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Chirality and current-current correlation in fractional quantum Hall systems
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We study current-current correlation in an electronic analog of a beam splitter realized with edge channels of a
fractional quantum Hall liquid at Laughlin filling fractions. In analogy with the known result for chiral electrons
[M. Büttiker, Phys. Rev. B 46, 12485 (1992)], if the currents are measured at points located after the beam
splitter, we find that the zero frequency equilibrium correlation vanishes due to the chiral propagation along the
edge channels. Furthermore, we show that the current-current correlation, normalized to the tunneling current,
exhibits clear signatures of the Laughlin quasiparticles’ fractional statistics.
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I. INTRODUCTION

With the theoretical explanation of the Fractional Quantum
Hall (FQH) effect at filling ν = 1/m, with m odd [1], Laughlin
made the remarkable prediction that the elementary charged
excitation of a FQH system is a quasiparticle carrying frac-
tional charge q = νe [2]. Moreover, Laughlin’s quasiparticles
(LQP) were predicted to carry fractional statistics, as well,
that is, on exchanging two of them with each other, the relative
wave function must acquire a statistical phase θ �= {π,2π},
with θ = π corresponding to fermions, θ = 2π corresponding
to bosons. As a result, they behave as Abelian anyons with
fractional charge q [3].

Even richer structures are possible in the case of non-
Abelian anyons—the braiding of one quasiparticle by another
one will result in the system to be sent into a different quantum
state and not only in the relative wave function to acquire a
statistical phase [4].

A FQH system is fully gapped in the bulk, with gapless
branches of chiral excitations at its edges, supporting current
flow across the sample. The elementary charge carrier is the
boundary analog of an LQP and, therefore, it carries a frac-
tional charge q, as well [5]. Because of such a correspondence,
it was possible to experimentally estabilish the fractional
charge of LQPs by means of shot-noise measurements on
a FQH-bar [6,7]. Nevertheless, a direct observation of their
fractional statistics is still the subject of ongoing experimental
efforts [8,9].

Correlation measurements of light intensities in optics
[10,11] and electrical currents in solid-state physics [12]
have provided an important tool to investigate the difference
between the two “classical” statistics of quantum elementary
particles: bosonic and fermionic. In the pursue of evidence
for fractional statistics in FQH systems, a number of works
have been putting forward the use of solid-state analogs
of Fabry-Perot [13–19], Mach-Zehnder [20–31] and more
elaborated Hanbury Brown and Twiss [32–37] interferometers
to address the statistical properties of fractional quantum Hall
anyons.

In this paper, we confine our attention to Abelian anyons,
emerging as elementary charged excitations of an FQH state
at a Laughlin filling ν. We focus on a simple measurement
with LQPs colliding at a beam splitter-like device, such an

experiment is not subject to some of the intricacies found
in interferometric setups. In order to illustrate our approach,
we start by considering a simple, but instructive, example.
With reference to Fig. 1, we consider a beam splitter where
particles are injected from sources S1 and S2 and measured
at detectors D1 and D2. An incoming particle from S1 can
be either transmitted to D2 with scattering amplitude t , or
reflected to D1 with scattering amplitude r . Similarly, an
incoming particle from S2 can be either transmitted to D1

with scattering amplitude t ′, or reflected to D2 with scattering
amplitude r ′, so that the scattering matrix describing these
processes is given by

S =
(

r t ′
t r ′

)
. (1)

Because of the particle number conservation, S must be uni-
tary, which enables us to use the following parameterization,

S =
(√

R
√
T√

T −√
R

)
, (2)

with T and R respectively being the transmission and
reflection coefficients. Let nD1 and nD2 , respectively, be the
particle number operators at D1 and at D2. Let us assume that
the particles considered are either fermions or bosons.

Following Ref. [38], and considering a toy model with just
one quantum mode per arm, one can calculate the correlation
between the number of particles measured at D1 and at D2, i.e.,
〈〈nD1nD2〉〉 = 〈nD1nD2〉 − 〈nD1〉〈nD2〉. Notwithstanding that
in optics very special incoming states can be realized, in typical
experiments, such as in transport measurements in solid-state
physics—the appropriate tool to investigate Abelian anyons
at a FQH edge—particles colliding at a beam splitter emerge
from thermal reservoirs.

Assuming that the particles are emitted from two inde-
pendent reservoirs S1 and S2, respectively characterized by
(thermal) distribution functions n1 and n2, one obtains

〈〈nD1nD2〉〉 = ±RT (n1 − n2)2, (3)

where the plus and minus sign refer to bosons and fermions,
respectively. It is worth stressing that, as it is apparent from
Eq. (3), when n1 = n2, the correlations vanish, irrespectively
of the underlying quantum statistics [39]. In this paper, we
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FIG. 1. Beam splitter. Particles emitted from source S1 can be
transmitted to detector D2 with transmission amplitude t or reflected
to detector D2 with amplitude r . Similarly, for particles emitted from
source S2 (these processes are not illustrated in this figure). For
photons, which obey Bose-Einstein statistics, the physical realization
of a beam splitter is a partially silvered mirror. In the case of electrons,
which obey Fermi-Dirac statistics, a beam splitter can be realized
using edges of an integer quantum Hall liquid impinging on a quantum
point contact.

derive the analog of Eq. (3) for LQPs originating from sources
(FQH edges) kept at the same temperature but, in general,
at different chemical potentials. For FQH anyons, there is
no simple description of the beam splitter in terms of a
scattering matrix. Therefore we perform the calculation by
resorting to nonequilibrium Keldysh formalism. In particular,
we realize the beam splitter as a quantum point contact
(QPC), which allows for LQP tunneling between the edges.
Besides weak interedge tunneling, no other approximation
is involved in our calculation. As a result, while in the
“shot-noise” regime, |eV | � kBT (V being the voltage bias
between the edges and kB being the Boltzmann constant),
we recover that correlations are proportional to the tunneling
current, with the constant of proportionality being equal to
q, in the “thermal” regime |eV | � kBT the constant of
proportionality is renormalized by a purely statistics depen-
dent function γ (ν) = (6/π2)∂2

z ln �(z)|z=ν [�(z) being Euler
Gamma function], which can be directly measured by looking
at the current-current correlation probed in the appropriate
regime.

The paper is organized as follows. In Sec. II, we introduce
the model for a beam splitter realized with edge channels
of an FQH system. In Sec. III, we calculate the correlation
of currents measured at different drains as a function of the
voltage bias V and the temperature T . In Sec. IV, we show
how fractional statistics can be probed from current-current
correlation normalized to the tunneling current. In Sec. V, we
discuss and summarize our results and give an outlook of the
possible implications of our work. Mathematical details and a
review of the noninteracting case (ν = 1) are provided in the
appendices.

II. THE MODEL

In this section we introduce the model for the edge channels
that we use in the calculation of the current-current correlation.
Throughout this paper, we limit our analysis to Laughlin’s
states at filling ν, which are characterized by only one branch of
chiral excitations per edge [5]. This is not a potential limitation,
as we outline in the concluding section. Our analysis, indeed,
is expected to be generalizable to non-Laughlin FQH states,
e.g., ν = 2/3 and ν = 5/2, as a possible tool to investigate the
properties of these more exotic FHQ states.

The device we discuss here has four edge channels (cfr.
Fig. 2), we only need to focus onto the ones labeled e1 and
e2. In order to realize a beam splitter, we assume that a QPC
is obtained between the two channels by means of electric
gates, allowing for quasiparticle tunneling between e1 and e2.
Finally, it is worth stressing that we choose our geometry to
allow for independent tuning of the chemical potentials at e1

and e2, respectively, μ1 and μ2.
Edge excitations of Laughlin’s FQH states are described

within the chiral Luttinger liquid (CLL) framework [5]. In the
two-edge model, the Hamiltonian for the edges is given by

H0 = �v

4π

∑
k=1,2

∫
dx(∂xφk(x))2, (4)

with v the plasmonic velocity. The chiral bosonic fields
{φ1(x),φ2(x)} obey the commutation relations

[φk(x),φl(x
′)] = iπδk,lsgn(x − x ′). (5)

With the normalizations in Eqs. (4) and (5), the density
operator at edge k (k = 1,2), ρk(x) is given by

ρk(x) = −
√

ν

2π
∂xφk(x), (6)

while, because of the chiral propagation along the edges, the
electric current density operator is ik(x) = evρk(x).

The Hamiltonian operator describing the tunneling of a
charge-q LQP at the QPC is constructed in terms of the
quasiparticle creation and annihilation operators at edge k.

FIG. 2. Schematic representation of the device used for the
proposed measurement. The green colored area represents the
incompressible electron liquid due to a strong perpendicular magnetic
field. The boundary of the electron liquid (blue lines) are the edge
channels supporting gapless excitations. As discussed in the main text,
we only need to focus on edges e1 and e2, they originate respectively
from reservoirs at chemical potentials μ1 and μ2. The dotted line
represents tunneling between the two edges due to a quantum point
contact. Currents are measured at points x1 and x2.
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Within CLL framework, these are realized in terms of vertex
operators, respectively, given by

V
†
k (x) = F

†
k ei

√
νφk(x),

(7)
Vk(x) = Fke

−i
√

νφk(x),

with {Fk,F
†
k } being the Klein factors that one has to introduce

in order to recover the correct commutation relations between
operators belonging to different edges. Choosing the x coordi-
nates so that the QPC is located at x = 0, we take the tunneling
Hamiltonian to be

HT = �V
†

1 (0)V2(0) + H.c. (8)

We have assumed to work in a temperature/voltage regime
such that terms that are less relevant in the renormalization
group sense [40,41] can be disregarded. These terms, indeed,
correspond to tunneling of quasiparticles with the charge being
an integer multiple of q.

In fact, as our device contains only one QPC, the Klein fac-
tors can be dropped from the tunneling Hamiltonian HT . Fol-
lowing Ref. [42], the commutation rules between Klein factors
must be assigned so that the vertex operators corresponding
to different edges must obey the same commutation relations
as the vertex operators corresponding to the same edge, that
is, ei

√
νφk(x1)ei

√
νφk′ (x2) = eiπνsgn(x1−x2)ei

√
νφk′ (x2)ei

√
νφk(x1). As a

result, they have to satisfy the relations F
†
i Fi = FiF

†
i =

1, F1F2 = eiνπF2F1, and F
†
1 F2 = e−iνπF2F

†
1 . Taking into

account these commutation relations, it is easy to check that
the commutator between HT in the interaction representation
computed at different times, that is, [HT (t1),HT (t2)], is the
same whether one introduces or does not introduce the Klein
factors in the vertex operators in Eq. (7). Therefore they can
be safely disregarded, without affecting the validity of our
derivation. The tunneling Hamiltonian HT can be simplified to

HT = �ei
√

ν(φ1(0)−φ2(0)) + H.c. (9)

The key quantity we consider in the following is the
correlation function between i1(x1,t1) and i2(x2,t2), where
ik(x,t) is the current operator at edge k in Heisenberg
representation, x1 ∈ e1, x2 ∈ e2, and both points x1 and x2

are situated after the QPC (in the sense of the propagation
direction defined on each edge). Within the CLL formalism, the
correlation functions can be derived in a perturbative expansion
in �, as we present in the next section.

III. CURRENT-CURRENT CORRELATION

In this section, we illustrate the details of our calculations
of the correlation of currents measured at the points x1 and x2

as a function of the temperature and of the chemical potentials
μ1 and μ2. The finite frequency current-current correlation
reads

S(�; x1,x2) = 1

2

∫ +∞

−∞
d(t1 − t2)〈〈î1(t1,x1)î2(t2,x2)

+ î2(t2,x2)î1(t1,x1)〉〉ei�(t1−t2). (10)

Similar current-current correlation has been studied in the
context of a quantum spin Hall system [43]. Henceforth,
operators with a “hat” are to be understood in the Heisenberg

FIG. 3. Keldysh contour, the direction of the arrows indicates the
ordering of times along the contour. Here + and − indicate the upper
and the lower branches, respectively, and will be used to define the
four components of the Keldysh Green’s function. As an example of
time ordering on the contour we have t2 at later time than t1 but at
earlier time with respect to t3.

representation. We first evaluate the finite frequency correla-
tion S(�; x1,x2), later, taking the limit for � → 0, correctly
calculate S(0) as it will be clear from the discussion below.

Introducing the Keldysh time contour (see Fig. 3), and the
Keldysh time ordering operator TK we can rewrite the previous
expression as

S(�; x1,x2)= 1

2

∑
η=±1

∫ +∞

−∞
d(t1 − t2)ei�(t1−t2)

×〈〈TKi1(t1,x1,η)i2(t2,x2,−η)〉〉ei�(t1−t2). (11)

Notice that in the above equation, we have introduced an index
η = ±1, which specifies the upper and the lower part of the
Keldysh contour.

We assume that the tunneling HT is adiabatically turned
on at t = −∞. In order to evaluate Eq. (10), we move to
the interaction representation with respect to H0 and rewrite
Eq. (10) as

S(�; x1,x2) = 1

2

∑
η=±1

∫ +∞

−∞
d(t1 − t2)ei�(t1−t2)

×〈〈TKi1(t1,x1,η)i2(t2,x2, − η)SK〉〉, (12)

where SK = TK exp{− i
�

∫
K

HT (τ )dτ } with K labeling the
Keldysh contour. Notice that operators without the “hat” are
to be understood in the interaction representation with respect
to H0. Expanding SK to the lowest nonvanishing order in the
tunneling Hamiltonian, we have

S(�; x1,x2)

= − 1

4�2

∑
η,η1,η2=±1

η1η2

×
∫ +∞

−∞
ds1

∫ +∞

−∞
ds2

∫ +∞

−∞
d(t1 − t2)ei�(t1−t2)

×〈〈TKi1(t1,x1,η)i2(t2,x2, − η)HT (s1,η1)HT (s2,η2)〉〉.
(13)

Keeping only connected contributions and dropping terms that
are trivially zero by Keldysh integration we may rewrite the
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previous expression as

S(�; x1,x2) = −|�|2e2νv2

16π2�2

∑
η,η1,η2=±1

η1η2

∫ +∞

−∞
ds1

∫ +∞

−∞
ds2

∫ +∞

−∞
d(t1 − t2)ei�(t1−t2)

×{〈TK∂xφ1(x1,t1,η)ei
√

νφ1(0,s1,η1)e−i
√

νφ1(0,s2,η2)〉〈TK∂xφ2(x2,t2, − η)e−i
√

νφ2(0,s1,η1)ei
√

νφ2(0,s2,η2)〉
+ 〈TK∂xφ1(x1,t1,η)e−i

√
νφ1(0,s1,η1)ei

√
νφ1(0,s2,η2)〉〈TK∂xφ2(x2,t2, − η)ei

√
νφ2(0,s1,η1)e−i

√
νφ2(0,s2,η2)〉}. (14)

In order to explicitly compute the multiple correlators at finite μ1 and μ2 entering Eq. (14), we recall that, adding a nonzero
chemical potential μ to a chiral Luttinger liquid described by the Hamiltonian of Eq. (4) is equivalent (apart for an overall
constant contribution to the ground-state energy) to the replacement ∂xφ(x) → ∂xφ(x) − μ

√
ν

v
. Therefore denoting with 〈. . .〉0

the averages computed at μ1 = μ2 = 0, we obtain

〈TK∂xφk(x,t,η)ei
√

νφk(0,tk ,η1)e−i
√

νφk(0,t2,η2)〉μk

=
{
〈TK∂xφk(x,t,η)ei

√
νφk(0,t1,η1)e−i

√
νφk(0,t2,η2)〉0 − μk

√
ν

v
〈TKei

√
νφk (0,t1,η1)e−i

√
νφk(0,t2,η2)〉0

}
eiνμk (t1−t2), (15)

and similarly for the conjugate expression. Notice that contributions to Eq. (14) proportional to the chemical potentials {μk}
vanish identically after integration over the Keldysh contour. In order to complete the calculation, we can use the following
identity:

〈TK∂xφk(x,t,η)ei
√

νφk(0,t1,η1)e−i
√

νφk(0,t2,η2)〉 = −i ∂x lim
λ→0

∂λ〈TKeiλφk (x,t,η)ei
√

νφk(0,t1,η1)e−i(
√

ν+λ)φk(0,t2,η2)〉. (16)

We finally obtain

〈TK∂xφk(x,t,η)ei
√

νφk(0,t1,η1)e−i
√

νφk (0,t2,η2)〉0 =
√

νπ

�βv

(
cot

{
π

�β
[i(t − t1 − x/v) + τc ση,η1 (t − t1)]

}

− cot

{
π

�β
[i(t − t2 − x/v) + τc ση,η2 (t − t2)]

})
G(ν)

η1,η2
(t1 − t2). (17)

In Eq. (17), we have set β = (kBT )−1. Also, we have defined ση,η′ (t − t ′) = [(η + η′)sgn(t − t ′) + η′ − η]/2 and have
introduced the cutoff time τc = lc/v, with lc being a short-distance cutoff length. Moreover, we have introduced the Keldysh
Green function G(ν)

η1,η2
(t1 − t2) = 〈TKei

√
νφk(0,t1,η1)e−i

√
νφk(0,t2,η2)〉0, given by

G(ν)
η1,η2

(t1 − t2) = lνc

(
�βv

π
sin

{
π

�β
[i(t1 − t2)ση1,η2 (t1 − t2) + τc]

})−ν

. (18)

The cutoff-dependent contribution to the argument of the cotangent functions at the second and at the third line of Eq. (17) is
effective only when t − t1 − x/v ∼ 0 (second line), or when t − t1 − x/v ∼ 0 (third line). This enables us to set ση,η1 (t − t1) =
ση,η1 (x/v) = η1 (second line), and ση,η2 (t − t2) = ση,η2 (x/v) = η2 (third line). As a result, we may eventually rewrite Eq. (17) as

〈TK∂xφk(x,t,η)ei
√

νφk(0,t1,η1)e−i
√

νφk(0,t2,η2)〉0 =
√

ν

v

[
ξη1

(
t − t1 − x

v

)
− ξη2

(
t − t2 − x

v

)]
G(ν)

η1,η2
(t1 − t2), (19)

with

ξη(t) = π

�β
cot

[
π

�β
(it + ητc)

]
. (20)

Taking into account the result in Eq. (19), it is now possible to explicitly compute S(�; x1,x2). Introducing the Fourier
transform of G(ν)

η1,η2
and of ξη (see Appendix A for details), we obtain

S(�; x1,x2) = |�|2e2ν2

4π2�2
ei�(x1−x2)

∑
η1,η2

η1η2
{
[ξη1 (�)ξη1 (−�) + ξη2 (�)ξη2 (−�)]G(2ν)

η1,η2
(ν�μ)

− ξη1 (�)ξη2 (−�)G(2ν)
η1,η2

(ν�μ + �) − ξη1 (−�)ξη2 (�)G(2ν)
η1,η2

(ν�μ − �)
}
, (21)

with �μ = μ1 − μ2. Using the explicit formulas for G(ν)
η1η2

and ξη(�) [see Eqs. (A9), (A10), (A11), (A12), and (A14)], we
perform the sum over the Keldysh indices. Taking the limit for � → 0 eventually, we obtain

S(0) = 2i

(
�β

2π

)1−2ν
e2ν2τ 2ν

c |�|2
�2π�(2ν)

sinh

(
βν�μ

2

)∣∣∣∣�
(

ν + iβν�μ

2π

)∣∣∣∣
2[

ψ

(
ν + iβν�μ

2π

)
− ψ

(
ν − iβν�μ

2π

)]
. (22)

To recover a compact notation, in Eq. (22), we have expressed S(0) in terms of Euler Gamma function �(z) and of its
logarithmic derivative, the digamma function ψ(z) = ∂z[ln �(z)]. As anticipated, in order to obtain the correct result for S(0),
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one has to first perform the calculation of S(�; x1,x2) at finite � and then take the limit � → 0 at the end of the calculation, thus
avoiding problems related to ξη(�) being ill-defined as � → 0 (see Appendix A for details). Taking ν = 1 in Eq. (22) reproduces
the known result for noninteracting electrons [44], which we discuss in detail in Appendix B.

In the next section, we will look at the ratio S(0)/iT , with iT being the tunneling current across the QPC. For the reader’s
convenience, we report below the standard result [45]

iT = 2q

�2�(2ν)
|�|2τ 2ν

c

(
�β

2π

)1−2ν

sinh

(
βν�μ

2

)∣∣∣∣�
(

ν + i
β�μν

2π

)∣∣∣∣
2

. (23)

The generalization of Eq. (23), beyond perturbative expansion, was calculated exactly by Bethe ansatz in Refs. [46–48].

IV. FRACTIONAL STATISTICS DETECTION FROM
CURRENT-CURRENT CORRELATION

Equation (22) is the main result of this paper, in this section,
we discuss its consequences. As a first comment, we notice
that in analogy with the result in Eq. (3), we find that S(0) =
0 for μ1 = μ2. This is consistent with Büttiker’s result of
Ref. [44] for the noninteracting case (ν = 1), and it is now
generalized to the case of Laughlin fractions. Such a result for
ν = 1 is easily shown to be in agreement with the fluctuation-
dissipation theorem. Indeed, for noninteracting electrons, the
equilibrium correlation function between currents measured at
drains α and β, iα , and iβ , satisfies the relation∫ +∞

−∞
〈〈{iα(t),iβ(0)}〉〉dt = 2(Gα,β + Gβ,α)kBT , (24)

with Gα,β being the dc conductance between terminals α and
β. In fact, in the particular geometry we are considering here,
no electric current can flow between x1 and x2, because of
the chiral propagation along the edge channels. Therefore
we have shown that a result similar to that of Ref. [44]
also applies to currents at the edges of a FQH liquid.
Moreover, Eq. (3) shows that, for any Laughlin filling ν,
the current-current correlation is negative, suggesting that the
beam splitter geometry we consider highlights the exclusion
statistics character of Laughlin’s quasiparticles [49]. This
result agrees with Ref. [32] for their case ν = 1/3 but not
for ν � 1/5, and it is in contrast with Refs. [34,36,37]. We
suspect that this is somehow related to the different geometries
involved, and we will investigate this issue in future works. We
also notice that negative correlations are found in Ref. [50]
where the current-current correlation is studied for a beam
of diluted anyons impinging on a beam splitter, an analysis
complementary to the study reported here.

Besides the results outlined above, our most important
finding is that, combining together Eqs. (22) and (23), it is
possible to propose a way to directly measure the fractional
statistics of LQPs. A key observation is now that, by setting
�μ = eV , where V is the voltage bias between e1 and e2,
the argument of the Gamma and the digamma functions in
Eqs. (22) and (23) can be rewritten as ζ = ν + i

βqV

2π
. Roughly

speaking, one might say that e(ζ ) carries information about
the fractional statistics, while �m(ζ ) carries information
about the fractional charge. Therefore one might expect that
either information can be extracted, according to whether one
considers the formulas in the limit |e(ζ )/�m(ζ )| � 1, or
|e(ζ )/�m(ζ )| � 1.

Let us discuss first the case |e(ζ )/�m(ζ )| � 1, cor-
responding to |eV | � kBT . In this regime, an appropriate

approximation for Eqs. (22) and (23) can be derived by using
Stirling’s formula for the � functions, that is,

�(z) ≈
√

2π (z − 1)z−
1
2 e−z+1, (25)

valid for |z| � 1. Using Eq. (25), one finds the following
asymptotic expansions for S(0) and iT (assuming V > 0):

S(0) ≈ −2πq2|�|2τ 2ν
c

�2ν+1�[2ν]
(qV )2ν−1,

(26)

iT ≈ 2πq|�|2τ 2ν
c

�2ν+1�[2ν]
(qV )2ν−1.

Equations (26) suggest that, for |eV | � kBT , the fractional
charge q can be directly probed by looking at the ratio q =
|S(0)|/iT between two directly measurable quantities such as
S(0) and iT , which is the main idea typically implemented in
shot-noise based measurements of the fractional charge (notice
that here, instead, we look at correlation between currents at
different drains).

In the complementary limit, in order to directly access
information on the fractional statistics, one has rather to
consider the thermal regime, namely, |eV | � kBT . In this
regime, the limiting formulas for Eqs. (22) and (23) can
be recovered by expanding the Gamma and the digamma
functions to leading order in �m(ζ )/e(ζ ), obtaining

S(0)≈− q2|�|2τ 2ν
c

�2ν+1�[2ν]

(
β

2π

)1−2ν

(βqV )2{�′′
[ν]�[ν]−(�

′
[ν])2},

(27)

iT ≈ q|�|2τ 2ν
c �2[ν]

�2ν+1�[2ν]

(
β

2π

)1−2ν

(βqV ).

From Eq. (27), one therefore obtains

|S(0)|
iT

=
(

q2π2V

6kBT

)
γ (ν), (28)

with γ (ν) = (6/π2)∂2
z ln �(z)|z=ν . Except for the factor γ (ν),

the result in Eq. (28) is the same one would obtain for
noninteracting electrons (ν = 1) by simply replacing e with
q. Therefore the additional factor γ (ν) is not a feature simply
related to the fractional charge of LQPs—it is a clear signature
of the quasiparticle fractional statistics which, as we propose,
can be directly measured by looking at current correlations
probed in the appropriate thermal regime. We report here, for
the convenience of readers, some numerical values of γ (ν),
γ (1) = 1, γ (1/3) � 6.18, and γ (1/5) � 15.97.

As a final remark, we notice that the reason to look at the
correlation of currents measured at different drains lies in the
fact that, if one considers noise of the tunneling current, i.e.,
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SiT = (1/2)
∫

dt〈〈{iT (0),iT (t)}〉〉, one would obtain [41]

SiT = 2q2

�2�(2ν)
|�|2τ 2ν

c

(
�β

2π

)1−2ν

× cosh

(
βν�μ

2

)∣∣∣∣�
(

ν + i
β�μν

2π

)∣∣∣∣
2

. (29)

Such a quantity normalized to the tunneling current iT of
Eq. (23), i.e., the Fano factor, only carries information about
the quasiparticles’ charge but not their statistics.

V. SUMMARY AND OUTLOOK

We have discussed the correlation of currents measured at
separate drains in a beam splitterlike geometry for fractional
quantum Hall systems at Laughlin filling factors. Because of
the chiral propagation of LQPs along the edge channels, we
have proved (within perturbation theory) that the equilibrium
correlation, i.e., for μ1 = μ2, is zero, as it was found for
chiral fermions (ν = 1). Using Keldysh technique, we have
also obtained expressions for the stationary out of equilibrium
case and show how correlation measurements carry informa-
tion about the fractional statistics. Our findings suggest an
antibunching character of the LQPs.

In perspective, our result might also provide a useful tool
to investigate more exotic filling fractions like for instance
ν = 2/3 where neutral counterpropagating modes have been
predicted [51,52] and recently observed [53–55], but still need
a thorough characterization.

In such systems, even for both the measuring points x1

and x2 situated after the QPC, due to the counterpropagating
modes and their interaction with the charge modes, one might
expect a signal propagation between these two points—giving
rise to a nonzero equilibrium correlation. We will investigate
this possibility as a tool to study counterpropagating modes in
future works. In addition, we also plan to expand our work
to analyze the relation between correlations and fractional
statistics-related interactions among particles with fraction-
alized quantum numbers [56–58].
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APPENDIX A: GREEN’S FUNCTIONS

In this Appendix, we provide the details of the calculation
of the Green’s functions we use to compute the current-current
correlation, and their corresponding Fourier transforms. The
first quantities we need are the correlation functions of vertex
operators evaluated on branches η1,η2 of the Keldysh path,

G(ν)
η1,η2

(t1,t2) = 〈
TKei

√
νφk(t1,η1)e−i

√
νφk (t2,η2)〉

0. (A1)

A standard bosonization calculation yields the result in
Eq. (18),

G(ν)
η1,η2

(t1,t2) = lνc

(
�βv

π

)−ν

sin−ν

[
π

�β
(it ση1,η2 (t1−t2) + τc)

]
.

(A2)

For the sake of clarity, we list the Keldysh Green functions
corresponding to the four possible choices of the Keldysh
indices:

G
(ν)
+,+(t) = lνc

(
�βv

π

)−ν

sin−ν

[
π

�β
(i|t | + τc)

]
,

G
(ν)
−,−(t) = lνc

(
�βv

π

)−ν

sin−ν

[
π

�β
(−i|t | + τc)

]
,

(A3)

G
(ν)
−,+(t) = lνc

(
�βv

π

)−ν

sin−ν

[
π

�β
(it + τc)

]
,

G
(ν)
+,−(t) = lνc

(
�βv

π

)−ν

sin−ν

[
π

�β
(−it + τc)

]
.

Next, we compute the Fourier transform of Eq. (A3) defined
as

G(ν)
η1,η2

(ω) =
∫ +∞

−∞
dt eiωt G(ν)

η1,η2
(t).

In computing G(ν)
η1,η2

(ω), it is useful to start with G
(ν)
−,+(ω)

and with G
(ν)
+,−(ω). Moreover, in view of the identity

G
(ν)
−,+(ω) = G

(ν)
+,−(−ω) (which is readily proved from the

definition of the Keldysh Green functions), one concludes that
it is enough to just compute G

(ν)
−,+(ω). In order to do so, we

notice that the branch points of G
(ν)
−,+(t) are located at tn =

i(τc + �βn), with n = 0, ± 1, . . .. Therefore to make sure that
no branch cuts intersect the real axis in computing G

(ν)
−,+(ω),

we chose the phase branch so that −π � arg(it) < π and,
accordingly, the branch cuts are all horizontal. Having stated
this, G

(ν)
−,+(ω) takes the following integral representation:

G
(ν)
−,+(ω)

= lνc

(
�βv

2π

)−ν∫ ∞

−∞
dt eiωt [(−i)e− πt

�β eiδ − (−i)e
πt
�β e−iδ]−ν

= 2lνc

vν

(
�β

2π

)1−ν∫ ∞

0
du ei

�ωβ

π
u[(−i)e−ueiδ − (−i)eue−iδ]−ν

+ 2lνc

vν

(
�β

2π

)1−ν∫ 0

−∞
du ei

�ωβ

π
u[(−i)e−ueiδ−(−i)eue−iδ]−ν

= 2lνc

vν

(
�β

2π

)1−ν

eiπν/2
∫ ∞

0
du e

(
i

�ωβ

π
−ν

)
u
[1 − e−2u]−ν

+ 2lνc

vν

(
�β

2π

)1−ν

e−iπν/2
∫ 0

−∞
du e

(
i

�ωβ

π
+ν

)
u
[1 − e2u]−ν .

(A4)

In Eq. (A4), we have set δ = πτc/�β and have taken
advantage of the fact that, in the last two lines, it was possible to
drop the terms depending on the regularizator δ. Going through
straightforward manipulation we can readily trade Eq. (A4) for
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a known integral representation of the Beta function, that is,

B(x,y) = �(x)�(y)

�(x + y)
=

∫ 1

0
dw wx−1(1 − w)y−1. (A5)

To do so, we resort to the integration variable w = e−2u

(w = e2u) in the first (second) integral of Eq. (A4), so that
we eventually obtain

G
(ν)
−,+(ω)=

(
lc

v

)ν(
�β

2π

)1−ν

e−iπν/2
∫ 1

0
dw wi

�ωβ

2π
+ ν

2 −1(1−w)−ν

+
(

lc

v

)ν(
�β

2π

)1−ν

eiπν/2
∫ 1

0
dw w−i

�ωβ

2π
+ν

2−1(1−w)−ν .

(A6)

Comparing Eq. (A6) to Eq. (A5), we eventually find

G
(ν)
−,+(ω)=

(
lc

v

)ν(
�β

2π

)1−ν

�(1−ν)

[
eiπν/2 �

(
ν
2 −i

�ωβ

2π

)
�

(
1− ν

2 −i
�ωβ

2π

)

+ e−iπν/2 �
(

ν
2 + i

�ωβ

2π

)
�

(
1 − ν

2 + i
�ωβ

2π

)
]
. (A7)

Finally, using the identity

�(z)�(1 − z) = π

sin(πz)
, (A8)

we can recast Eq. (A7) into the form

G
(ν)
−,+(ω) = lνc

vν�(ν)

(
�β

2π

)1−ν

e
�ωβ

2

∣∣∣∣�
(

ν

2
+ i

�ωβ

2π

)∣∣∣∣
2

. (A9)

Equation (A9) also implies

G
(ν)
+,−(ω) = lνc

vν�(ν)

(
�β

2π

)1−ν

e− �ωβ

2

∣∣∣∣�
(

ν

2
+ i

�ωβ

2π

)∣∣∣∣
2

.

(A10)

Following exactly the same strategy of splitting the integral
over t into an integral from −∞ to 0 plus and integral from 0
to ∞ and separately manipulating the two integrals as we have
done before, one eventually finds

G
(ν)
+,+(ω) = lνc e

−iπν/2

vν�(ν) cos
(

πν
2

)(
�β

2π

)1−ν

× cosh

(
�ωβ

2

)∣∣∣∣�
(

ν

2
+ i

�ωβ

2π

)∣∣∣∣
2

, (A11)

and

G
(ν)
−,−(ω) = lνc e

iπν/2

vν�(ν) cos
(

πν
2

)(
�β

2π

)1−ν

× cosh

(
�ωβ

2

)∣∣∣∣�
(

ν

2
+ i

�ωβ

2π

)∣∣∣∣
2

. (A12)

Equations (A9)–(A12) provide us with the Fourier trans-
forms of the Keldysh Green functions, which we used in
the main text to compute the current correlations. To perform

the calculation, one needs an additional function, the Fourier
transform of ξ±(t). These are given by

ξη(ω) =
∫ ∞

−∞
dt eiωt ξη(t)

= i

∫ ∞

−∞
du ei

�ωβ

π
u

(
eue

−iη πτc
�β + e−ue

iη πτc
�β

eue
−iη πτc

�β − e−ue
iη πτc

�β

)
, (A13)

where we have set u ≡ tπ/�β. When ω �= 0, a straightforward
application of residue theorem gives

ξ+(ω) =
∫ ∞

−∞
dω eiωt ξ+(t) = 2πe−ωτc

1 − e−�βω
,

(A14)

ξ−(ω) =
∫ ∞

−∞
dω eiωt ξ−(t) = 2πeωτc

e�βω − 1
.

The integrals in Eq. (A13) are ill-defined if ω = 0, this
motivates the need of first computing the current-current
correlation in Fourier space at finite frequency �, and then
only afterwards take � → 0.

APPENDIX B: CURRENT-CURRENT CORRELATION
FOR CHIRAL FERMIONS

In this appendix, to check the consistency of the formulas
we derived in Sec. III with the standard results obtained by
Büttiker in the noninteracting case, we derive the current-
current correlation in the case of the integer quantum Hall
(IQH) effect at filling ν = 1. At ν = 1, IQH edges e1 and e2

(see Fig. 2) are described by the noninteracting chiral fermion
Hamiltonian

H0 = −i�v

2∑
j=1

∫
dx : ψ

†
j (x)∂xψj (x) : , (B1)

with v being the Fermi velocity. In the momentum basis, the
chiral fermionic fields ψi(x) take the mode expansion

ψj (x) = 1√
Lj

∑
kj

eikj xckj ,j . (B2)

In Eq. (B2), we use Li to denote the length of the edge i,
which we assume to be large enough to be irrelevant for our fi-
nal result. The double columns : : denote normal ordering with
respect to the ground state |GS〉 = ∏

i=1,2;ε(kj )�0 c
†
kj ,i

|0〉. ckj ,i

is the electron annihilation operator for a state with momentum
kj on edge i. The creation and annihilation operators in the
momentum basis satisfy the standard fermionic anticommu-
tations rules, {c†kj ,j

,ck′
j ′ ,j ′ } = δkj ,k

′
j ′ δj,j ′ , {ckj ,j ,ck′

j ′ ,j ′ } = 0. To
account for the chemical potential bias between the edges, we
assume that, in the absence of tunneling, each edge i is at
equilibrium with a reservoir at chemical potential μi .

In order to allow for electrons to tunnel between the two
edges, we consider the tunneling Hamiltonian HT given by

HT = �eψ
†
1(0)ψ2(0) + H.c. (B3)

The current density operator at site x of edge i is given
by ii(x) = ev : ψ†(x)ψ(x) :. The current correlation function
between point x1 on e1 and point x2 on e2 (cfr Fig. 2) is defined
as in Eq. (10) and, resorting again to the Keldysh formalism
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we use in Sec. III, we readily find that the corresponding zero-frequency limit, S(0), is given by

S(0) = e2v2

2

∑
η=±1

∫ +∞

−∞
d(t1 − t2)〈〈TK : ψ̂

†
1(x1,t1 + η 0+,η)ψ̂1(x1,t1,η) :: ψ̂

†
2(x2,t2 − η 0+, − η)ψ̂2(x2,t2, − η) :〉〉. (B4)

[Note that, in order to preserve the correct ordering of the fermionic operators under the action of TK , in Eq. (B4), we introduced
the infinitesimal positive quantity 0+ as a regularizator.] Assuming a weak tunneling rate between the edges to recover consistency
with the analysis of Sec. III, we compute S(0) to second order in HT , obtaining

S(0) = −|�e|2e2v2

4�2

∑
η,η1,η2=±1

η1η2

∫ +∞

−∞
d(t1 − t2)

∫ +∞

−∞
ds1

∫ +∞

−∞
ds2

× [
G(1)

η2,η
(−x1,s2 − t1)G(1)

η,η1
(x1,t1 − s1)G(2)

η1,−η(−x2,s1 − t2)G(2)
−η,η2

(x2,t2 − s2)

+G(1)
η1,η

(−x1,s1 − t1)G(1)
η,η2

(x1,t1 − s2)G(2)
η2,−η(−x2,s2 − t2)G(2)

−η,η1
(x2,t2 − s1)

]
, (B5)

with the fermionic Keldysh Green function G(i)
η1,η2

(x1 − x2,t1 − t2) = −i〈TKψi(x1,t1,η1)ψ†
i (x2,t2,η2)〉, with ψi(x,t) being the

fermion fields in the interaction representation with respect the Hamiltonian H0. Moving to Fourier space, we may rewrite
Eq. (B5) as

S(0) = |�e|2e2v2

2�2

∑
η,η1,η2=±1

η1η2

∫ +∞

−∞

dω

2π

[
G(1)

η2,η
(−x1,ω)G(1)

η,η1
(x1,ω)G(2)

η1,−η(−x2,ω)G(2)
−η,η2

(x2,ω)
]
, (B6)

with the single-fermion Keldysh Green functions in Fourier space given by [37]

G(i)
++(x,ω) = i

v
eiωx/v[f (�ω − μi) − �(x)], (B7)

G(i)
+−(x,ω) = i

v
eiωx/vf (�ω − μi), (B8)

G(i)
−+(x,ω) = − i

v
eiωx/v[1 − f (�ω − μi)], (B9)

G(i)
−−(x,ω) = i

v
eiωx/v[f (�ω − μi) − �(−x)]. (B10)

In Eq. (B10), f (ω) denotes the Fermi-Dirac distribution function f (ω) = [1 + exp(β�ω)]−1, while �(x) is the Heaviside step
function regularized so that �(0) = 1/2.

Performing the sum over the Keldysh indices, using Eq. (B10) for both x1 and x2 > 0, we obtain

S(0) = − e2|�e|2
2πv2�2

∫ +∞

−∞
dω[f (�ω − μ1) − f (�ω − μ2)]2. (B11)

Notice that in Eq. (9) the tunneling amplitude � has the dimension of an energy, while �e has the dimensions of an energy times
a length. Equation (22) evaluated for ν = 1 reproduces Eq. (B11) by taking � = �e/(2πlc), which is indeed consistent with the
bosonization identity [59] ψi(x) = e−iφi (x)/

√
2πlc.
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Phys. Rev. B 80, 045319 (2009).
[27] V. V. Ponomarenko and D. V. Averin, Phys. Rev. B 82, 205411

(2010).
[28] C. Wang and D. E. Feldman, Phys. Rev. B 82, 165314 (2010).
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