
PHYSICAL REVIEW B 93, 075434 (2016)

Magnetic field effects on edge and bulk states in topological insulators based on HgTe/CdHgTe
quantum wells with strong natural interface inversion asymmetry

M. V. Durnev and S. A. Tarasenko
Ioffe Institute, 194021 St. Petersburg, Russia

(Received 17 December 2015; published 24 February 2016)

We present a theory of the electron structure and the Zeeman effect for the helical edge states emerging in
two-dimensional topological insulators based on HgTe/HgCdTe quantum wells with strong natural interface
inversion asymmetry. The interface inversion asymmetry, reflecting the real atomistic structure of the quantum
well, drastically modifies both bulk and edge states. For the in-plane magnetic field, this asymmetry leads to a
strong anisotropy of the edge-state effective g factor, which becomes dependent on the edge orientation. The
interface inversion asymmetry also couples the counterpropagating edge states in the out-of-plane magnetic field
leading to the opening of the gap in the edge-state spectrum by arbitrary small fields.
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I. INTRODUCTION

HgTe/CdHgTe quantum wells (QWs) of thickness above
a critical value belong to the class of Z2 two-dimensional
topological insulators characterized by the existence of coun-
terpropagating helical edge modes [1–5]. Continuous advance
in the technology of CdHgTe-based heterostructures stimu-
lates experimental and theoretical studies of their electronic
properties related to the nontrivial band topology. The structure
of the edge states responsible for the emergence of the quantum
spin Hall effect was theoretically studied at zero magnetic field
[5–10], in the presence of magnetic field lying in the QW plane
[11,12], and in magnetic field normal to the QW plane [13–16].
Most of the theoretical papers consider simplified models
which do not take into account the natural inversion asymmetry
of the HgTe/CdHgTe QWs caused by their atomic structure
or treat this asymmetry as a small perturbation [6,9,16].
Contrary, atomistic calculations performed recently [17,18]
have revealed very strong level repulsion in HgTe/CdHgTe
QWs, mostly driven by the natural interface inversion asym-
metry of the zinc-blende heterostructures, which results in
a considerable modification of the “bulk” (two-dimensional)
electron states and dispersion. The inversion asymmetry also
gives rise to a giant photogalvanic response observed in
HgTe/CdHgTe heterostructures [19,20].

In the present paper, we study theoretically the electron
structure of bulk and helical edge states in HgTe/HgCdTe
QWs with strong natural interface inversion asymmetry in
external magnetic field. We find that the interface mixing of
the states results in (i) a strong anisotropy of the edge-state g

factor in the in-plane magnetic field and (ii) opening of the gap
in the edge-state spectrum by an arbitrary small out-of-plane
magnetic field. Both effects are absent in centrosymmetric
continuum-medium models. We obtain analytical results for
the energy spectrum and wave functions of the edge states
in a semi-infinite two-dimensional structure and do numerical
calculations of the spectrum of coupled edge states in a strip
of a finite width.

The paper is organized as follows. In Sec. II, we present
the effective Hamiltonian of the system and describe the bulk
energy spectrum at zero magnetic field and the structure of
bulk Landau levels. In Sec. III, we study analytically the
helical states in a semi-infinite system with a single edge

at zero magnetic field (Sec. III A), in the in-plane magnetic
field (Sec. III B), and out-of-plane magnetic field (Sec. III C).
Section III D presents the study of the edge states and the
Zeeman effect in a semi-infinite structure with an arbitrary
orientation of the edge with respect to crystallographic axes. In
Sec. IV, we outline the numeric procedure used to calculate the
edge states in a strip of a finite width and compare the obtained
numerical and analytical results. Section V summarizes the
paper.

II. EFFECTIVE HAMILTONIAN AND BULK
LANDAU LEVELS

We consider HgTe/HgCdTe QWs grown along the z ‖
[001] axis (D2d point group) with a symmetric heteropotential.
In the QWs of the critical thickness dc, where the transition
between the trivial and nontrivial topological phases occurs,
and in QWs of close-to-critical thickness, the Dirac states
are formed from the electronlike |E1, ± 1/2〉 and heavy-hole
|H1, ± 3/2〉 subbands [1,21],

|E1, ± 1/2〉 = f1(z)|�6, ± 1/2〉 + f4(z)|�8, ± 1/2〉 ,
(1)|H1, ± 3/2〉 = f3(z)|�8, ± 3/2〉 ,

where f1(z), f3(z), and f4(z) are the envelope functions,
and |�8, ± 1/2〉, |�8, ± 3/2〉, and |�6, ± 1/2〉 are the Bloch
amplitudes of the �8 and �6 bands at the � point of the
Brillouin zone.

Symmetry lowering resulting from the anisotropy of the
QW interfaces leads to an efficient interface coupling of the
light-hole states |�8, ± 1/2〉 and heavy-hole states |�8, ∓ 3/2〉
and, hence, to coupling of the electronlike and heavy-hole
subbands. This coupling leads to the level anticrossing at the
interfaces and splitting of the Dirac cones [17].

The effective 4×4 k· p Hamiltonian, which precisely takes
into account the real spatial symmetry of the QW structure, can
be constructed in the framework of the group representations
theory. The effective Hamiltonian can be derived taking
into account that, in the D2d point group, the |E1, ± 1/2〉
and |H1, ∓ 3/2〉 pairs transform according to the spinor
representation �6, while the components kx,ky of the in-plane
wave vector k belong to the irreducible representation �5. The
effective Hamiltonian to the second order in the wave vector in
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the |E1,+〉,|H1,+〉,|E1,−〉,|H1,−〉 basis has the form (see also Refs. [1,6,17,22])

H0(kx,ky) =

⎛
⎜⎜⎜⎝

δ0 − (B + D)k2 iAk+ βek+ i(γ + γ ′k2)

−iAk− −δ0 + (B − D)k2 i(γ + γ ′k2) βhk−
βek− −i(γ + γ ′k2) δ0 − (B + D)k2 −iAk−

−i(γ + γ ′k2) βhk+ iAk+ −δ0 + (B − D)k2

⎞
⎟⎟⎟⎠ . (2)

Here, k = |k|, k± = kx ± iky , x ‖ [100] and y ‖ [010] are the
in-plane axes, A, B, D, βe, βh, γ , γ ′, and δ0 are the structure
parameters. The parameter δ0 determines the energy gap. It
can be tuned from positive to negative values by varying the
QW thickness and defines whether the system is in the trivial
(δ0 > 0 at negativeB) or nontrivial (δ0 < 0,B < 0) topological
phase. The parameters βe and βh describe contributions to
k-linear splitting of the electronlike and heavy-hole subbands
caused by bulk inversion asymmetry. The parameters γ and
γ ′ are determined by the interface mixing strength. Atomistic
calculations yield the splitting 2|γ | ≈ 10 meV at k = 0 for
HgTe/Hg0.3Cd0.7Te QWs with atomically sharp interfaces
[17]. Such a strong interface coupling of the states drastically
affects the energy spectrum and cannot be treated as a small
perturbation. In contrast, the parameters βe, βh, and γ ′ lead
only to corrections to the splitting at k �= 0. Therefore, to sim-
plify calculations, we consider the standard Bernevig-Hughes-
Zhang Hamiltonian of the HgTe-based two-dimensional topo-
logical insulators [1] (βe, βh, γ ′ = 0) with account for the inter-
face coupling described by γ . For the numerical calculations
presented below we use the following parameters: A = 3.6
eV Å, B = −68 eV Å2, and D = −51 eV Å2 corresponding to
a 7-nm-wide HgTe/Hg0.3Cd0.7Te QW (the thickness is slightly
above dc) [6]. We assume γ to be positive and use γ = 5 meV.

Diagonalization of the Hamiltonian (2) yields the energy
spectrum of the bulk Dirac fermions [17]

ε(k) = −Dk2 ±
√

(δ0 − Bk2)2 + (γ ± Ak)2. (3)

The dispersion curves given by Eq. (3) are depicted in Fig. 1.
Generally, the spectrum contains four branches with an energy
gap 2|δ|, where δ = δ0 − Bk2

0, at the wave vector k0 = γ /A.
For a gapless structure (δ = 0), the spectrum consists of two
massless Dirac cones shifted vertically with respect to each
other by 2γ .

|δ | = 10 meV
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FIG. 1. Energy spectra of the bulk Dirac fermions in
HgTe/CdHgTe QWs (a) with |δ| = 10 meV, and (b) of the critical
thickness, δ = 0, at zero magnetic field. The level splitting at k = 0
in the panel (b) is caused by the light-hole–heavy-hole mixing.

External magnetic field B is included in the k· p the-
ory by the Peierls substitution k → k̂ − (e/c�)A in the
zero-field Hamiltonian (2) and by adding the Zeeman
Hamiltonian

HZ = μB

2

⎛
⎜⎜⎜⎜⎝

g⊥
e Bz 0 g

‖
eB− 0

0 g⊥
h Bz 0 g

‖
hB+

g
‖
eB+ 0 −g⊥

e Bz 0

0 g
‖
hB− 0 −g⊥

h Bz

⎞
⎟⎟⎟⎟⎠ , (4)

where k̂ = −i∇, e is the electron charge, A is the vector
potential of the magnetic field, B = ∇ × A, μB is the Bohr
magneton, g

‖
e , g⊥

e , g
‖
h, and g⊥

h are the contributions to the g

factors of the |E1〉 and |H1〉 subbands stemming from the
bare electron g factor and interaction with remote electron and
hole subbands, and B± = Bx ± iBy . The coupling of the |E1〉
and |H1〉 states by the out-of-plane magnetic field is exactly
taken into account in the Hamiltonian H0[k̂ − (e/c�)A].
The coupling of these bands by the in-plane magnetic field,
which occurs in QWs of the D2d symmetry, is small since
it requires the consideration of inversion symmetry breaking,
and thus, is neglected in the Hamiltonian (4). We also note
that g

‖
h is expected to be small compared to g

‖
e [23]. For

numerical calculations, we use g
‖
e = −20, g⊥

e = 22, g⊥
h = −1,

and g
‖
h = 0 [6].

The structure of the bulk Landau levels in the perpendicular
magnetic field B = (0,0,Bz) can be readily found by solving
the Schrödinger equation H� = ε� with the Hamiltonian

H = H0[k̂ − (e/c�)A] + HZ . (5)

We take the vector potential in the Landau gauge A =
(0,Bzx,0) and following Refs. [6,14,24] solve the Schrödinger
equation by decomposing the four-component wave function
� in a series of the Landau level functions φn,ky

:

� =
∑
n�0

⎛
⎜⎝

an

bn

cn

dn

⎞
⎟⎠φn,ky

, (6)

where n and ky are the quantum numbers, and an, bn, cn, and
dn are coefficients.

Figure 2 shows the calculated energy spectrum for a
HgTe/CdHgTe QW in the topologically nontrivial phase.
Landau levels can be divided into two groups. The first group
comprises two “zero” modes corresponding to n = 0. These
modes are formed by the |E1,+〉 and |H1,−〉 subbands only
and are decoupled from other Landau levels with n � 1. The
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FIG. 2. Bulk Landau levels in a HgTe/HgCdTe QW with δ =
−10 meV. Red curves show the magnetic field dependence of the
zero Landau levels. Dashed red lines in panel (a) show the positions
of the zero Landau levels in the absence of the light-hole–heavy-hole
mixing (γ = 0). Panels (b) and (c) show the structure of the Landau
levels at small magnetic fields.

energies of the zero modes are given by

ε
(±)
0 = − D

l2
B

+ 1

4
(g⊥

e − g⊥
h )μBBz

±
√[

δ0 − B
l2
B

+ 1

4
(g⊥

e + g⊥
h )μBBz

]2

+ γ 2, (7)

where lB = √
c�/|e|Bz is the magnetic length. In the absence

of interface mixing (γ = 0), the zero Landau levels cross
at the critical field Bc = δ0/[|e|B/(c�) − μB(g⊥

e + g⊥
h )/4]

[6,14]. The mixing of these states due to interface inversion
asymmetry (or bulk inversion asymmetry [25,26]) leads to
coupling of the zero modes and anticrossing with the gap 2γ

at Bz = Bc, see Fig. 2.
Landau levels that belong to the second

group are described by the wave functions � =
(an|n〉,bn−1|n − 1〉,cn−1|n − 1〉,dn|n〉)T with n � 1. The
corresponding energies are the roots of a fourth-degree
polynomial. For g⊥

e = g⊥
h = 0 and B = D = 0, the energies

can be found analytically and have the form

ε(1,4)
n = ∓

√
δ2

0 + (γ + A
√

n/lB)2,

ε(2,3)
n = ∓

√
δ2

0 + (γ − A
√

n/lB)2. (8)
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FIG. 3. Bulk Landau levels in a HgTe/HgCdTe QW of the critical
thickness, δ = 0 meV. Red lines present the dispersion of “zero”
Landau levels.

The structure of bulk Landau levels in the QW of the critical
thickness is shown in Fig. 3. In this case, each of the Dirac
cones [Fig. 1(b)] forms a fan of Landau levels.

III. EDGE STATES IN A SEMI-INFINITE SYSTEM

A. Zero magnetic field

We consider now a semi-infinite QW structure in the
halfspace x � 0. In the topologically nontrivial phase δ < 0,
the structure supports edge states, which exponentially decay
at x → +∞. We find the energy spectrum and wave functions
of the edge states by solving the Schrödinger equation

H(k̂x,k̂y)�(x,y) = ε�(x,y) , (9)

with the open boundary conditions at the edge, �(0,y) = 0.
A more general form of boundary conditions was studied in
Ref. [10].

Taking into account the translation invariance along the y

direction we can present the wave function of the edge state in
the form

�(x,y) = eikyy

√
L

8∑
j=1

cj e−λj xξj , (10)

where ky is the wave vector along the edge, L is the
normalization length, cj are the coefficients to be determined
from the boundary conditions, λj are the complex-valued
reciprocal lengths, and ξj are the position-independent
normalized four-component columns. We note that all
components of ξj are generally nonzero since the Hamiltonian
(2) contains off-diagonal blocks ∝ γ . This is in contrast to
centrosymmetric models (γ = 0) with decoupled lower and
upper blocks of the Hamiltonian.

For a given wave vector ky , the columns ξj and the relation
between the reciprocal lengths λj and the energy ε are found
from the matrix equation

H(iλ,ky)ξ = εξ. (11)

First, we calculate the wave functions at ky = 0. We
consider the case of “electron-hole” symmetry, i.e., D = 0 in
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the Hamiltonian (2), so that the edge states at ky = 0 have the
energy ε = 0. A more general case of D �= 0 will be analyzed
in Sec. IV in numeric simulations of the electron states in a
strip of a finite width. For ε = 0, the right-hand side of Eq. (11)
vanishes and nontrivial solutions for ξ exist for a set of λ that
satisfy the equation detH(iλ,0) = 0. This equation yields eight
reciprocal lengths λj , which are pairwise related to each other
by complex conjugation

λ1 = λ∗
2 = −λ5 = −λ∗

6 = −A +
√
A2 − 4B(δ0 + iγ )

2B ,

λ3 = λ∗
4 = −λ7 = −λ∗

8 = −A −
√
A2 − 4B(δ0 + iγ )

2B .

(12)

The corresponding normalized null-space vectors of the
matrices H(iλj ,0) have the form

ξ1 = ξ3 = 1

2

⎛
⎜⎝

1
−1
1
1

⎞
⎟⎠, ξ2 = ξ4 = 1

2

⎛
⎜⎝

−1
1
1
1

⎞
⎟⎠ ,

ξ5 = ξ7 = 1

2

⎛
⎜⎝

1
1

−1
1

⎞
⎟⎠, ξ6 = ξ8 = 1

2

⎛
⎜⎝

1
1
1

−1

⎞
⎟⎠ . (13)

The wave functions of the edge states are given by Eq. (10).
To satisfy the boundary condition

∑
j cj ξj = 0 and the wave

function decay at x → +∞ (implying Reλ > 0) one has to
set c1 = −c3, c2 = −c4, and c5 = c6 = c7 = c8 = 0. Finally,
the wave functions of the edge states are two-fold degenerate
at ky = 0 and can be chosen in the form

�1(x,y) = C
eikyy

√
L

(e−λ1x − e−λ3x)ξ1,

(14)

�2(x,y) = C
eikyy

√
L

(e−λ∗
1x − e−λ∗

3x)ξ2,

where

C =
[

1

2Reλ1
+ 1

2Reλ3
− 2Re

(
1

λ1 + λ∗
3

)]−1/2

is the normalization constant. We note that in the topologically
trivial phase (δ > 0), the boundary conditions yield cj = 0 for
all the coefficients and, hence, no edge states emerge.

The dependence of the wave functions (14) on x can be
further simplified by introducing the effective lengths l1 =
−B/A and l2 = −A/δ and the wave vector k0 = γ /A. For
the parameters of HgTe/CdHgTe QWs and δ = −10 meV,
one has l1 ≈ 20 Å, l2 ≈ 360 Å, and 1/k0 ≈ 600 Å. Taking
into account that l1 � l2, 1/k0, we obtain

λ1 ≈ 1

l1
, λ3 ≈ 1

l2
− ik0. (15)

Note that the wave vector k0 corresponds to the position of the
bulk energy gap in the two-dimensional Brillouin zone, see
Sec. II.

To obtain the energy spectrum at ky �= 0, we construct the
effective 2×2 Hamiltonian by projecting the Hamiltonian (2)
onto the basis functions �1 and �2. To the first order in ky , the

effective Hamiltonian of the edge states reads

H(�)
edge(ky) = − Aδky

δ2 + γ 2

(
0 δ + iγ

δ − iγ 0

)
. (16)

The Hamiltonian (16) is diagonalized by the unitary transfor-
mation (

�1

�2

)
= 1√

2

(
e−iϕ/2 −eiϕ/2

e−iϕ/2 eiϕ/2

)(
�1

�2

)
, (17)

where ϕ = arctan(−γ /δ). In the basis of the functions �1 and
�2, it has the form

H(�)
edge(ky) = v�kyσz , (18)

where σz is the Pauli matrix and

v = − Aδ/�√
δ2 + γ 2

. (19)

The v parameter describes the group velocity of the edge states.
In contrast to models neglecting the light-hole–heavy-hole
mixing, the velocity v at γ �= 0 depends on the QW thickness.
At |δ| � γ , the velocity tends to zero, and the dispersion of
the edge states vanishes.

The wave functions �1,2 can be written in an equivalent
form:

�1 = eikyy

√
L

[
a(x)

ξ1 − ξ2√
2

− ib(x)
ξ1 + ξ2√

2

]
,

(20)

�2 = eikyy

√
L

[
a(x)

ξ1 + ξ2√
2

− ib(x)
ξ1 − ξ2√

2

]
,

where a(x) and b(x) are the real functions

a(x) =
√

2

l2

[
e−x/l1 cos

ϕ

2
− e−x/l2 cos

(
k0x − ϕ

2

)]
,

b(x) =
√

2

l2

[
e−x/l1 sin

ϕ

2
+ e−x/l2 sin

(
k0x − ϕ

2

)]
. (21)

Note that b(x) is nonzero only at γ �= 0.
The amplitudes a(x) and b(x) are depicted in Fig. 4. At

x � l1, a(x) and b(x) (i) oscillate with the wave length
2π/k0 and (ii) decay with the characteristic length l2. The
number of oscillations within the decay length is given by
the dimensionless parameter k0l2 = −γ /δ, which is large for
|δ| � γ .

The above equations for the energy spectrum and the wave
functions of the edge states are derived for the simplest
boundary condition �(0,y) = 0 (the Dirichlet or first-type
boundary condition). A more general, third-type, boundary
condition has the form

� ′(0,y) + ��(0,y) = 0 , (22)

where � ′(x,y) denotes the derivative of the wave function
over x and � is a parameter. The first-type boundary condition
corresponds to the case � → ∞. Equation (9) can be also
solved with the general boundary condition (22). In this case,
all the reciprocal lengths λj as well as the structure of the wave
functions (14) and (21) remain the same while the exponential
functions get different multipliers. Since l2 � l1, the leading
contribution to the Hamiltonian (16) and effective g factors
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FIG. 4. Functions a(x) and b(x) that determine the spatial
structure of the edge-state wave functions �1,2, see Eq. (20), for
different values of k0l2 = γ /|δ|.

(see Secs. III B, III C, and III D below) is determined by the
terms containing e−x/l2 . Accordingly, in the leading order in
l1/l2 and k0l1, neither the spectra nor the values of the g factors
are affected by the particular form of the boundary condition
Eq. (22).

B. In-plane magnetic field effect on edge states

We consider now the effect of in-plane magnetic field B =
(Bx,By,0) on the edge states in a semi-infinite structure with
the edge perpendicular to the x ‖ [100] axis. The in-plane
field couples the electron as well as the hole spin states, see
the Zeeman Hamiltonian (4). By projecting HZ onto the edge
states �1,2, we obtain the effective Zeeman Hamiltonian

H(�)
B,edge = 1

2μB(gxxσxBx + gyyσyBy), (23)

with the components of the effective g-factor tensor of the
edge states given by

gxx = 1

2
(g‖

e − g
‖
h),

gyy = 1

2
(g‖

e + g
‖
h)

−δ√
δ2 + γ 2

. (24)

In the Hamiltonian (23), we neglected the term gzyσzBy since
the off-diagonal component gzy of the edge g-factor tensor is
proportional to small parameters l1/l2 and k0l1.

Equations (23) and (24) present one of the main results
of our work: the light-hole–heavy-hole mixing provided by
the D2d point-group symmetry of the QW results in a strong
anisotropy of the in-plane Zeeman effect for the edge states.
The effective g factor for the magnetic field pointing along the
edge, B ‖ y ‖ [010], is reduced by the factor 1/

√
1 + (γ /δ)2

which is determined by the ratio between the energy of the
light-hole–heavy-hole mixing and the bulk band gap.

Magnetic field opens the gap in the energy spectrum of the
edge states

εgap = μBB

√
g2

xx cos2 α + g2
yy sin2 α , (25)

where α = arctan(By/Bx) is the angle between the in-plane
vector B and the edge normal. Due to the g-factor anisotropy

given by Eqs. (24), the gap depends on the magnetic field
orientation.

C. Out-of-plane magnetic field effect on edge states

Magnetic field perpendicular to the QW plane B =
(0,0,Bz) affects the edge states via the coupling of the
electronlike and heavy-hole subbands included in the Hamil-
tonian H0[k̂ − (e/c�)A] and the extra Zeeman term (4).
Although magnetic field breaks the time reversal symmetry
and, consequently, may destroy topological protection of the
edge states, it was shown that in centrosymmetric models
magnetic field Bz < Bc does not open the gap in the spectrum
of the edge states preserving their helical structure [14,16].
The gap is opened in high enough fields only (Bz > Bc), when
the system is in the quantum Hall effect regime. The interface
mixing in real QWs qualitatively changes the behavior of the
edge states in out-of-plane magnetic field and leads to the
emergence of the gap at arbitrary small fields.

To analyze the edge-state spectrum in the out-of-plane
magnetic field, we take the vector potential in the form
A = (0,Bz(x + xc),0), where xc is a constant. Different xc

correspond to different gauges of the magnetic field. By
projecting H0[k̂ − (e/c�)A] + HZ onto the edge states �1,2,
we obtain the effective Zeeman Hamiltonian

H(�)
B,edge = 1

2μB(gyzσyBz + gzzσzBz), (26)

where the components of the g-factor tensor at ky = 0, in the
leading order in l1/l2 and k0l1, are given by

gzz = g⊥
e +g⊥

h

2

−δ√
δ2 + γ 2

+2m0A2

�2

δ2 + 2(δ2 + γ 2)(xc/ l2)

(δ2 + γ 2)3/2
,

(27)

gyz = 2m0A2

�2

−δγ

(δ2 + γ 2)3/2
,

and m0 is the free electron mass. Both gzz and gyz components
have large orbital contributions originating from the term
H0[k̂ − (e/c�)A].

From the Hamiltonians (18) and (26), we deduce that the
diagonal component gzz leads only to a shift of the energy
spectrum along ky without opening the gap. The shift depends
on the magnetic field gauge and, for a single edge, can be
excluded by a proper choice of the coordinate frame. In
contrast, the term ∝gyzσyBz is gauge independent. It couples
edge states with the opposite pseudospin projections and opens
the gap

εgap = 2m0A2

�2

μB |δγBz|
(δ2 + γ 2)3/2

. (28)

The gap in the edge-state spectrum emerges due to the lack of
space inversion asymmetry in the QW and is a nonmonotonic
function of the bulk band gap 2|δ|.

D. Edge of arbitrary crystallographic orientation

In the above sections, we studied a semi-infinite system with
the edge parallel to one of the cubic axes, y ‖ [010]. Mean-
while, since the interface inversion asymmetry is associated
with the certain crystallographic axes, it is natural to expect
that the edge-state g factors depend on the orientation of the
edge. Now, we consider a semi-infinite structure with the edge
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of an arbitrary orientation defined by the angle θ between the
edge and the [010] axis, see the inset in Fig. 7.

We introduce a new coordinate frame (x ′,y ′,z) rotated
with respect to the frame (x,y,z) by the angle θ and the
corresponding basis states

|E1, ± 1/2〉′ = |E1, ± 1/2〉e±iθ/2,

|H1, ± 3/2〉′ = |H1, ± 3/2〉e±3iθ/2. (29)

The effective k· p and Zeeman Hamiltonians in the
|E1,+〉′,|H1,+〉′,|E1,−〉′,|H1,−〉′ basis can be obtained
from the Hamiltonians (2) and (4) taking into account the wave
function transformation (29) and the relations k± = k′

±e∓iθ

and B± = B ′
±e∓iθ . Such a procedure shows that the rotation

is equivalent to the substitution γ → γ e−2iθ , γ ′ → γ ′e−2iθ ,
βe → βee−2iθ and βh → βhe−2iθ in the upper triangular part
of the k· p Hamiltonian (2) and g

‖
h → g

‖
he−4iθ in the upper

triangular part of the Zeeman Hamiltonian (4). The corre-
sponding lower triangular parts of the Hamiltonians are found
from the condition of Hermitian conjugation. We note that all
other contributions to the Hamiltonians (2) and (4) possess
an axial symmetry and remain unchanged under a coordinate
frame rotation. As in the above consideration, we neglect the
terms ∝βe, βh, and γ ′.

The calculation of the edge states, similar to that carried
out in Sec. III A, shows that the parameters λj are not affected
by the rotation whereas the components of the wave functions
acquire phase factors. The basis functions of the edge states,
which are related to each other by time reversal, can be
presented in the form

�′
1 = eiky′y ′

√
2L

⎡
⎢⎢⎢⎣

a(x ′)
−a(x ′)

−ib(x ′)e2iθ

−ib(x ′)e2iθ

⎤
⎥⎥⎥⎦, �′

2 = eiky′ y ′

√
2L

⎡
⎢⎢⎢⎣

−ib(x ′)e−2iθ

ib(x ′)e−2iθ

a(x ′)
a(x ′)

⎤
⎥⎥⎥⎦.

(30)

The zero-field effective Hamiltonian of the edge states in
the (�′

1,�
′
2) basis has the form

H(�)
edge(ky ′) = v�ky ′σz, (31)

whereas the effective Zeeman Hamiltonian is given by

H
′(�)
B,edge = 1

2
μB

∑
α,β=x ′,y ′,z

gαβσαBβ , (32)

with the following components of the g-factor tensor:

gx ′x ′ = 1

2
(g‖

e − g
‖
h) cos2 2θ−1

2
(g‖

e + g
‖
h)

δ√
δ2 + γ 2

sin2 2θ,

gy ′y ′ = 1

2
(g‖

e − g
‖
h) sin2 2θ−1

2

(
g‖

e + g
‖
h

) δ√
δ2 + γ 2

cos2 2θ,

gx ′y ′ = gy ′x ′ = 1

4

[
(g‖

e − g
‖
h) + (g‖

e + g
‖
h)

δ√
δ2+γ 2

]
sin 4θ,

gx ′z = −2m0A2

�2

−δγ

(δ2 + γ 2)3/2
sin 2θ ,

gy ′z = 2m0A2

�2

−δγ

(δ2 + γ 2)3/2
cos 2θ. (33)

In-plane magnetic field opens the gap in the edge-state
spectrum

εgap = μB

√
(gx ′x ′Bx ′ + gx ′y ′By ′ )2 + (gy ′y ′By ′ + gy ′x ′Bx ′ )2.

(34)
The dependence of the gap on magnetic field orientation at
g

‖
h = 0 is given by

εgap = 1

2
|g‖

e |μBB

×
√

cos2(α − 2θ ) + δ2

δ2 + γ 2
sin2(α − 2θ ) , (35)

where α is the angle between B and the edge normal. The gap
induced by normal magnetic field Bz is given by Eq. (28) and
is independent of the edge orientation.

IV. EDGE STATES IN A STRIP OF A FINITE WIDTH.
RESULTS AND DISCUSSION

Now we present the numerical results for the energy
spectrum of the edge and bulk states in the strip of a finite width
w = 1 μm and compare it with the analytical theory developed
in Sec. III. We consider strips with different crystallographic
orientations and analyze the spectrum modification in both
in-plane and out-of-plane magnetic fields. To calculate the
spectrum, we numerically solve the Schrödinger equation
with the Hamiltonian H0[−i∇ − (e/�c)A] + HZ using the
open boundary conditions �(−w/2,y) = �(w/2,y) = 0. The
band-structure parameters used in the calculations are listed
in Sec. II. We consider HgTe/Cd0.7Hg0.3Te QWs in the regime
of topological insulator (δ < 0). Varying the absolute value
of δ allows us to simulate the QWs of different thickness.
Small change of the band structure parameters upon variation
of the QW thickness in the vicinity of dc (see parametrizations
for different well thickness in Ref. [27]) is neglected in the
calculations.

A. Zero magnetic field

Figure 5 shows the calculated zero-field energy spectrum
of electron states in the strip with the bulk band gap 2|δ| = 8
meV. One can see that the states with linear dispersion in the
vicinity of ky = 0 emerge inside the band gap. The dispersion
of these states is shifted from the band gap center towards
positive energies due to the “electron-hole asymmetry,” i.e.,
D �= 0. Each of the dispersion curves depicts two almost
degenerate states corresponding to the pair of spin-polarized
states localized at the two strip edges. The finite width of
the strip leads to an inevitable overlap of the states localized
at the spatially separated edges and, consequently, to the
opening of a small gap at ky = 0 [7,28]. The gap, however,
exponentially decreases with the growth of the strip width; for
w = 1 μm [see Fig. 5(a)], the gap is only about 5 μeV. At
ky ≈ ±γ /A, the dispersion of the bulk states has pronounced
extrema originating from the light-hole–heavy-hole mixing
[cf. Fig. 1(a)]. According to Eq. (19), such a shape of the
bulk energy spectrum leads to a flattening of the edge-state
dispersion curves. For the dispersion of the edge states shown
in Fig. 5, we find the effective velocity v ≈ 2.4 × 107 cm/s,
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FIG. 5. Electron energy spectrum of the strip made of
HgTe/CdHgTe QW structure in the topologically nontrivial phase
(δ = −4 meV). The width of the strip is 1 μm.

whereas calculations with the same parameters but γ = 0 (not
shown) yield v ≈ 5.8 × 107 cm/s.

B. Energy gap in the edge-state spectrum induced
by an in-plane magnetic field

As it was shown in Secs. III B and III D, in-plane magnetic
field opens a gap in the energy spectrum of the edge states.
Due to the light-hole–heavy-hole mixing, the gap depends on
the magnetic field direction and the edge orientation. Numeric
calculation of the gap behavior upon variation of the magnetic
field direction is presented in Fig. 6 for the edges along
[010]. The calculated dependence is perfectly described by
Eq. (25) with the effective g factors |g(fit)

xx | ≈ 2.7, |g(fit)
yy | ≈ 1.2.

However, the obtained g factors are far smaller than those
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FIG. 6. Energy gap in the edge-state spectrum as a function of the
angle α between the in-plane magnetic field B and the edge normal
calculated for δ = −4 meV and B = 3 T. The insets illustrate the
geometry under study and the energy spectrum at α = 0.
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FIG. 7. Energy gap in the edge-state spectrum as a function of the
angle α between the in-plane magnetic field B and the edge normal
for different orientations of the strip edges. The curves are calculated
for δ = −10 meV and B = 3 T. The inset illustrates the geometry
under study.

estimated from Eq. (24), |gxx | ≈ 10.2, |gyy | ≈ 6.2, indicating
that the “electron-hole” asymmetry (D �= 0) neglected in the
analytical theory considerably affects the Zeeman splitting.
The value of the g-factor anisotropy (|gfit

xx | − |gfit
yy |)/(|gfit

xx | +
|gfit

yy |) ≈ 0.38 is in a much better agreement with the analytical
theory, which yields (|gxx | − |gyy |)/(|gxx | + |gyy |) ≈ 0.24.
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FIG. 8. Electron energy spectra of the strip subject to out-of-plane
magnetic field Bz. The spectra are calculated for w = 1 μm and
δ = −10 meV. Solid and dashed dispersion curves in panels (a) and
(b) correspond to the states localized at the left and right edges,
respectively. Dashed-dotted vertical lines indicate the positions ky =
±w/2l2

B for each value of magnetic field. The red curves in panels
(c) and (d) correspond at small ky to the bulk zero modes, see Fig. 2.
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results of numerical calculations, solid curve shows the analytical
dependence at D = 0 calculated after Eq. (28).

Figure 7 presents the calculated edge-state energy gap
as a function of the angle α for different crystallographic
orientations of the strip edges. In agreement with Eq. (35),
the angular dependence of the gap acquires a phase 2θ for the
edge tilted by the angle θ with respect to the [010] axis.

C. Out-of-plane magnetic field

Figure 8 presents electron energy spectra of the strip
subjected to an out-of-plane magnetic field at four increasing
fields Bz = 0.02, 0.1, 2, and 10 T. The spectra are calculated
for the bulk gap 2|δ| = 20 meV. In accordance with the results
of Sec. III C, the out-of-plane magnetic field opens the gap in
the edge-state spectrum. The dependence of the edge-state gap
εgap on Bz is shown in Fig. 9. At small magnetic fields, this
dependence is linear, and for a given magnetic field, εgap is a
nonmonotonic function of the bulk gap 2|δ| (see the inset in
Fig. 9), in agreement with Eq. (28).

The out-of-plane magnetic also results in diamagnetic shifts
of the dispersion curves, corresponding to the states localized
at the opposite edges. These shifts along ky are clearly seen
at small magnetic field, see Figs. 8(a) and 8(b). We note that
the relative shift of the left-edge and right-edge energy spectra
is independent of the magnetic field gauge and, for a wide

enough strip, is given by w/l2
B . In our calculations, we use

the gauge with xc = 0 resulting in the symmetric diamagnetic
shifts ±w/2l2

B with respect to ky = 0.
At large magnetic fields, Figs. 8(c) and 8(d), the energy

levels become flat for all ky (except the narrow ranges around
ky = ±w/2l2

B ), which corresponds to the formation of bulk
Landau levels. In particular, two levels in the vicinity of ε = 0
are the bulk zero modes with the energies ε

(±)
0 given by Eq. (7).

The highly dispersive states at ky = ±w/2l2
B are localized at

the strip edges and correspond to the electron and hole chiral
edge modes. Thus the out-of-plane magnetic field finally drives
the system into the quantum Hall effect phase.

V. CONCLUSIONS

To conclude, we have presented the microscopic theory of
the electron structure and the Zeeman effect for helical edge
states emerging in two-dimensional topological insulators
based on HgTe/HgCdTe quantum wells. The theory takes
into account strong natural interface inversion asymmetry of
the (001)-grown HgTe/HgCdTe quantum wells which reflects
the real spatial symmetry described by the D2d point group.
The interface inversion asymmetry leads to the mixing of the
electron-like and heavy-hole subbands forming the helical
edge states. The subband mixing, described by a single
parameter γ , modifies the edge-state dispersion and leads to
spatial oscillations of the edge-state wave functions with the
wave length controlled by γ . External magnetic field applied to
the quantum well structure destroys the topological protection
of the helical states and opens the gap in the edge-state
spectrum. For the in-plane magnetic field, the subband mixing
gives rise to a strong anisotropy of the edge-state effective
g factor, which also becomes dependent on the crystallo-
graphic orientation of the edge. The g-factor anisotropy results,
in turn, in variation of the edge-state gap with magnetic field
direction and edge orientation. Weak magnetic field normal to
the quantum well plane couples the counter propagating edge
states and opens the gap in the edge-state spectrum due to the
subband mixing, whereas strong normal magnetic field drives
the system into the phase of the quantum Hall effect with the
formation of chiral electron and hole edge states.
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