along the length of the
ribbon is determined by the band gap between bands (1,—2)
(see Fig. 3). For such a pair of bands, a linear fit shows that the
band gap depends on the ribbon width W as E{™, ~ aW~!
with a = 2.98 eV nm. Besides altering the onset energy of the
responses, a larger width also leads to a larger magnitude of the
injection coefficients, larger than would be expected simply on
the basis of the increase in material, e.g., a width increase of
about 15% doubles the size of n****.

As the outstanding signature of the zigzag nanoribbons are
the strongly localized edge states, we have identified their
contribution to the carrier- and current-injection processes.
In all cases, the edge states always participate in the onset
of the signals. This lead us to consider a second scenario to
study these localized states: given that the dispersion relations
of these states are flattened towards zero energy for certain

PHYSICAL REVIEW B 93, 075442 (2016)

regions in k-space, we re-visited our calculations considering
doped scenarios. We found that that even small doping levels
allow for significant changes around the onset energy of the
signals. This is because the large joint-density of states present
between the edge states is diminished with nonzero chemical
potentials. Due to the relative ease of doping graphene
systems, the present work shows that zigzag nanoribbons
offer an excellent opportunity to investigate scenarios in which
electrical currents can be generated and controlled optically.
While more sophisticated treatments of the electron states
and the inclusion of electron-electron interaction [7,17] will
undoubtedly add to the richness of the injection processes, we
hope that the description given here will motivate all-optical
current injection experiments. Although coherent control
has been studied and observed on graphene sheets, zigzag
graphene nanoribbons have the advantage of having optical
responses that depend strongly on the geometry and width of
the ribbon. Moreover, as shown in the literature, the localized
states present in these ribbons are highly sensitive to external
fields, doping and functionalization. All these characteristics
endow graphene zigzag ribbons with a richness absent in
simpler graphene sheets.
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APPENDIX: VELOCITY MATRIX ELEMENTS

TABLE II. Velocity matrix elements at the Dirac point K. At a given «,, any of these matrix elements are purely real or purely imaginary
(which is explicitly indicated by the presence (absence) of the imaginary unit /). The corresponding expressions at the other Dirac point K’
are identical, except that the X components of the matrix elements flip sign; the y components of the matrix elements remain unchanged. The

range of validity for this expressions is given in the third column.

Type Expression Conditions
conf conf conf conf
,Conf vl (k) = —4vp (é—’;onf é—conf)AcontA’c,:mf[’Cm sm(/(CKumr‘)’; Scumr;lzn(}c W)] [n| > 2,|m| > 2,Vk,, or
$ n| > 2,|m| =1k, < W7, or
¢ ¢ f £ KCSOMF in(KCSOMF W) — KoM singrceont w) .
mConf U () = =i dvp (&0 — geo) A AT KT e 2 ] In|=11Im| 22k, < W
\ edge edge edge edge [ K29 smh(/Cﬁla_eW) )Cea—e sinh(KS€ W) —1
«Edge U (i) = —4vp (60 + 67) A ARE] e ] Inl 2 Lim| > Lice > W
?
, . edge edge edge , edge }Cﬁ 8¢ smh(}CedgeW)—qn smh(/Ccdch)
mEdge U,’;m(’(x) = 4UF( m — Cn )An A [ (T e ]
edge edge ]
. edge f £ 4 edge KM sinh(Ky, 5 W)—Kp o sin(CS™ W) _ —1
,Conf vl () = i4up (G A o) At A R e ] In| > 2.m| =1k, > W
?
con dge edge conf
y _ edge conf\ Aconf 4 edge [ K sinh(An & W)—Kpy = sin(AEOM W)
mEdge vnm (KX) - 4U (;‘m C’l )A A [ (K:edge)2+(;(:coni)2 ]
Edge
n
$ (Conf < Edge)! n| =1,lm| > 2,6, > W!
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[38] At large photon energies, the two-photon absorption co-
efficients for zigzag nanoribbons drop off with the fifth
power of the photon energy, as they do for a monolayer of
graphene.

[39] We handle Dirac delta integrals of the form [(w)=
f dk Fn16(@ — wpmi) by doing an interpolation of the integrand,
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and 6(k) is the unit step function. This interpolation scheme
requires convergence on a single parameter, the number of k
points. More simple numerical treatments of the Dirac delta
integrals with broadening functions (Lorentzian or Gaussian
functions) require a larger number of k points to reach
convergence.
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