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Evolution and dimensional crossover from the bulk subbands in ABC-stacked graphene
to a three-dimensional Dirac cone structure in rhombohedral graphite
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Rhombohedral graphite behaves like a topological semimetal, possessing flat surface subbands while being
semimetallic in the bulk. The bulk-surface correspondence arises from the ABC-stacking configuration of
graphene layers. The bulk subbands in rhombohedral graphite can be interpreted as a three-dimensional Dirac
cone structure, whose Dirac points form continuous lines spiraling in momentum space. In this paper, we study
the evolution of gapped bulk subbands in ABC-stacked N -layer graphene with an increase of N , and their
dimensional crossover to the three-dimensional Dirac cone structure in the bulk limit, where the bulk gap closes
up at the Dirac-point spirals. To clarify the effect of coupling to the surface subbands, we use a nonperturbative
effective Hamiltonian closed in the bulk subspace. As a consequence, the wavelength of the standing-wave
function across the stack of layers depends on the in-plane Bloch momentum. In the bulk limit, the coupling
vanishes and hence the wavelength is irrelevant to the surface.
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I. INTRODUCTION

Research on graphene layers and their stacks continues
to be performed to this day. The inherent symmetrical and
topological properties inspire new ideas in many fields of
physics. According to hexagonal lattice symmetry, a number
of graphene layers can be stacked in such a way that any
two adjacent layers are shifted from each other in either
direction along the armchair orientation. Among others, the
ABC-stacking configuration is special in that all the layers
are shifted in a single direction. The nontrivial topological
phase thus induced can give rise to surface states [1,2],
which are localized at the outermost layers and coupled to
the remaining, so-called bulk, states [1–4]. By contrast, the
AB-stacking configuration does not accommodate any surface
states because of the relevant trivial topology [1]. As was
realized in ABC-stacked N -layer graphene (ABCNG) [5], the
surface states are characterized by flat subbands crossing about
the zero energy. The related chiral effective Hamiltonian with
chirality J = N was constructed [6–8], and the associated
quantum Hall effect (QHE) was predicted and observed at
least for N = 3 [6,9–11].

Apart from the surface subbands, the bulk subbands are
gapped and the surface subbands reside in the bulk gap
[1,2,8]. The band structure can be changed by experimental
means using a substrate or gate, which induces an on-site
Coulomb potential difference between graphene layers. The
major change is the splitting of the crossing surface subbands
[12,13], as a consequence of the broken inversion symmetry in
the ABC-stacking configuration. Remarkably, as the thickness
N increases, the splitting diminishes and ultimately vanishes,
implying a topological robustness of the surface subbands
in the bulk limit. For the observation of QHEs, the ideal
condition without the Coulomb potential is also experimentally
feasible [12]. The surface subbands are more and more flat
with increasing N , while the bulk subbands evolve to be even
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more complex, as is theoretically known [1,13]. Up to now, the
bulk subbands in ABCNG have been seldom studied, probably
because no attractive properties are expected from them. Their
crossover in the three-dimensional (3D) bulk limit, however,
has been noticed in recent research [1,2].

In the bulk limit, the bulk lattice of ABCNG comprises
an enormous number of graphene layers, and it is usually
called rhombohedral graphite (RG). There is a crossover of
the lattice symmetry from being hexagonal for finite N to
being rhombohedral for infinite N . The rhombohedral lattice
has a two-atom primitive unit cell, and the 2 × 2 Hamiltonian
is also chiral [1]. The derived bulk subbands are gapless,
and they can be interpreted as a 3D Dirac cone structure
with continuous locations of Dirac points (DPs) [14,15].
The lines of DPs spiral in momentum space in association
with a sausagelike Fermi surface [14,16]. In agreement with
those studies, a previous semi-infinite analysis of ABCNG
showed that the resulting density of states (DOS) and Landau
level spectrum are the same as in monolayer graphene [3].
The 3D Dirac cone structure in RG can explain the 3D
QHE observed in graphite samples [17], where 2D Dirac
fermions of chirality J = 1 are transported in each layer and
the quantized conductivities are the same as in monolayer
graphene [18]. This 2D transport character is a general attribute
of graphite, for which the much smaller ratio of interlayer to
intralayer hopping is responsible. In principle, the effective
dimensionality should be determined by the interplay between
the interlayer hopping and the interlayer electron-electron
interaction [19]. The latter does not affect the characteristics
of the low-energy band structure obtained from single-particle
models. In that interplay, however, the 3D nature of RG shows
up as the presence of optical magnetoplasmons, which is absent
in monolayer graphene [20].

As a whole, RG has a bulk-surface correspondence due
to the nontrivial topology [1,2], similar to the bulk-edge
correspondence in monolayer graphene with zigzag edges
[21]. This correspondence provides a topological reasoning
for why the splitting of the surface subbands of ABCNG
vanishes in the bulk limit, even in the presence of the on-site
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Coulomb potential [12]. The surface subbands are protected
by the DP spirals, which behave as nodal lines similar to
the DPs behaving as nodal points in the bulk of monolayer
graphene [2,22]. Consequently, RG possesses robust flat
surface subbands while being semimetallic in the bulk with
a 3D Dirac cone structure. Therefore, a comparison might
be made to certain ABC-layered topological insulators, e.g.,
Bi2Se3 and Bi2Te3 [23], for which the dimensional crossover
from 3D to 2D has been observed [24].

It is of interest to understand the band structure of ABCNG
ranging from 2D to 3D, as a comparable study to those on
AB-stacked N -layer graphene [13,25,26]. Here we focus on
the bulk subbands. In previous first-principle calculations, the
bulk gap was known to be still open for N = 10 [1], and even
in analyses for arbitrary N the dimensional crossover was not
elucidated [13]. Furthermore, these works were conducted by
simultaneously considering the surface and the bulk subbands
so that the effect of coupling between them is not easy to
clarify. Our purpose is to explore the evolution of the gapped
bulk subbands under the coupling effect in the increase of
N and to show the dimensional crossover to the gapless 3D
Dirac cone structure in the bulk limit. This paper is organized
as follows. In Sec. II, we briefly describe the 3D Dirac cone
structure in the continuous approach. Then we set forth the
chain model for ABCNG with regard to its mapping relation
to the continuous approach. It is shown that the infinite chain
model leads to the 3D Dirac cone structure as well. Based
on the finite chain model, we construct nonperturbatively an
effective Hamiltonian that is closed in the bulk subspace, so
as to embody the coupling effect. In Sec. III, we resolve the
second-order recursion involved in the eigenproblem of the
effective bulk Hamiltonian, and we solve the eigenenergies and
eigenmodes for arbitrary N . The eigenmodes are characterized
so that the indices for the bulk subbands are related to the bulk
wave numbers. Moreover, we calculate the associated bulk
DOS. In Sec. IV, we analyze the obtained bulk subbands
in ABCNG to elucidate their evolution and dimensional
crossover. A summary with an outlook is given in Sec. V.

II. MODEL

The stacking configuration of ABCNG is shown in Fig. 1(a),
where graphene layers infinitely extended in the (x,y) plane
and stacked along the z direction are labeled by l (=
1,2, . . . ,N ). A solid view of the lattice of ABCNG is given
in Fig. 1(b), with the lattice constant of a single layer
a = 0.246 nm and interlayer distance d = 0.337 nm. Carbon
atoms in this configuration are classified into two sets of atomic
sublattices. One set contains the surface sublattices (B1 and
AN ), while the other contains the bulk sublattices. Each bulk
atom is vertically bonded with another one that is positioned in
either the adjacent upper or lower layer. The surface atoms in
the two outermost layers are free from such bonding. If N goes
to infinity, Fig. 1(b) also shows the bulk lattice of RG. In the
bulk of RG, all Al (Bl) are indistinguishable, denoted by A (B),
and hence they define a two-atom rhombohedral primitive unit
cell and an alternative hexagonal nonprimitive unit cell of triple
volume. The bulk lattice of RG is spanned by the primitive unit
vectors a1,2,3, which add up to the c axis [(111)] pointing in
the z direction. In Fig. 2(a), the first rhombohedral Brillouin
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FIG. 1. (a) Stacking configuration of ABCNG, with layers la-
beled by numerals. B1 (filled), AN (unfilled): surface sublattices,
shown large with orange circles; Bl �=1 (filled), Al �=N (unfilled):
bulk sublattices. The TB hoppings β0 and β1 are shown between
representative atoms. One representative chain is shown by linked
thick sticks. (b) Solid view of the lattice of ABCNG and, alternatively,
a view of the bulk lattice of RG by infinitely extending the number of
layers. The primitive unit vectors a1,2,3 of the bulk of RG add up to the
c axis, where the primitive unit cell and alternative hexagonal unit cell
are, respectively, shown by the rhombohedron (red) and hexahedron
(blue).

zone (BZ) is schematically depicted, accompanied by a prism
of the folded hexagonal zone of the same height π/d. As
noticed, the vertical edge lines of the folded hexagonal zone,
through the K (ξ ) points (ξ = ±1 being the hexagonal valley
index), do not coincide with any high-symmetry points of the
rhombohedral BZ. The 2D BZ associated with the projected
(111) plane of RG is shown above, which is hexagonal
with the projections of the edge lines denoted by K̄ (ξ ) at
the corner points. The rhombohedral-to-hexagonal folding
relation is illustrated in Fig. 2(b) by a vertical cut taken through
suitable coincident high-symmetry points. Therefore, that 2D
BZ belonging to RG is identical to the 2D BZ associated with
the projected (001) plane of stacks of N layers. Such is a
means extensively used, say, in angle-resolved photoemission
spectroscopy [12,27], for displaying both the band structures
and the constant-energy contours of systems ranging from 2D
to 3D.
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FIG. 2. (a) Rhombohedral BZ (red) accompanied with a prism
(blue) belonging to the folded hexagonal zone. Filled (blue) and
unfilled dots are high-symmetry points of the folded hexagonal zone,
only the unfilled ones coinciding with high-symmetry points of the
rhombohedral BZ. The 2D BZ (black) of the projected c-axis plane
is plotted above, with K̄ (±) (filled in blue) being the projections of
edge lines of the folded hexagonal zone. (b) A vertical cut of (a),
taken through suitable coincident high-symmetry points. The folded
hexagonal zone is achieved by folding wedge z2 to z1 and z3 to z4.
The solid line (black) is laid at kz = 0, being equivalent to the 2D BZ
shown above.

A minimal tight-binding (TB) model, including only the
nearest intralayer hopping β0 (= −2.73 eV) and interlayer
hopping β1 (= 0.32 eV), is described in Fig. 1(a) and used in
this paper, where β1 takes place between the vertically bonded
bulk atoms in adjacent layers, as shown in Fig. 1(a). The on-
site Coulomb potential is not included here since it can be
experimentally conditioned to be zero for realizing the QHEs,
not to mention its diminishing and vanishing role for large N .

A. 3D Dirac cone structure

The 3D Dirac cone structure in RG is described within
the minimal TB model in the continuous approach as follows.
Suppose that the low-energy bulk subbands in RG should be
present in the vicinity of the K (ξ ) edge lines [16], as in general
stacks of graphene layers. Hence, we use the long-wavelength
approximation for in-plane (kx,ky) about the K (ξ ) edge lines
(2πξ/(

√
3a),2πξ/(3a),kz), which are specified in Fig. 3(a).

Based on the two TB Bloch functions |A〉 and |B〉 for the two
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FIG. 3. (a) Projections (red) of the DP spirals on the 2D BZ,
where the portions inside and outside are plotted in solid and dotted
arcs, respectively. The arrows indicate the spiraling senses in the
increase of kz. (b) Scale-up of the projection around the specified
K̄ (+) in (a). Twelve DPs are marked, for which the numerals denote
the associated values of kz in the unit of π/(6d) (mod 2π/d). The
clockwise spiraling sense is indicated by the arrow.

bulk sublattices of RG, the Hamiltonian H(ξ ) with respect to ξ

is represented by a 2 × 2 matrix, whose elements read

H
(ξ )
11 = H

(ξ )
22 = 0,

H
(ξ )
12 = H

(ξ )∗
21 = −ξv0p exp(−iξϕ) + β1 exp (ikzd), (1)

where p = �(k2
x + k2

y)1/2 is the in-plane momentum, ϕ =
arctan (py/px) − 7π/6 is the azimuthal angle, and v0 =
(31/2/2)a|β0|/� is the Fermi velocity as shown below. The
existence of DPs at the degeneracy points is expected in view
of the chirality of H(ξ ) [15]. However, the location of the DP
(pD,ϕD) disperses in the rhombohedral BZ and, in particular,
varies continuously with kz due to the interlayer hopping β1.
That is, from Eq. (1), (pD,ϕD) is given by

pD = β1

v0
. (2)

ϕD = −ξ
(
kzd − π

2

)
− π

2
. (3)
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According to Eqs. (2) and (3), there are two distinguishable DP
spirals with respect to ξ = ±1. As kz increases from −π/d to
π/d in the rhombohedral BZ, the azimuthal angle ϕD decreases
along the DP spiral with ξ = 1 and increases with ξ = −1,
making the clockwise and counterclockwise senses of the DP
spirals, respectively. It is straightforward to deduce that all
the DPs have zero energy so that the Fermi surface shrinks to
the DP spirals as a specialized result of the minimal model
[2,14,16]. As shown in Fig. 3(a), it is convenient to project
the DP spirals onto the 2D BZ for illustration, where the six
valleys are distinguished by two indices ξ = ±1 and two of
them are specified. Several projected DPs around the specified
K̄ (+) are marked in Fig. 3(b), for example. The DP spiral
around the specified K (−) edge line can be similarly located
using Eqs. (2) and (3). It is noted that those DPs outside the
hexagon can be translated by reciprocal-lattice vectors to other
equivalent K (ξ ) edge lines.

The Dirac cones are now expressed in terms of (q,ϑ)
measured from the DPs for a fixed kz. The coordi-
nate is transformed by q2 = p2 + p2

D − 2pDp cos (ϕ − ϕD)
and tan [ϑ + (1 + ξ )π/2] = (p sin ϕ − pD sin ϕD)(p cos ϕ −
pD cos ϕD)−1. The Hamiltonian in Eq. (1) turns out to be
transformed as

H(ξ ) = ξv0q cos ϑσx + v0q sin ϑσy, (4)

where σx and σy are the Pauli matrices. The chiral Hamiltonian
H(ξ ) described in Eq. (4) is of the same form as monolayer
graphene with the Fermi velocity v0. It is remarked that
the DP spirals should behave as nodal lines similar to the
DPs behaving as nodal points in the bulk of monolayer
graphene [2,22]. The radius of the spiral location β1/v0 as
described in Eq. (2) delimits the boundary of the bulk-surface
correspondence, or the topological stability [2]. Here we show
that within the minimal model, the 3D Dirac cone structure in
RG is composed of identical vertical and isotropic Dirac cones
along the DP spirals. It suffices for the study of the evolution
and dimensional crossover.

B. Chain model

The lattice of ABCNG can be modeled as chains of atoms
linked between the two surface sublattices, with the primitive
unit set {B1,A1,B2,A2, . . . ,BN,AN }. The chain model is
applicable for arbitrary N , as a map from the continuous
description [1,3]. The mapped Hamiltonian H(N) is based on
{|B1〉,|AN 〉,|A1〉,|B2〉,|A2〉,|B3〉, . . . ,|AN−1〉,|BN 〉}, the set of
the 2D TB Bloch functions. The band structure is acquired in
the 2D BZ, which is associated with the projected (001) plane
of the stack. In the long-wavelength approximation about the
high-symmetry corner points K̄ (ξ ), referring to Fig. 3(a), H(N)

is represented as

H(N) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 v0π
† 0 0 0 0 · · · 0 0 0 0

0 0 0 0 0 0 0 · · · 0 0 0 v0π

v0π 0 0 β1 0 0 0 · · · 0 0 0 0
0 0 β1 0 v0π

† 0 0 · · · 0 0 0 0
0 0 0 v0π 0 β1 0 · · · 0 0 0 0
0 0 0 0 β1 0 v0π

† · · · 0 0 0 0
0 0 0 0 0 v0π 0 · · · 0 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 0 0 · · · 0 β1 0 0
0 0 0 0 0 0 0 · · · β1 0 v0π

† 0
0 0 0 0 0 0 0 · · · 0 v0π 0 β1

0 v0π
† 0 0 0 0 0 · · · 0 0 β1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2N×2N

, (5)

with in-plane momentum π = −ξpx + ipy , px → p cos ϕ,
py → p sin ϕ being redefined to fit the setting for the 3D
Dirac cone structure [Eq. (1)]. Without loss of generality
for our purpose, we choose ξ = 1 in the following. Since
the bulk lattice of ABCNG has inversion symmetry, it can
accommodate standing wave functions. This is a general
property of systems having inversion or mirror symmetries,
such as AB-stacked N -layer graphene with even or odd N ,
respectively. In the case of the AB-stacking configuration, a
direct zone-folding scheme along the c axis can be applied,
with definite kz wave numbers of the standing waves, so as to
obtain the band structure for finite N from AB-stacked graphite
[26,28]. However, the situation of ABCNG is complicated due
to the existing surface subbands.

The coupling between the surface and the bulk subbands
is intuitively expected to decrease as N increases. Within the

infinite chain model, the surface layers are absent and thereby
the 3D Dirac cone structure should be derived as well. From
Eq. (5), the bulk eigenequation of H(N) is expressed as

(
β1 −ε v0π

† 0
0 v0π −ε β1

)⎛
⎜⎝
UAl−1

UBl

UAl

UBl+1

⎞
⎟⎠ = 0 (6)

for the arbitrary layer label l, where ε is the eigenenergy
and UAl

and UBl′ are the bulk components of the eigenmode.
For infinite N , there are no boundaries and the labels l

are indistinguishable. Thus, the eigenmode takes the form
(UAl

,UBl
)T = (ŨAl

,ŨBl
)T eiκld , where κ belongs to the con-

tinuous set {±jπ/(Nd)|j = 1,2, . . . }N→∞. Inserting it into
Eq. (6), the eigenequation in the subspace (ŨAl

,ŨBl
) is obtained
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as (
0 v0π + β1 exp(iκd)

v0π
† + β1 exp(−iκd) 0

)(
ŨAl

ŨBl

)

= ε

(
ŨAl

ŨBl

)
. (7)

Evidently, Eq. (7) is equivalent to Eq. (1) for the bulk of RG
if κ is identified to be indexed by the kz wave number. In the
bulk limit of ABCNG, the bulk standing wave functions are
thus characterized by definite wave vectors along the stacking
direction (in the c axis) as having been known [13]. Now
that the surface layers are irrelevant, the direct zone-folding
scheme is feasible. As shown in Fig. 2(b), the 2D BZ of the
projected (111) plane is just the cut of the folded hexagonal
zone at kz = 0, where the whole 3D Dirac cone structure is
folded in.

C. Construction of the nonperturbative effective
bulk Hamiltonian

To understand the evolution and dimensional crossover,
here we consider the finite chain model. We shall construct
an effective Hamiltonian that is closed in the bulk subspace
and embodied with the coupling to the surface subbands. The
Hamiltonian H(N) in Eq. (5) is partitioned as follows. The
upper left 2 × 2 block is denoted by H

(N)
11 with respect to the

surface subspace spanned by (|B1〉,|AN 〉), and the lower right
(2N − 2) × (2N − 2) block is H

(N)
22 for the bulk subspace of

the bulk sublattices. The coupling between H
(N)
11 and H

(N)
22 is

present in the off-diagonal blocks H
(N)
12 and H

(N)
21 [= (H (N)

12 )†].
It is easy to identify the surface subbands as being lower in
energy than the bulk subbands. The secular equation reduces
to det (H(N) − ε) = ε2(ε2 − β2

1 )N−1 = 0 at K̄ (+), where the
coupling is absent since H

(N)
12 and H

(N)
21 are zero matrices

with π = 0. The lowest eigenenergy ε = 0 is associated with
two degenerate eigenstates in the surface subspace, while
the eigenenergies ε = ±β1 are each associated with N − 1
degenerate eigenstates in the bulk subspace. Our goal is
to construct an effective Hamiltonian that is closed in the
bulk subspace. That is, a block diagonalization for the full
Hamiltonian H(N) is required:

H(N) =
(

H
(N)
surf 0

0 H
(N)
bulk

)
, (8)

where H
(N)
surf and H

(N)
bulk are the effective Hamiltonians closed

in the surface and the bulk subspaces, respectively. Con-
sidering Eq. (5) for H(N) with π �= 0 in general, we ex-
pand its eigenvectors as |ψm′ 〉 = ∑2N

m=1 Cmm′ |ψ (0)
m 〉 in terms

of the eigenvectors |ψ (0)
m 〉 of the uncoupled Hamiltonian

(π = 0). Hence, the Schrödinger equation is reformulated
to be (

H
(N)
11 − ε H

(N)
12

H
(N)
21 H

(N)
22 − ε

)(
C1

C2

)
= 0, (9)

where C1 and C2 are, respectively, 2 × 2N and (2N − 2) × 2N

partitioned blocks of the matrix [Cmm′]. The block diagonal-
ization in Eq. (8) can be done by a similarity transformation
of the basis from {|ψ (0)

m 〉} to the unsolved set of {|ψm′ 〉}.
From Eq. (9), the effective surface Hamiltonian H

(N)
surf is

given by

H
(N)
surf (ε) = H

(N)
11 − H

(N)
12

(
H

(N)
22 − ε

)−1
H

(N)
21 , (10)

and the effective bulk Hamiltonian H
(N)
bulk is

H
(N)
bulk(ε) = H

(N)
22 − H

(N)
21

(
H

(N)
11 − ε

)−1
H

(N)
12 , (11)

where the coupling effect is clearly expressed by both of the
second terms on the right-hand sides. Equivalently, Eqs. (10)
and (11) can be derived using the Green’s function G(N)(ε) =
(H(N) − ε)−1 such that one has G

(N)
11/22(ε) = (H (N)

surf/bulk − ε)−1,

where G
(N)
11 and G

(N)
22 are the partitioned blocks of the Green’s

function G(N)[29]. An effective Hamiltonian can even be non-
Hermitian in general, but this is not the case here. Moreover, it
depends on energy ε. This can be deemed to be the price for the
reduction in the matrix dimension. The resulting eigenenergies
and eigenmodes might also depend on energy ε [29]. They
ought to be in agreement with those of the true Hamiltonian
at any level of energy ε if the effective Hamiltonian is
well constructed. Indeed, Eqs. (10) and (11) lead to the
effective Hamiltonians for ABCNG, with energy dependences
arising from the coupling between the surface and the bulk
subbands.

The surface subbands have been well understood by the
chiral effective Hamiltonian H

(3)
chiral [7,8], which was obtained

in the framework of Eq. (10) by retaining only the first order of
the power series expansion in ε/|H (N)

22 | for the coupling term
before a renormalization. For arbitrary N , the chiral effective
Hamiltonian was deduced to be [6]

H
(N)
chiral =

(−1

β1

)N−1
(

0 (v0π
†)N

(v0π )N 0

)
. (12)

It should be noted that Eq. (12) diverges outside the projection
of the DP spiral with respect to K̄ (+), viz., p > pD = β1/v0,
referring to Eq. (2). The surface subbands inside are more
and more flat and approach the zero energy with increas-
ing N , as a consequence of bulk-surface correspondence
[30].

For the bulk subbands, here we construct a nonperturbative
effective Hamiltonian from Eq. (11) without using any per-
turbation procedure or power series expansion. In so doing,
we can reach the region around p = pD , even though the
bulk gap is, regarding the DP spiral, expected to be nearly
but not exactly closed up in the bulk limit for arbitrarily large
finite N . Therefore, the effective bulk Hamiltonian H

(N)
bulk(ε) is
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given by

H
(N)
bulk(ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε−1(v0p)2 β1 0 0 0 · · · 0 0 0 0
β1 0 v0π

† 0 0 · · · 0 0 0 0
0 v0π 0 β1 0 · · · 0 0 0 0
0 0 β1 0 v0π

† · · · 0 0 0 0
0 0 0 v0π 0 · · · 0 0 0 0
...

...
...

...
...

. . . 0 0 0 0
0 0 0 0 0 · · · 0 β1 0 0
0 0 0 0 0 · · · β1 0 v0π

† 0
0 0 0 0 0 · · · 0 v0π 0 β1

0 0 0 0 0 · · · 0 0 β1 ε−1(v0p)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2N−2)×(2N−2)

. (13)

Thus, the coupling effect on the bulk subbands manifests itself exactly at the two diagonal corners, with nonvanishing elements
given by a parameter (v0p)2/ε due to H

(N)
11 = 0. According to Eq. (13), the coupling is absent at K̄ (+) with p = 0 so that

H
(N)
bulk(ε = β1) = H

(N)
22 is obtained.

III. BULK SUBBANDS IN ABC-STACKED N-LAYER GRAPHENE

A. Resolution for the secular equation

For the bulk subbands in ABCNG, the eigenenergies of the effective bulk Hamiltonian H
(N)
bulk(ε) described in Eq. (13) are

solved as follows. The secular equation det [H (N)
bulk(ε) − ε] = 0 is decomposed to be

fN (ε) + (v0p)2

ε
gN−1(ε) = 0, (14)

where fN (ε)[= det (H (N)
22 − ε)] and gN−1(ε) are given by

fN (ε) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε β1 0 0 0 · · · 0 0 0 0
β1 −ε v0π

† 0 0 · · · 0 0 0 0
0 v0π −ε β1 0 · · · 0 0 0 0
0 0 β1 −ε v0π

† · · · 0 0 0 0
0 0 0 v0π −ε · · · 0 0 0 0
...

...
...

...
...

. . . 0 0 0 0
0 0 0 0 0 · · · −ε β1 0 0
0 0 0 0 0 · · · β1 −ε v0π

† 0
0 0 0 0 0 · · · 0 v0π −ε β1

0 0 0 0 0 · · · 0 0 β1 −ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2N−2)×(2N−2)

, (15)

gN−1(ε) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε v0π
† 0 · · · 0 0 0

v0π −ε β1 · · · 0 0 0
0 β1 −ε · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −ε v0π
† 0

0 0 0 · · · v0π −ε β1

0 0 0 · · · 0 β1 −ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2N−3)×(2N−3)

. (16)

Clearly, it is gN−1(ε) that arises from the coupling to the surface
subbands. The relation between Eqs. (15) and (16), viz.,

fN (ε) = −β2
1fN−1(ε) − εgN−1(ε),

gN−1(ε) = −εfN−1(ε) − (v0p)2gN−2(ε), N � 3, (17)

leads to a second-order recursive equation

fN (ε) = (λ1 + λ2)fN−1(ε) − λ1λ2fN−2(ε), N � 3, (18)

with

λ1 + λ2 = ε2 − β2
1 − (v0p)2, λ1λ2 = β2

1 (v0p)2. (19)
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The initial conditions of fN (ε) are set forth in Eq. (15) as

f1(ε) = 1, f2(ε) = ε2 − β2
1 − (v0p)2. (20)

The recursion of gN−1(ε) has the same form as fN (ε) in
Eq. (18), with more tedious initial conditions.

To resolve fN (ε) with the initial conditions given in
Eq. (20), we rewrite Eq. (18) as fN (ε) − λ1fN−1(ε) =
λ2[fN−1(ε) − λ1fN−2(ε)]. At first, we get fN (ε) −
λ1fN−1(ε) = λN−2

2 [f2(ε) − λ1f1(ε)]. Then we achieve the
resolution and obtain fN (ε) = λN−1

1 f1(ε) + ∑N
ν=2 λN−ν

1 λν−2
2

[f2(ε) − λ1f1(ε)] for arbitrary N , which is written, for
conciseness, as

fN (ε) = 1

λ1 − λ2

[(
λN−1

1 − λN−1
2

)
f2(ε)

− λ1λ2
(
λN−2

1 − λN−2
2

)
f1(ε)

]
, N � 3. (21)

The resolved expression of gN−1(ε) can be obtained with
Eq. (21) according to Eqs. (17).

B. Eigenenergy spectrum

In proceeding to solve the eigenvalues of H
(N)
bulk(ε) from

the secular equation (14), fN (ε) and gN−1(ε) obtained from
Eqs. (17) and (21) are manipulated further. The variables λ1

and λ2 defined in Eq. (19) form a complex conjugate pair if
and only if

(λ1+λ2)2−4λ1λ2 = [ε − (β1 + v0p)][ε − (β1 − v0p)]

× [ε + (β1 + v0p)][ε + (β1−v0p)]<0.

(22)

That is, the whole eigenenergy spectrum ε(p) is enveloped
by four conelike branches: ε − (β1 ± v0p) = 0 and ε + (β1 ±
v0p) = 0. The intersections of these branches at (p = pD =
β1/v0,ε = 0) are just the projection of the DP spiral on the
2D BZ [Eq. (2)], referring to Fig. 3(b). This premise is
definitely valid in view of the known band structure of ABCNG
[13,31]. By changing variables as λ1 = ρeiφ and λ2 = ρe−iφ

in Eq. (19), viz.,

ρ = β1v0p, cos φ = ε2 − β2
1 − (v0p)2

2β1v0p
, (23)

Eq. (21) is transformed to be

fN (ε) = ρN−1

sin φ
sin Nφ, N � 3, (24)

using the trigonometric identity 2 cos φ sin (N − 1)φ −
sin (N − 2)φ = sin Nφ. Moreover, Eq. (24) together with
Eq. (17) yields

gN−1(ε) = −β1ρ
N−2

ε sin φ
[v0p sin Nφ+β1 sin (N−1)φ], N � 3.

(25)
In terms of Eqs. (24) and (25) and in use of Eq. (23), the secular
Eq. (14) becomes

β2
1ρN−1

ε2 sin φ

(
sin Nφ + v0p

β1
sin (N + 1)φ

)
= 0, N � 3,

(26)

where energy ε turns out to be factored out in spite of the
ε-dependent Hamiltonian H

(N)
bulk(ε). It is noted that the coupling

to the surface subbands has a manifestation in the second term
in Eq. (26). There should be N − 1 roots to Eq. (26) with
respect to the 2N − 2 eigenvalues of H

(N)
bulk(ε). Once those

roots φj (p), j = 1,2, . . . ,N − 1, are determined as functions
of p, the eigenenergies of H

(N)
bulk(ε) can be acquired according

to Eq. (23). That is,

ε
(±)
j (p) = ±[

β2
1 + (v0p)2 + 2β1v0p cos φj (p)

]1/2
,

j = 1,2, . . . ,N − 1, (27)

where ± refer to the conduction and the valence bulk subbands,
respectively.

The roots φj (p) to Eq. (26) index the bulk subbands. To find
φj (p) from Eq. (26), we first survey v0p/β1 = 0 at K̄ (+) at
p = 0 and v0p/β1 = 1 at p = pD . For v0p/β1 = 0, the roots
φj to Eq. (26) are simply specified by sin Nφ = 0, N � 3,
given by

Nφj = jπ, j = 1,2, . . . ,N − 1. (28)

For v0p/β1 = 1, Eq. (26) becomes {β2
1ρN−1/[ε2 sin (φ/2)]}

sin (N + 1/2)φ = 0, N � 3, and the roots φj are solved as

Nφj = jπ − 1

2
φj , j = 1,2, . . . ,N − 1. (29)

In Eqs. (28) and (29), the numerals j are specified so as to
exclude the case of sin φ = 0. The two sets of φj at the two
ends of v0p/β1 are different. Between these two ends, the
bulk indices φj (p) are implicit in Eq. (26) and can be solved
iteratively by

Nφj = jπ − θj (p,φj ), j = 1,2, . . . ,N − 1, (30)

as roots to sin (Nφ + θ ) = 0, where tan θ = sin φ[β1/(v0p) +
cos φ]−1 is defined. Here we note that Eq. (26) agrees
with previous research [13], whose derivation is conducted
by simultaneously considering the surface and the bulk
subbands with boundary conditions for the bulk wave functions
fixed a priori at fictitious atoms outside of ABCNG. The
present derivation of Eq. (26) is based on the effective bulk
Hamiltonian and, therefore, the coupling effect has a definite
manifestation. According to Eq. (26), the coupling effect is
measured by v0p/β1, the distance from K̄ (+) with p = 0 to
the projection of the DP spiral with pD [Eq. (2)]. As revealed
in Eq. (30), θj (p,φj ) varies monotonically from 0 to φj/2. For
large N , Nφj (≈jπ ) dominates in Eq. (30), indicating that the
coupling effect is weakened.

C. Characterization of the eigenmodes

In association with the eigenenergies ε
(±)
j (p) of the ef-

fective bulk Hamiltonian H
(N)
bulk(ε), now the eigenmodes are

characterized with respect to φj . According to the structure of
H

(N)
bulk(ε), the inherent recursive relation among the β1-bonded

components of an eigenmode is given by(
0 −v0π

†

β1 −ε

)(
UBl+1

UAl

)
=

( −ε β1

−v0π 0

)(
UBl

UAl−1

)
,

l = 2,3, . . . ,N − 1, (31)

075437-7



CHING-HONG HO, CHENG-PENG CHANG, AND MING-FA LIN PHYSICAL REVIEW B 93, 075437 (2016)

for which U l = (UBl+1,UAl
)T is defined below. The recursion

Eq. (31) is equivalent to

U l = RU l−1, U l = Rl−1U1, l = 2,3, . . . ,N − 1, (32)

with R obtained as

R = 1

β1v0π †

(
ε2 − (v0p)2 −εβ1

εβ1 −β2
1

)
. (33)

A deduction of Eq. (32) leads to

UN−1 = RN−2U1. (34)

Here we put the boundary conditions due to the coupling to
the surface subbands as known from H

(N)
bulk(ε) in Eq. (13), that

is,

U1 = UA1

(
β−1

1 (ε − σ )
1

)
, UN−1 = UBN

(
1

β−1
1 (ε − σ )

)
,

(35)
where σ = (v0p)2/ε refers to the coupling elements of
H

(N)
bulk(ε).
For the power RN−2 in Eq. (34), we will derive an explicit

expression in terms of R’s eigenvalues, λ̃1 and λ̃2, with the
help of a general theorem for nondegenerate eigenvalues [32],
instead of performing a direct but tedious calculation with the
similarity transformation. Let h(R) denote any polynomial of
R. This theorem applied here sets forth

h(R) =
∑
i=1,2

Pi(R)h(λ̃i), (36)

where Pi(R) is given by

Pi(R) = R − λ̃j I

λ̃i − λ̃j

, j �= i, (37)

with I being the identity matrix. It is noted that Pi(R) is the
matrix that projects any state to the ith eigenstate of R. Due to
Eqs. (36) and (37), any power Rl can be expressed as

Rl = (λ̃1 − λ̃2)−1
[(

λ̃1λ̃
l
2 − λ̃l

1λ̃2
)
I + (

λ̃l
1 − λ̃l

2

)
R

]
. (38)

From Eq. (33), the eigenvalues of R turn out to be related
to λ1 and λ2 given in Eq. (19), viz., λ̃i = λi/(β1v0π

†), i =
1,2. Referring to Eq. (5) for π † = peiϕ′

, with ϕ′ = ϕ + π in
agreement with Eq. (1), and changing variables for λ1,2 as in
Eq. (23), λ̃1,2 are obtained as

λ̃1 = exp[i(φ − ϕ′)], λ̃2 = exp[ − i(φ + ϕ′)] (39)

and

λ̃1 + λ̃1 = 2 exp(−iϕ′) cos φ, λ̃1λ̃2 = exp(−2iϕ′). (40)

For convenience below, we define and use η1,2 = λ1,2/ρ =
e±iφ , respectively. As a result, Eq. (38) becomes

Rl = exp(−ilϕ′)
η1 − η2

[(
ηl+1

1 − ηl+1
2 0

0 ηl−1
2 − ηl−1

1

)

+ ηl
1 − ηl

2

v0p

(
β1 −ε

ε −β1

)]
, (41)

where we have change the element R11 = ε2 − (v0p)2

[Eq. (33)] to be λ1 + λ2 + β2
1 with Eq. (23).

All the eigenmodes must be characterized, before being
solved out, by requiring the nontrivial solutions as one put
Eq. (41) into Eq. (34) with the boundary conditions Eq. (35).
The characterization is equivalent to the determination of the
eigenenergies ε

(±)
j (p) with Eq. (26), which is derived from the

secular equation (14). The nontrivial condition is thus given
by(

σ − ε

β1

)2(
ηN−1

1 − ηN−1
2

) + σ 2 − ε2 + β2
1

β1v0p

(
ηN−2

1 − ηN−2
2

)
+ ηN−3

1 − ηN−3
2 = 0. (42)

By using Eq. (23) and the identity (η1 + η2)(ηl
1 − ηl

2) =
ηl+1

1 − ηl+1
2 + ηl−1

1 − ηl−1
2 repeatedly, it is straightforward to

reduce Eq. (42) to

β1v0p

ε2

[
ηN

1 − ηN
2 + v0p

β1

(
ηN+1

1 − ηN+1
2

)] = 0. (43)

Obviously, Eq. (43) is equivalent to Eq. (26) due to the identity
ην

1 − ην
2 = 2i sin νφ.

In terms of the characterized φj , the eigenmode U j can be
obtained from Eqs. (32), (35), and (41), with components U j,l ,
l = 1,2, . . . ,N − 1, given by(
Uj,Bl+1

Uj,Al

)
= Uj,A1 exp[ − i(l − 1)ϕ′]

sin φj

×
(

ε−1β1[ sin lφj +β−1
1 v0p sin (l+1)φj ]

sin lφj

)
. (44)

The energy (ε) dependence of the relative magnitudes of U j,l ,
shown as β1/ε in Eq. (44), is a reasonable result of the ε-
dependent effective bulk Hamiltonian H

(N)
bulk(ε). At any given

level of energy ε, the eigenmode U j can be evaluated from
Eq. (44). For verification, U j,N−1 is given by(

Uj,BN

Uj,AN−1

)
= Uj,A1 exp[ − i(N − 2)ϕ′]

sin φj

×
(

ε(v0p)−1 sin Nφj

[ε2 − (v0p)2](β1v0p)−1 sin Nφj

)
, (45)

which is simplified due to sin Nφj +
(v0p/β1) sin (N + 1)φj = 0 [Eq. (26)] and can be shown
to satisfy the boundary condition Eq. (35). It is easy to
extend Eq. (44) to l = 0 and l = N , so that the present
characterization of φj with respect to Eq. (26) proves to agree
with the a priori imposition of Uj,A0 = 0 and Uj,BN+1 = 0 at
fictitious bulk atoms outside of ANCNG [13]. The eigenmodes
U j constitute standing wave functions, of which the bulk
indices φj are related to the kz wave numbers by kz = ±φj/d.
Because of the coupling to the surface subbands, φj is a
function of p, implicitly given in Eq. (30). Therefore, in
ABCNG the wavelength of the standing wave across the stack
of graphene layers depends on the in-plane Bloch momentum.

D. Bulk density of states

The bulk DOS is a sum over all the local DOSs of individual
bulk sublattices. Generally, the local DOS is related to the
Green’s function in the bulk subspace. If ε → ε + i0+ is made,
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the Green’s function associated with the effective bulk Hamil-
tonian reads G

(N)
22 (ε + i0+) = [H (N)

bulk(ε) − ε − i0+]−1 [29].
Referring to Eq. (27), the subband index j (= 1,2, . . . ,N − 1)

and the band index s (
def= ±) are combined as m(∈ {j} ⊗ {s})

in the following. If the bulk subspace is spanned by the set
of eigenvectors {|ψm〉} of H

(N)
bulk(ε), with the eigenvalues {εm},

the Green’s function represented as
∑

m |ψm〉〈ψm|[H (N)
bulk(ε) −

ε − i0+]−1|ψm〉〈ψm| reduces to

G
(N)
22 (ε + i0+) = −

∑
m

|ψm〉〈ψm|
ε − εm + i0+ , (46)

for which the identity 〈ψm|O|ψm〉−1 = 〈ψm|O−1|ψm〉 for an
operator O is used. Based on the 2N − 2 TB Bloch functions,
the imaginary part of the diagonal element gnn of G

(N)
22 (ε +

i0+) in Eq. (46) is given by

Im gnn = π
∑
m

|cmn|2δ(ε − εm), n = 1,2, . . . ,2N − 2,

(47)
with cmn = 〈φn|ψm〉 being the component of |ψm〉 at the
nth bulk sublattice, where πδ(t) = w/(t2 + w2), w → 0, is
defined for the δ function. The local DOS has a manifestation
in Eq. (47) since the eigenvector |ψm〉 contributes a probability
density |cmn|2 at the nth bulk sublattice. In the infinitely
extended (x,y) plane, the number of states is obtained by
counting the allowed wave vectors in (kx,ky) space. Hence,
the local DOS is given by

D(N)
nn (ε) = 1

π

∫
BZ

dk
(2π )2

Im gnn, (48)

where the integration turns out to run along the circular
isoenergetic path with respect to each subband εm(p = �k)
given in Eq. (27).

The bulk DOS is obtained from the local DOS in Eq. (48) by
summing D(N)

nn (ε) over all the 2N − 2 bulk sublattices, given
by D

(N)
bulk(ε) = ∑2N−2

n D(N)
nn (ε). This leads to

D
(N)
bulk(ε) =

∑
m

∫
BZ

dk
(2π )2

δ(ε − εm(k)), (49)

where
∑2N−2

n |cmn|2 = 1 for normalized |ψm〉. In the cal-
culation with Eq. (49), we use the Lorentzian (�/π ){[ε −
εm(k)]2 + �2}−1 with a small width � to approximate the δ

function δ(ε − εm(k)).

IV. RESULTS AND ANALYSES

A. Evolution

The eigenenergies ε
(±)
j (p) of the effective bulk Hamiltonian

H
(N)
bulk(ε) of ABCNG are calculated from Eqs. (27) and (30) for

various numbers (N ) of layers. The results are presented and
discussed below, accompanied with the energies of the surface
subbands,

ε

β1
= ±

(
v0p

β1

)N

, (50)

which is obtained from the chiral effective Hamiltonian H
(N)
chiral

given in Eq. (12). In Fig. 4, the evolution of the band structure

FIG. 4. Band structure of ABCNG. Flat pair about the zero energy
(gray): surface subbands; the rest (red): bulk subbands. The direction
of in-plane momentum p is arbitrary.

of ABCNG is clear in an overview from a few layers (N =
3,4, . . . ,8) to many layers (N ≈ 100). It is certain that the
surface subbands are rapidly flattened inside the interval 0 <

v0p/β1 < 1 = v0pD/β1, between K̄ (+) and the projection of
the DP spiral [30]. As was noted, outside the interval the
energies of H

(N)
chiral diverge dramatically. The actual surface

subbands are, however, known to be suppressed due to band
repulsion, and they can be acquired using the full Hamiltonian
consisting of coupled surface and bulk states over the whole
BZ [31,33]. By contrast, our results from the nonperturbative
H

(N)
bulk(ε) agree with those full Hamiltonian results over a wide

region.
The intricate bulk subbands ε

(±)
j (p) are analytically un-

raveled at first. The eigenenergy spectrum has isotropic and
electron-hole symmetries, as a consequence of the minimal
model. All the N − 1 conduction bulk subbands ε

(+)
j (p), as

well as all the N − 1 valence bulk subbands ε
(−)
j (p), are

degenerate at K̄ (+) (p = 0), where φj given in Eq. (28) can
be paired according to cos (jπ/N ) = − cos [(N − j )π/N ],
with φN/2 standing solely for cos φN/2 = 0 if N is even.
Near K̄ (+), the conduction and the valence bulk subbands
comprise pairs of ε

(+)
i± (p) ≈ β1 ± v0p cos (iπ/N ) and pairs

of ε
(−)
i± (p) ≈ −β1 ± v0p cos (iπ/N ), respectively, with i =

1,2, . . . ,(N − 1)/2�, where ·� denotes the integer part of
·. In addition, for even N they also comprise quadratic
subbands ε

(+)
i=N/2(p) ≈ β1 + (v0p)2/(2β1) and ε

(−)
i=N/2(p) ≈
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−β1 − (v0p)2/(2β1), respectively. In each of the (N − 1)/2�
pairs of conduction (valence) bulk subbands, it is just ε(+)

i− (p) =
ε

(+)
j=N−i(p) [ε(−)

i+ (p) = ε
(−)
j=N−i(p)] that extends downward (up-

ward) from (p = 0,ε = β1(−β1)). As p goes from p = 0
toward p = pD , φj deviates from jπ/N due to the coupling
to the surface subbands, and it is calculated by using Eq. (30).
This subband turns upward (downward) and forms a concave-
up (concave-down) valley around pD , as shown in Fig. 4.
Such valleys are annular with edges around pD since all the
eigenenergies are isotropic. The turning is due to the nonlinear
terms of v0p/β1 in the power expansion of ε

(±)
j (p) in Eq. (27).

The evolution of the bulk subbands is investigated as
follows. There is a bulk energy gap between the valley edges
of the lowest concave-up conduction and the highest concave-
down valence bulk subbands ε

(±)
j=N−1(p). By differentiating

ε
(±)
j=N−1(p) in Eq. (27) with respect to v0p near v0pD , the edge

momentum in ABCNG is approximately given by

p
(N)
edge = β1

v0
cos

(
π

2N − 1

)
. (51)

The edge energies ε
(±)
j=N−1(p(N)

edge) are then obtained, and so is
the bulk gap,

�(N)
gap = 4β1 sin

(
π

2N − 1

)
. (52)

In the course of evolution, Eqs. (51) and (52) dictate that p
(N)
edge

increases and approaches pD = β1/v0 while �(N)
gap decreases

and approaches 0. The results displayed in Fig. 4 show
that p

(N)
edge evolves rapidly, but comparatively �(N)

gap evolves
slowly. By contrast, in AB-stacked N -layer graphene, the band
structure exhibits similar 3D features to AB-stacked graphite
with just several layers (N ≈ 10) [34]. Taking advantage of
the expression of Eq. (27), the bulk subbands ε

(±)
j (p) can be

calculated for arbitrary N . As observed in Fig. 4, the bulk gap
�(N)

gap at N ≈ 100 has become narrow but is still open.

The bulk DOSs D
(N)
bulk(ε) in ABCNG ranging from a few

to 100 layers are also calculated and shown in Fig. 5. There
are as many peaks in D

(N)
bulk(ε) as there are bulk subbands.

Specifically, each bulk subband yields a peak at its own valley
edge. The most prominent two peaks arise from ε

(±)
j=N−1(p).

They are separated by the aforementioned decreasing bulk gap
�(N)

gap and hence slowly approach each other in the evolution. In
addition, a dip is present at energy β1 (−β1) in the conduction
(valence) bulk subband spectrum. This reflects the cusp at
K̄ (+), where all the subbands are degenerate. All these features
are gradually smeared as N increases.

B. Dimensional crossover

The dimensional crossover from the bulk subbands in
ABCNG to the 3D Dirac cone structure in RG is elucidated
now. Recall that in Eq. (30) the bulk index φj is implicitly
given by Nφj = jπ − θj (p,φj ) with j = 1,2, . . . ,N − 1,
where the functional θj (p,φj ) arising from the coupling to
the surface subbands varies from 0 at p = 0 [Eq. (28)] to
φj/2 at p = pD [Eq. (29)]. For finite N , the presence of the
bulk gap is caused by φN−1(pD) = (N − 1)π/(N + 1/2) for
cos φj (p) in Eq. (27). In the bulk limit, θj (p,φj ) is negligible

FIG. 5. Bulk DOSs in ABCNG, in units of the number of states
per β1 per atom.

compared with Nφj . Hence, we acquire a continuous set
{φj = jπ/N |j = 1,2, . . . ,N − 1} if N approaches infinity.
The relation of φj (p) to the kz wave number of the standing
wave functions in ABCNG [Eq. (44)] has been given by
kz = ±φj (p)/d by characterizing the eigenmodes. Therefore,
kz ∈ [−π/d,π/d] is founded in connection to the continuous
set of φj in the infinite limit of N . Now that kz is definite, being
irrelevant to the in-plane momentum p in the absence of the
coupling effect, it is feasible to do the direct zone folding along
the c axis, as shown in Fig. 2(b). The whole 3D Dirac cone
structure is thus folded in the kz = limN→∞[±jπ/(Nd)] = 0
cut of the hexagonal zone that is folded from the rhombohedral
BZ. As shown in Fig. 2(b), the kz = 0 cut is equivalent to the
2D BZ.

In the infinite limit of N , the set {i|i = 1,2, . . . ,(N −
1)/2�} contains an infinite subset such that its elements i ′
render φj=i ′ = 0 and φj=N−i ′ = π . The associated subset of
eigenenergies obtained from Eq. (27) is given by ε

(+)
∞±(p) =

β1 ± v0p and ε
(−)
∞±(p) = −β1 ± v0p. These limits are just the

four conelike branches of the envelope described in Eq. (22),
delimiting the domain of existing eigenenergies of H

(N)
bulk(ε).

The bulk subbands inside the envelope form a continuum as N

approaches infinity. The continuum is the co-subset associated
with φj �= 0. Furthermore, among others, the two branches
ε

(+)
∞−(p) and ε

(−)
∞+(p) touch each other at (p = pD = β1/v0,ε =

0), where the limit of the edge momentum p
(∞)
edge is reached and

the bulk gap closes up with �(∞)
gap = 0 according to Eqs. (51)

and (52). By recombining segments of ε
(+)
∞−(p) and ε

(−)
∞+(p) and
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FIG. 6. (a) Bulk subbands in ABCNG calculated with N = 1000.
The direction of in-plane momentum p is arbitrary. (b) Bulk DOS
associated with (a), in units of the number of states per β1 per atom.

redefining energy ε
(±)
∞ (p) with respect to (p = pD,ε = 0), it

is easy to obtain

ε(±)
∞ (p) = ±v0|p − pD|. (53)

Therefore, the envelope of the bulk domain is a linear
annular cone apexed along the projection of the DP spiral.
Correspondingly, the crossover of the eigenmodes can be
understood by replacing energy ε in Eq. (44) by each of the
branches of the envelope. As a result, the infinite limit U∞
of the normalized eigenmodes associated with ε

(±)
∞ (p) (the ±

sign in the subscript does not matter and is omitted) is given
by the components(

U∞,Bl+1

U∞,Al

)
= 1√

2

(±1
1

)
, (54)

with arbitrary l = 1,2, . . . .
The elucidation concludes with the calculation results in

the bulk limit. Using Eq. (27), the bulk subbands in ABCNG
can be calculated for a huge number (N ) of layers as desired.
In Fig. 6(a), the results for N = 1000 are plotted, showing a
practically gapless domain full of bulk subbands. The envelope
is describable by the linear annular Dirac cone described in
Eq. (53). The bulk DOS for the same N is calculated from
Eq. (49) and plotted in Fig. 6(b), where those features present
for finite N (Fig. 5) are practically completely smeared. In

agreement with previous research [3], the calculated bulk DOS,
being linear in energy ε and vanishing at ε = 0, is of the same
form as in monolayer graphene [35]. The characterization by
the bulk DOS reflects the fact that RG is a semimetal with
half-filled DP spirals of the 3D Dirac cone structure in the bulk.

V. CONCLUSION

The physics of layered systems in the ABC-stacking
configuration is interesting. Compared to ABC-stacked 3D
topological insulators such as Bi2Se3 and Bi2Te3, RG behaves
like a topological semimetal. It possesses flat surface subbands
while being semimetallic in the bulk with the 3D Dirac
cone structure, whose DPs form spiraling lines in momentum
space. There is a bulk-surface correspondence due to the
nontrivial topology induced in this configuration. We studied
the evolution of the gapped bulk subbands in ABCNG with
increasing the number (N ) of graphene layers under the effect
of coupling to the surface subbands. The bulk gap was shown
to close up at the DP spirals in the bulk limit. We elucidated
the dimensional crossover of the bulk subbands to the 3D
Dirac cone structure. The coupling effect on the bulk subbands
was clarified by means of the nonperturbative effective bulk
Hamiltonian based on the finite chain model. It was shown
that as a consequence, the wavelength of the standing wave
function across the stack of layers (along the z direction)
depends on the in-plane Bloch momentum. The coupling
vanishes in the bulk limit. Hence, the kz wave number is
irrelevant to p.

The minimal model we used suffices for the purpose
of the present work. Inclusion of extra hopping integrals
would cause high-order anisotropy, but it does not change
the evolution of the bulk subbands. The major influence of
the on-site Coulomb potential is the splitting of the surface
subbands, which can be experimentally conditioned to be zero
for realizing the 2D nature of 3D QHE, not to mention its
diminishing and vanishing role for large N . We remark that
this splitting of the surface subbands is probably an alternative
clue to elucidating the dimensional crossover. As observed in
ABC-layered topological insulators, Bi2Se3 [24], dimensional
crossover occurs when the number of layers are reduced to the
2D limit, where the surface subbands are gapped. Nevertheless,
in ABC-stacked graphene, the gapping of surface subbands
is caused by the on-site Coulomb potential, whereas for
ABC-layered topological insulators the gapping arises from
the coupling between surface states in the two outmost layers
[24]. It is well known that a topological insulator behaves like
an insulator in its bulk while it has conductive surface subbands
described by a Dirac cone. In essence, RG and ABC-layered
topological insulators both contain 2D Dirac fermions in the
bulk and the surfaces, respectively. As such, their dimensional
crossovers are strikingly the same in that both of their Dirac
cones become gapped subbands in the 2D limit.
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[19] M. P. López-Sancho, M. A. H. Vozmediano, and F. Guinea, Eur.
Phys. J. Spec. Top. 148, 73 (2007).

[20] C. H. Ho, C. P. Chang, and M. F. Lin, J. Phys. Condens. Matter
27, 125602 (2015).

[21] Y. Hatsugai, Solid State Commun. 149, 1061 (2009).
[22] A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84,

235126 (2011).
[23] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang,

Nat. Phys. 5, 438 (2009).
[24] Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X.

Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu,
X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, Nat. Phys. 6,
584 (2010).

[25] B. Partoens and F. M. Peeters, Phys. Rev. B 75, 193402 (2007).
[26] M. Koshino and T. Ando, Phys. Rev. B 76, 085425 (2007).
[27] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg,

Science 313, 951 (2006).
[28] K. F. Mak, M. Y. Sfeir, J. A. Misewich, and T. F. Heinz, Proc.

Natl. Acad. Sci. (USA) 107, 14999 (2010).
[29] R. E. Allen and M. Menon, Phys. Rev. B 33, 5611 (1986).
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