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Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene
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We develop a general hydrodynamic framework for computing direct current, thermal, and electric transport
in a strongly interacting finite-temperature quantum system near a Lorentz-invariant quantum critical point.
Our framework is nonperturbative in the strength of long-wavelength fluctuations in the background-charge
density of the electronic fluid and requires the rate of electron-electron scattering to be faster than the rate
of electron-impurity scattering. We use this formalism to compute transport coefficients in the Dirac fluid in
clean samples of graphene near the charge neutrality point, and find results insensitive to long-range Coulomb
interactions. Numerical results are compared to recent experimental data on thermal and electrical conductivity
in the Dirac fluid in graphene and a substantially improved quantitative agreement over existing hydrodynamic
theories is found. We comment on the interplay between the Dirac fluid and acoustic and optical phonons,
and qualitatively explain the experimentally observed effects. Our work paves the way for quantitative contact
between experimentally realized condensed matter systems and the wide body of high-energy inspired theories
on transport in interacting many-body quantum systems.
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I. INTRODUCTION

Over a half-century ago, the theory of electronic transport in
“standard” metals such as iron and copper was developed. The
key pillar of this approach is the validity of Fermi liquid theory,
which states that the interacting electrons in solids form nearly
free-streaming quasiparticles [1]. At finite temperature, these
quasiparticles form a weakly interacting quantum gas which
is well described by quantum kinetic theory. The transport
properties of these quantum gases are by now very well
understood. A particularly important property of Fermi liquids
is the Wiedemann-Franz law, which states that [2]

L ≡ κ

σT
= π2

3

k2
B

e2
≡ LWF. (1)

Here, κ is the electronic contribution to thermal conductivity,
σ is the electrical conductivity, T is the temperature, and L
is the Lorenz ratio. Implicit in the above equation is that the
dominant interactions are between impurities or phonons and
quasiparticles, and in most metals this is true: the interaction
time between quasiparticles is typically 104 times longer than
the interaction times between quasiparticles and impurities or
phonons [3].

Also over a half-century ago, a study of the consequences of
hydrodynamic behavior on correlation functions and transport
in interacting quantum systems was initiated [4]. Hydrody-
namics is a framework for understanding the collective motion
of the quasiparticles in a solid, or any other interacting quantum
or classical system, so long as the microscopic degrees of
freedom reach thermal equilibrium locally. In a solid, this
interaction time must be the fastest time scale in the problem
to see hydrodynamic behavior, but since quasiparticles in
a Fermi liquid interact with each other only very weakly,
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observing hydrodynamics in electron fluids is notoriously
hard. Even in the purest metals where hydrodynamic behavior
can be observed, such as in GaAs [5–7], the resulting fluid
is often a Fermi liquid. The resulting dynamics is the fluid
dynamics of (quantum) gases. More recent theoretical work
on hydrodynamics in Fermi liquids includes Refs. [8–13], and
recent experimental work includes Refs. [14,15].

Fermi liquid theory is known to fail in a variety of experi-
mentally realized metals in two or more spatial dimensions—
most famous among these is the strange metal phase of the
cuprate superconductors [16–18], which does not have quasi-
particle excitations. A slightly more theoretically controlled
and better understood example of a state of quantum matter
without quasiparticles is the quasirelativistic Dirac fluid in
the semimetal graphene. The Dirac fluid, which effectively
lives in two spatial dimensions, has also been argued to be
strongly interacting at experimentally achievable temperatures
[19–22] due to ineffective Coulomb screening [23]. Although
it is separated from the Fermi liquid by a crossover, and
not a (thermal) phase transition, its proximity to a (simple)
zero-temperature quantum critical point at charge neutrality
means that the phenomenology of the Dirac fluid is expected
to differ strongly from Fermi liquid theory. Due to the high
spatial dimensionality [24], the development of a predictive
quantitative theory of these systems is notoriously hard. A
major theme in recent work has been quantum criticality
[25,26], which opens up the possibility for borrowing powerful
techniques from high-energy physics, but even in this case
very little is known about the experimentally relevant regime
of finite temperature and density. One of the only remaining
techniques for understanding these systems is hydrodynamics,
as many features of hydrodynamics are universal and model
independent, and the strongly interacting quantum physics
is captured entirely by the coefficients in otherwise classical
differential equations. Such fluids are quantum analogues of
classical liquids such as water, which are strongly interacting
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(albeit with negligible quantum entanglement) insofar as they
do not admit a controllable description via kinetic theory.
Furthermore, it has been shown [27] that strongly interacting
quantum critical fluids have a somewhat different hydrody-
namic description than the canonical Fermi liquids described
above, and this can lead to very different hydrodynamic
properties, including in transport [20,21,27–31], as we will
review in this paper.

Using novel techniques to measure thermal transport
[32–34], the Dirac fluid has finally been observed in
monolayer graphene, and evidence for its hydrodynamic
behavior has emerged [35], as we will detail. However,
existing theories of hydrodynamic transport are not consistent
with the simultaneous density dependence in experimentally
measured thermal and electrical conductivities. In this paper,
we improve upon the hydrodynamic theory of Ref. [27],
describe carefully effects of finite density, and develop a
nonperturbative relativistic hydrodynamic theory of transport
in electron fluids near a quantum critical point. Under
certain assumptions about the equations of state of the
Dirac fluid, our theory is quantitatively consistent with
experimental observations. The techniques we employ are
included in the framework of Ref. [36], which developed a
hydrodynamic description of transport in relativistic fluids
with long-wavelength disorder in the chemical potential [36]
was itself inspired by recent progress employing the AdS/CFT
correspondence to understand quantum critical transport in
strange metals [31,37–44], but as we will discuss, this theory
is also well suited to describe the physics of graphene.

A. Summary of results

The recent experiment [35] reported order-of-magnitude
violations of the Wiedemann-Franz law. The results were
compared with the standard theory of hydrodynamic transport
in quantum critical systems [27], which predicts that

σ (n) = σQ + e2v2
Fn

2τ

H , (2a)

κ(n) = v2
FHτ

T

σQ

σ (n)
, (2b)

where e is the electron charge, s is the entropy density, n is the
charge density (in units of length−2), H is the enthalpy density,
τ is a momentum relaxation time, and σQ is a quantum critical
effect, whose existence is a new effect in the hydrodynamic
gradient expansion of a relativistic fluid. Note that up to σQ,
σ (n) is simply described by Drude physics. The Lorenz ratio
then takes the general form

L(n) = LDF

(1 + (n/n0)2)2
, (3)

where

LDF = v2
FHτ

T 2σQ

, (4a)

n2
0 = HσQ

e2v2
Fτ

. (4b)

L(n) can be parametrically larger than LWF (as τ → ∞
and n � n0), and much smaller (n � n0). Both of these
predictions were observed in the recent experiment, and fits of
the measuredL to (3) were quantitatively consistent, until large
enough n where Fermi liquid behavior was restored. However,
the experiment also found that the conductivity did not grow
rapidly away from n = 0 as predicted in (2), despite a large
peak in κ(n) near n = 0, as we show in Fig. 1. Furthermore,
the theory of Ref. [27] does not make clear predictions for the
temperature dependence of τ , which determines κ(T ).

In this paper, we argue that there are two related reasons
for the breakdown of (2). One is that the dominant source of
disorder in graphene—fluctuations in the local charge density,
commonly referred to as charge puddles [45–48]—are not
perturbatively weak, and therefore a nonperturbative treatment
of their effects is necessary [49]. The second is that the
parameter τ , even when it is sharply defined, is intimately
related to both the viscosity and to n, and this n dependence is
neglected when performing the fit to (2) in Fig. 1. We develop a
nonperturbative hydrodynamic theory of transport which relies
on neither of the above assumptions, and gives us an explicit
formula for τ in the limit of weak disorder. The key assumption
for the validity of our theory is that the size of the charge
puddles is comparable to or larger than the electron interaction
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FIG. 1. A comparison of our hydrodynamic theory of transport with the experimental results of Ref. [35] in clean samples of graphene at
T = 75 K. We study the electrical and thermal conductances at various charge densities n near the charge neutrality point. Experimental data
are shown as circular red data markers, and numerical results of our theory, averaged over 30 disorder realizations, are shown as the solid blue
line. Our theory assumes the equations of state described in (27) with the parameters C0 ≈ 11, C2 ≈ 9, C4 ≈ 200, η0 ≈ 110, σ0 ≈ 1.7, and
(28) with u0 ≈ 0.13. The yellow shaded region shows where Fermi liquid behavior is observed and the Wiedemann-Franz law is restored, and
our hydrodynamic theory is not valid in or near this regime. We also show the predictions of (2) as dashed purple lines, and have chosen the
three-parameter fit to be optimized for κ(n).
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FIG. 2. A comparison of our hydrodynamic theory of transport with the experimental results of Ref. [35] in clean samples of graphene at
the charge neutrality point (n = 0). We use no new fit parameters compared to Fig. 1. The yellow shaded region denotes where Fermi liquid
behavior is observed; the purple shaded region denotes the likely onset of electron-phonon coupling.

length scale, which is about 100 nm. Experimental evidence
suggests this is marginally true in graphene samples mounted
on hexagonal boron nitride [48], as was done in Ref. [35].
Although we cannot analytically solve our theory nonpertur-
batively, we perform numerical computations of the transport
coefficients in disordered fluids, and compare the results to the
experimental data in Fig. 1. Our simultaneous fit to κ(n) and
σ (n) shows improved quantitative agreement with both sets of
data in the Dirac fluid regime. We further compare in Fig. 2
the temperature dependence of κ and σ between our numerics
and the experiment, using no new fitting parameters, and find
satisfactory quantitative agreement in the Dirac fluid regime.

Figure 3 shows a cartoon of the regime of validity of our
hydrodynamic theory. The fact that the charge puddles may
be substantial, while the entropy and energy densities are
much more constant, helps to explain why the perturbative
description of transport is much better for κ than σ , as the
perturbative approach works well in a nearly homogeneous
fluid. In coming years the quality of graphene samples will
improve, and the charge puddle size may grow larger than
100 nm, allowing us to observe the clean hydrodynamic limit
described by (2). As present day samples are just clean enough

x
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s(x) > 0
lee

ξ

FIG. 3. A cartoon of a nearly quantum critical fluid where our
hydrodynamic description of transport is sensible. The local chemical
potential μ(x) always obeys |μ| � kBT , and so the entropy density
s/kB is much larger than the charge density |n|; both electrons and
holes are everywhere excited, and the energy density ε does not
fluctuate as much relative to the mean. Near charge neutrality the
local charge density flips sign repeatedly. The correlation length of
disorder ξ is much larger than lee, the electron-electron interaction
length.

to observe hydrodynamics, our determination of the equations
of state should be understood as preliminary.

Although the focus of this paper is on the Dirac fluid
in graphene, this is because of the experimental motivation
for this work. Our theory has broader validity, and we will
introduce it in the more general context of transport in
a disordered electronic fluid near a quantum critical point
with manifest Lorentz invariance, with the microscopic Fermi
velocity vF playing the role of the speed of light. The Dirac
fluid is not strictly Lorentz invariant, but we will justify the
validity of our approach even in this system. While the Dirac
fluid in graphene is currently the only experimentally realized
strongly interacting condensed matter system with evidence
for electronic hydrodynamics [35], in the future, surface states
in topological insulators in three spatial dimensions may host
strongly interacting electron fluids [50]. Strongly interacting
three-dimensional materials including Weyl semimetals [51–
53] may also give rise to novel phenomena relevant for
transport [54,55].

B. Outline

The outline of this paper is as follows. We briefly review
the definitions of transport coefficients in Sec. II. In Sec. III,
we develop a theory of hydrodynamic transport in the electron
fluid, assuming that it is Lorentz invariant. We discuss the
peculiar case of the Dirac fluid in graphene in Sec. IV, and
argue that deviations from Lorentz invariance are small. We
describe the results of our numerical simulations of this theory
in Section V, and directly compare our simulations with recent
experimental data from graphene [35]. The experimentally
relevant effects of phonons are qualitatively described in
Sec. VI. We conclude the paper with a discussion of future
experimental directions. Appendices contain technical details
of our theory.

In this paper, we use index notation for vectors and tensors.
Latin indices ij · · · run over spatial coordinates x and y; Greek
indices μν · · · run over time t as well. We will denote the time-
like coordinate of Aμ as At . Indices are raised and lowered
with the Minkowski metric ημν ≡ diag(−1,1,1). The Einstein
summation convention is always employed.

II. TRANSPORT COEFFICIENTS

Let us begin by defining the thermoelectric response
coefficients of interest in this paper. Suppose that we drive
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our fluid by a spatially uniform, externally applied, electric
field Ei (formally, an electrochemical potential gradient), and
a temperature gradient −∂iT . We will refer to −∂jT as T ζj ,
with ζj = −T −1∂jT , for technical reasons later. As is standard
in linear response theory, we decompose these perturbations
into various frequencies, and focus on the response at a
single frequency ω. Time translation invariance implies that
the (uniformly) spatially averaged charge current 〈Ji〉 and the
spatially averaged heat current 〈Qi〉 are also periodic in time of
frequency ω, and are related to Ei and ζi by the thermoelectric
transport coefficients:( 〈Ji〉

〈Qi〉
)

e−iωt =
(

σij (ω) T αij (ω)
T ᾱij (ω) T κ̄ij (ω)

)(
Ej

ζj

)
e−iωt . (5)

In a typical disordered system, we expect that σij , αij , ᾱij

and κ̄ij are all proportional to δij . In our numerics, finite size
effects introduce some anisotropy; our theory is valid in this
more general scenario.

In fact, (5) is somewhat subtle. Implicit in the definitions
of the transport coefficients are a set of boundary conditions.
In the definitions in (5), we have assumed that we tune Ei

and ζi , and then measure Ji and Qi . However, usually in
experiments one fixes Ji , as electronic measurements are far
easier to control. One then can fix either Ei or ζi . So while it is
straightforward to measure σij by setting ζi = 0, one measures
not κ̄ij but instead κij , defined as

〈Qi〉|〈Ji 〉=0 = T κij ζj . (6)

Straightforward manipulations give that σijEj = −T αij ζj ,
and therefore that

κij = κ̄ij − T ᾱikσ
−1
kl αlj . (7)

These definitions are general and independent of our hydrody-
namic theory.

III. RELATIVISTIC HYDRODYNAMICS

We now develop a theory of relativistic hydrodynamics of
the electronic plasma in a disordered metal, where the disorder
is introduced by a spatially dependent chemical potential
μ0(x). So long as the length scale ξ ∼ |μ0|/|∂xμ0| over which
this function varies is much larger than the electron-electron
scattering length lee ∼ �vF/kBT , it is sensible to treat the
fluid as locally homogeneous, with parameters such as energy
density and viscosity locally being functions of μ0 alone. This
external chemical potential acts as an external source of energy
and momentum for the electronic plasma, and can be sourced
by lattice defects or impurities, either in the (semi)metal itself,
or in the substrate it is placed on, for two-dimensional materials
such as graphene [45,48]. Our theory here is analogous to
Ref. [36], and similar to the earlier work [8] in nonrelativistic
fluids. However [36], focused mostly on the mathematical
consequences of relativistic hydrodynamics, particularly in
regards to holographic models. Our focus here is on practical
consequences in realistic quantum critical fluids where μ �
kBT , and where the equations of state are tightly constrained
by scale invariance (see Appendix A).

Previous theories of hydrodynamic transport assumed that
disorder was parametrically weak, and so momentum is a
nearly conserved quantity [20,27]. Such theories can be shown

to be a perturbative limit of the more general approach that
we advocate below: see Ref. [36] and Appendix C. However,
near the charge-neutrality point, nonperturbative effects can
become important [36]. Since this is the regime where [35]
observed evidence for hydrodynamic behavior, it is necessary
to treat transport in the charge-neutral fluid carefully and
to study nonperturbative physics. We begin with a general
discussion of the equations of state of a relativistic plasma, and
then outline our nonperturbative hydrodynamic description of
transport. Though our focus in this paper is on the case of
two spatial dimensions, it is straightforward to generalize our
theory to higher dimensions.

A. Hydrodynamic equations

Let us review the structure of relativistic hydrodynamics,
which was derived carefully in Ref. [27]. Hydrodynamics
is a general framework which describes the relaxation of
an ergodic and locally thermalizing (classical or quantum)
system to global thermal equilibrium, or as close to global
equilibrium as boundary conditions or external sourcing allow.
The assumption of local thermalization implies that the only
quantities with dynamics on long time scales (compared to
the local thermalization time lee/vF) are quantities that are
globally conserved, up to external sources. In a typical theory,
these will be charge, energy and momentum, and we will
assume this to be the case for graphene as well. Hydrodynamics
is a systematic way to truncate equations of motion for the
local charge density n(x), energy density ε(x) and momentum
density �i(x), by treating the perturbative parameter as lee∂μ.
In fact, it is typical to instead study the dynamics of the
thermodynamic conjugate variables: chemical potential μ(x),
temperature T (x) and relativistic velocity uμ(x), respectively.
uμ is subject to the usual constraint uμuμ = −v2

F.
Note that throughout this paper, “charge density” n refers

to the number density of electrons, minus the number density
of holes: n = nelec − nhole. Thus there are no factors of e in the
definition of n, or chemical potential μ [56].

The equations of motion of hydrodynamics are the local
conservation laws, up to external sources. We apply an external
chemical potential μ0 via an external electromagnetic field
At

ext = −μ0(x)/e, Ai
ext = 0. We employ relativistic notation

with vF = 1 temporarily. The equations of hydrodynamics are

∂μT μν = eF
μν
ext Jν, (8a)

∂μJμ = 0, (8b)

where F ti
ext = −F it

ext = ∂iμ0 are the only nonvanishing com-
ponents, T μν represents the expectation value of the local
stress-energy density, and Jμ the expectation value of the local
charge density. T μν and Jμ must be expressed in terms of μ,
T , and uμ in order to obtain a closed set of equations. One
can show that there is a static solution to the hydrodynamic
equations with uμ = (1,0,0), T = T0 = constant, and μ(x) =
μ0(x) [36]. Recall that μ0(x) is slowly varying on the length
scale ξ . We will take this solution as the background state of
our fluid.

Hydrodynamics is a perturbative expansion of (8), where
the perturbative expansion parameter is the number of deriva-
tives of space and time. At zeroth order, the equations of state

075426-4



TRANSPORT IN INHOMOGENEOUS QUANTUM CRITICAL . . . PHYSICAL REVIEW B 93, 075426 (2016)

are simply that T μν and Jμ are given by the thermodynamic
relations we derived above:

T μν = (ε + P )uμuν + Pημν, (9a)

Jμ = nuμ, (9b)

with ε the energy density and P the pressure. In the fluid’s
rest frame, T tt = ε, T ij = Pδij , and J t = n, with all other
components vanishing. At first order, Ref. [27] showed that
the most general first derivative corrections to T μν and Jμ

consistent with symmetries and the local second law of
thermodynamics are

T μν = (ε + P )uμuν + Pημν − 2PμρPνσ η∂(ρuσ )

−Pμν(ζ − η)∂ρu
ρ, (10a)

Jμ = nuμ − σQ

e2
Pμν

(
∂νμ − μ

T
∂νT − eFνρ,extu

ρ
)
, (10b)

with η,ζ,σQ > 0 and Pμν = ημν + uμuν . Here, η and ζ

are the shear and bulk viscosity respectively, and σQ is a
“quantum critical” conductivity [27]. Note that the external
electromagnetic fields show up in the hydrodynamic gradient
expansion in the charge current; this happens because the
charged fluid is sensitive only to the gradient in the total
electrochemical potential [1]. We allow for P , n, η, ζ , and σQ

to all be position-dependent, with their position dependence
related to μext, as we will describe shortly in more detail.

It has long been appreciated [27] that σQ plays a funda-
mental role in hydrodynamic transport near quantum critical
points. More recently, Ref. [31] argued that η could play a role
in transport. We will carefully detail how η affects transport in
this paper, analytically and numerically.

In our extension of this theory to graphene, we will also
allow for Coulomb interactions of the fluid to be substantial
enough to enter the hydrodynamic equations. However, this
should only alter the equations of state, as well as add
a further contribution to Fμν,ext [20], and we will detail
this in the subsequent section. The constraints imposed on
hydrodynamics from local positivity of entropy production
[27] are unchanged in the presence of Coulomb interactions,
which are entirely accounted for via a modified F

μν
ext .

It is sufficient in our calculation of σ , α, and
κ to simplify T μν and Jμ and retain only the
terms linear in velocity. One finds, in d = 2,

T ti = (ε + P )vi, (11a)

T ij = Pδij − η(∂ivj + ∂jvi) − (ζ − η)δij ∂kv
k, (11b)

J i = nvi − σQ

e2

(
∂i(μ − μ0) − μ

T
∂iT

)
. (11c)

We stress the novel role of σQ, a new dissipative transport
coefficient in a relativistic fluid, without a direct analog in
the canonical nonrelativistic fluid. This term is related to the
underlying thermally excited electron-hole plasma, and the
fact that electrons and holes can move in opposite directions
under an applied electric field, contributing a net electric
current [57]. There is no microscopic thermal conductivity—
instead, all microscopic dissipation related to electric and
thermal gradients is controlled by σQ.

B. Hydrodynamic theory of transport

We are now ready to detail our hydrodynamic calculation
of the transport coefficients defined in Sec. II. We place our
fluid in a box of length L in each direction, with periodic
boundary conditions on the fluid in every direction. We then
apply a constant background Ei and ζi [58]. The static solution
above is no longer a solution to the hydrodynamic equations
of motion, sourced by these gradients. Now, we generically
expect to excite both a spatial electric current J i , and a spatial
heat current

Qi ≡ T ti − μJ i. (12)

We can expand out J i and Qi locally as a Taylor series in
Ei and ζi . The transport coefficients in Sec. II are defined
by retaining only the linear terms in Ei and ζi , and spatially
averaging over the local charge and heat currents. It is sufficient
to perform a linear response calculation about our previously
identified static solution:

μ ≈ μ0(x) + δμ(x)e−iωt , (13a)

T ≈ T0 + δT (x)e−iωt , (13b)

ut ≈ 1, (13c)

ui ≈ δvi(x)e−iωt , (13d)

and then solve the linearized hydrodynamic equations—this is
equivalent to only keeping terms linear in Ei and ζi in the full
solution. For ease of notation, we drop the “δ” in front of the
linear response perturbations in the remainder of the paper, but
one should keep in mind that μ(x), T (x), and vi are henceforth
perturbatively small quantities.

Following [36], the linearized hydrodynamic equations (8)
can be shown to take the following form [59]:

⎛
⎝−e−2∂iσQ∂i e−2T −1

0 ∂iμ0σQ∂i ∂jn

e−2∂iμ0σQ∂i −e−2T −1
0 ∂iμ

2
0σQ∂i T0∂j s

n∂i s∂i −∂i(ζ − η)∂j − ∂iη∂j − ∂jη∂i

⎞
⎠

⎛
⎝μ

T

vj

⎞
⎠ =

⎛
⎝−e−1∂iσQ(Ei − μ0ζi/e)

e−1∂iσQμ0(Ei − μ0ζi/e)
enEi + T0sζi

⎞
⎠. (14)

Here,

s = ε + P − μ0n

T0
(15)

is the entropy density of the background fluid. s and n are
not independent, and are related by thermodynamic Maxwell
relations: see Appendix A. We have also employed

∂iP = n∂iμ + s∂iT . (16)
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In particular, s and n are position-dependent functions whose
position dependence is entirely determined by the local
chemical potential: s(x) = s(T0,μ0(x)), and similarly for n,
η, and all other coefficients in the hydrodynamic equations.
The proper boundary conditions to impose on μ, T , and vj are
periodicity. This forms a well-posed elliptic partial differential
equation and can be numerically solved: see Appendix E.
Combining (11) and (12), along with μ, T , and vi as found
from solving the linear system (14), we obtain Ji(Ej ,ζj ) and
Qi(Ej ,ζj ). Spatially averaging these quantities and employing
(5), we obtain σij ,αij and κ̄ij .

We cannot exactly compute these transport coefficients in
general. However, one can prove [36] that Onsager reciprocity
holds. This is a nontrivial consistency check on the validity
of our approach. Furthermore, there exist scaling symmetries
combining rescalings of μ, T , and vi , as well as the equations
of state; these are listed in Appendix B. These are helpful
when we fit this theory to the data of Ref. [35]. These scaling
symmetries are also present in the theory of Ref. [27], with the
exception of a further scaling symmetry which only affects the
viscosity and the length scale of disorder in this theory.

In the limit where

μ0 = μ̄0 + uμ̂(x), (17)

with μ̂ an O(1) function but u � μ̄0, the transport coefficients
may be perturbatively calculated analytically, and for μ �
kBT , we find that

σ ≈ e2v2
Fn

2τ

ε + P
, (18a)

α ≈ ev2
Fnsτ

ε + P
, (18b)

κ̄ ≈ v2
FT s2τ

ε + P
, (18c)

and we find an analytical expression for τ with the following
approximate form near the Dirac point:

1

τ
≈ v2

Fu
2

2

(
∂n

∂μ

)2[
e2

σQ(ε + P )
+ η + ζ

ξ 2

4μ2

(ε + P )3

]
. (19)

Details of this calculation and a more precise (and compli-
cated) formula are given in Appendix C. The requirement that
we are “far” from the Dirac point is that σQ � e2v2

Fn
2τ/(ε +

P ). Everything in (19) except for u is evaluated in the clean
fluid with u → 0. (19) makes clear that if η/ξ 2 is large, the n

and μ dependence of τ is not negligible even when μ � kBT ,
and we will verify this in numerical simulations in Sec. V. The
validity of (2) for κ is not guaranteed far from the Dirac point in
this perturbative limit, but can often be quite good in practice,
when the density dependence of all parameters is accounted
for. Combining (18) and (19), we obtain the relativistic analog
of the perturbative results of Ref. [8].

Noting that n ∼ μ as μ → 0, careful study of (2) shows
that the Lorentzian form of κ(n) is not altered by plugging in
this hydrodynamic formula for τ , while the form of σ (n) can
be quite distinct, with σ (n) no longer growing quadratically
at larger n. This helps explain why in Fig. 1, (2) gave a
quantitatively good fit to κ(n), but not to σ (n).

IV. THE DIRAC FLUID IN GRAPHENE

The previous section developed a general theory for rela-
tivistic fluids. It is often said that the Dirac fluid in graphene is a
“quantum critical” system in two spatial dimensions [19,29,60]
and exhibits behavior analogous to the quantum critical regime
at finite temperatures above the superfluid-insulator transition,
although technical differences arise. Let us review elementary
features of the quantum critical behavior of graphene, and
argue that our formalism remains appropriate for transport
computations.

Assuming that the electrons in graphene are noninteracting,
standard band theory calculations on a honeycomb lattice in
two spatial dimensions with nearest-neighbor hopping give
two species of Dirac fermions with low-energy dispersion
relation:

ε(q) ≈ �vF|q|. (20)

Convincing experimental evidence for these massless Dirac
fermions was given in Ref. [61,62]. There is a quantum critical
point between electron and hole Fermi liquids at zero temper-
ature in graphene, as the chemical potential μ is tuned through
the Dirac point, μ = 0. At (any experimentally accessible)
finite temperature T and at μ � T , an effectively relativistic
plasma of electrons and holes forms, interacting via a 1/r

Coulomb potential. The strength of these Coulomb interactions
is captured by a dimensionless number α0 analogous to the fine
structure constant:

α0 = e2

4πε0εr�vF
≈ 1

137

c

εrvF
, (21)

where εr ∼ 4 is a dielectric constant, c ≈ 3 × 108 m/s is the
speed of light, vF ≈ 1.1 × 106 m/s is the Fermi velocity in
graphene, and e is the charge of the electron. In experiments,
α0 ∼ O(1), and so unlike quantum electrodynamics (αQED ≈
1/137), interactions are strong. vF plays the role of the speed
of light in an effectively relativistic electron-hole plasma, and
in an experimentally accessible regime which we describe
below, one can use relativistic hydrodynamics to model
thermoelectric transport in graphene.

The exception to the emergent Lorentz invariance is the
photon-mediated Coulomb interactions, which are the standard
1/r interaction of three spatial dimensions. Further, because
vF ∼ c/300, the Coulomb interaction is essentially nonlocal
and instantaneous in time. Despite this, graphene shares
many features with a truly relativistic plasma with “speed of
light” vF, including a “quantum critical” diffusive conductivity
σQ [28].

Analogously to in quantum electrodynamics, α is a
marginally irrelevant interaction, and so the effective coupling
constant runs. At temperature T → 0, we should replace α0

with [19]

αeff = α0

(
1 + α0

4
ln

�

T0

)−1

, (22)

where � ∼ 8.4 × 104 K is a cutoff related to the graphene
band structure (the energy scale at which the dispersion is no
longer linear). Note that although the running of αeff causes a
logarithmically increasing velocity vF in (20), when we write
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vF in this paper, we are always referring to the bare velocity,
1.1 × 106 m/s.

At the experimentally accessible temperatures (T0 ∼ 70 K)
where the plasma described above is most likely not suppressed
by local disorder in μ [35], (22) gives αeff ∼ 0.25. And
so the experiments likely probe the dynamics of a strongly
interacting quasirelativistic plasma. It is such a regime where
hydrodynamics is a good approximation. More carefully,
the electron-electron scattering length has quantum critical
scaling [28]

lee ∼ �vF

α2
effkBT0

∼ 100 nm, (23)

where we have plugged in experimentally reasonable values
of the parameters. Indeed, pump-probe experiments provide
evidence that the electron-electron interaction time, lee/vF ∼
10−13 s, is consistent with (23) [63,64]. Furthermore, it is
believed that the dominant source of disorder in graphene
are charge puddles, which are fluctuations in the local charge
density. It is now possible to find samples of graphene where
these fluctuations are correlated on the length scale (23) [48]. In
these cleanest samples, the experimental evidence thus points
to the validity of a hydrodynamic description, such as the one
we advocate in this paper.

Most computations of the thermodynamic and hydrody-
namic coefficients in graphene are based on kinetic theory,
which requires a quasiparticle description to be sensible, and
so are valid as αeff → 0 (T0 → 0), when the plasma becomes
weakly interacting. However, the experiments are likely not
in this weakly interacting regime, and ln αeff corrections to
these properties are not negligible. As such, we will allow all
coefficients in the equations of motion to be fit parameters. We
will also neglect the fact that the running of αeff(T0) allows for
certain thermodynamic relations for a strictly scale invariant,
relativistic fluid to be violated. This assumption is justified in
Appendix D.

We must also take into account the long range Coulomb
interactions in our hydrodynamic description. This can be done
following Ref. [20]. The Coulomb potential introduces a local
electric field and must be included in F

μν
ext :

At
ext = μext − ϕ = μext − ϕext − δϕ, (24)

where

ϕ(x) =
∫

d2y K(x − y) n(y), (25)

with K a Coulomb kernel whose specific form [65] is not
necessary for our purposes, and the n the charge density.
At T0 = 0, K(r) = αeff/r; at finite T0, this is cut-off at
long wavelengths due to thermal screening [65]. In (24),
we have separated the effects of Coulomb screening into
two contributions: ϕext, which alters the background disorder
profile, so that μ0 �= μext, and δϕ, which is the infinitesimal
Coulomb potential created by the change in charge density δn,
proportional to Ei and ζi .

The time-independent equations of motion depend only on
T , vi , the sources Ei and ζi , and the electrochemical potential

δ� ≡ δμ + δϕ. (26)

This is a direct consequence of the tightly constrained way
that Fext and μ enter the hydrodynamic gradient expansion.
If we solve for δ� instead of δμ, we find that Coulomb
screening does not affect dc transport at all: more precisely, the
equations of motion are identical to those in Sec. III, but with
δ� replacing δμ. That dc transport is insensitive to Coulomb
screening of the hydrodynamic degrees of freedom was also
noted in Ref. [20] in a homogeneous fluid by appealing to the
random phase approximation [66]. It is therefore appropriate to
directly apply the formalism of Sec. III to study dc thermal and
electric transport in the Dirac fluid in graphene. To maintain
notation with Sec. III, we will continue to refer to � as μ

in our linear response theory, with the understanding that this
includes corrections due to Coulomb screening.

V. NUMERICAL RESULTS

Having argued that the theory of Sec. III is an acceptable
approximation for dc transport in the Dirac fluid in graphene,
we now present the results of numerical simulations of (14).
In our numerics, we assume that the equations of state of the
graphene fluid are as follows:

n(μ0) =
(

kBT0

�vF

)2
[
C2

μ0

kBT0
+ C4

(
μ0

kBT0

)3
]
, (27a)

s(μ0) = k3
BT 2

0

(�vF)2

[
C0 + C2

2

(
μ0

kBT0

)2

− C4

4

(
μ0

kBT0

)4
]
,

(27b)

η(μ0) = (kBT0)2

�v2
F

η0, (27c)

ζ (μ0) = 0, (27d)

σ (μ0) = e2

�
σ0, (27e)

with C0,2,4, σ0, and η0 dimensionless constants. The form of n

and s are consistent with thermodynamic Maxwell relations—
see Appendix A. We take the disorder profile to be random
sums of sine waves, and normalize the disorder distribution so
that

〈(μ0 − μ̄0)2〉 = u2
0(kBT0)2. (28)

The shortest-wavelength sine wave in the problem is taken
to have wavelength ξ = lee in all of our numerics. There is
an exact symmetry of the problem under which ξ can be
made arbitrary, so long as we rescale η and ζ by a factor of
(ξ/ lee)2–see Appendix B. We have chosen this value of ξ as it
is roughly consistent with previous experimental observations
[48], and also the smallest value for which a hydrodynamic
description is sensible. More details on numerical methods
are in Appendix E.

An example of our numerical results is shown in Fig. 4,
where the results of varying the dimensionless viscosity η0

are shown. When the charge puddle sizes are ∼20 K, as
in experiment [48], the value of η0 dramatically alters the
transport coefficients as a function of density. In particular,
the σ (n) and α(n) curves are substantially flattened, an effect
which is predicted using (19). Further, the peak in κ(n) is
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FIG. 4. Numerical computations of transport coefficients with C1 = C2 = σ0 = 1 and C4 = 0. The top row has u0 = 0.2, and the bottom
row has u0 = 0.002. Solid lines are our theoretical results (using the particular disorder realizations studied) and the circular markers are
numerical results. Averages are taken over 20 disorder realizations. T0 = 75 K and we employ the value of vF in graphene.

substantially smaller than predicted perturbatively, and κ(n)
does not shrink to 0 as n → ∞, as predicted in Ref. [27]. In
contrast, in a limit of extremely weak disorder (temperature
at which the Dirac fluid emerges ∼0.2 K), the transport
coefficients are relatively insensitive to the viscosity (assuming
that η0/C0 ∼ 1, as expected for a strongly interacting quantum
fluid).

We also show the consequences of a nonzero C4 in Fig. 5.
The most important effect of C4 is that n and μ̄0 are no longer
proportional—in particular, when C4 > 0, we see that at larger
n both σ and α decrease much more slowly with n. Whenever
C4 �= 0, the equations of state become badly behaved at
large μ, because s(μ) or n(μ) becomes a nonmonotonically
increasing function. At lower temperatures (T � 50 K) in

Fig. 2, this begins to be an issue in the codes for the equations
of state we use to compare to experiment. This implies that
higher-order terms in the equations of state (associated with
more fit parameters) are necessary.

A. Comparison to experiment

We now describe in more details the lessons to be drawn
from our fit to experimental data, shown in Figs. 1 and 2.
Due to a total of six fit parameters (three which determine the
overall scales in the plots, and three which alter the shapes
of curves), we did not perform an exhaustive analysis and
find a statistically optimal fit. We found that most choices of
parameters do not agree well with data, and the fit we have
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FIG. 5. Numerical computations of transport coefficients with varying C4, C1 = σ0 = 1, η0 = 3, C2 = 0.2, and u0 = 0.2. The sharp change
in behavior when C4 < 0 is a consequence of n(μ) not being monotonically increasing at large μ. Averages are taken over 20 disorder
realizations. T0 = 75 K and we employ the value of vF in graphene.
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FIG. 6. A comparison of our numerical computation of κ(T ) with
experimental results of Ref. [35] at the charge neutrality point (n = 0).
The red data points are experimental data from [35], the blue curve
is our disorder-averaged simulation (using identical parameters to
Fig. 2), and the green dashed curve is the perturbative prediction
κ ∼ T 3 for comparison. Data are shown on a log-log scale. The yellow
shaded region denotes where Fermi liquid behavior is observed; the
purple shaded region denotes the likely onset of electron-phonon
coupling.

presented serves as a proof of principle that hydrodynamics
can explain many important features of the experiment [35],
as we now discuss.

To obtain data at lower temperatures, we have taken disorder
realizations from T0 = 75 K, using our standard assumption
ξ = lee (T0 = 75 K), and simply lowered the temperature. We
also keep u0T0 constant as a function of T0. Formally, this
implies that at lower temperatures ξ < lee, as lee ∼ T −1; this
may be problematic for the validity of hydrodynamics. A
conservative solution, employing the rescaling symmetries of
our theory, is to simply double ξ , and quadruple η0: all data
are exactly identical, except that for all data points taken in
Fig. 2, ξ > lee and η0 increases.

Figure 6 revisits the T dependence in κ . Assuming that
disorder is weak, we employ (18) and (19) to determine the
scaling of κ: since s ∼ T 2, ε + P ∼ T 3, ∂n/∂μ ∼ T , and
the viscosity dependence in τ is negligible, we obtain τ ∼ T

and κ ∼ T 3. That numerics and experiment are not consistent
with this power law is a sign of the strong nonperturbative
effects, and suggests that observing power-law signatures of
hydrodynamics may only be possible in the cleanest samples:
see Fig. 6. Figure 7 suggests that the sharp dependence in T

observed in experiment is a consequence of C4 > 0 and is
not a robust scaling regime [67]. As noted in Ref. [35], this
dramatic T dependence of κ , in contrast with the very weak
T dependence of σ , at the Dirac point, is a tell-tale sign of
hydrodynamics that is not captured by competing theories,
such as the bipolar diffusion effect.

The fits to σ (n) and σ (T ) are not as good as the fits to κ .
Nonetheless, our theory does help to explain the slow growth in
σ away from the Dirac point, as a consequence of a fluid with
both non-negligible viscosity and large disorder, as in Fig. 4.
Our simulations also correctly predict that the conductivity is
an increasing function of T , an entirely nonperturbative effect,
in Fig. 2. This is at odds with predictions from kinetic theory in
the Dirac fluid, which predict that σ (n = 0,T ) ∼ α−2

eff should

100 101 102

10−2

100

102

104

T (K)

κ
(n

W
/K

)

C4 = 0
C4 = 0.1
κ(T ) ∼ T 3

FIG. 7. A comparison of κ(T ) in simulations with varying C4.
We take C0 = 1, C2 = η0 = 0.1, σ0 = 1, u0 = 0.1 (at T0 = 75 K).
At large T , both scenarios have κ ∼ T 3; at lower T , the fluid with
C4 > 0 undergoes a dramatic drop in κ(T ), similar to that observed
in experiment.

be decreasing with T due to the T dependence in αeff [28]. Any
residual contact resistance [68] will also increase the growth
rate of σ (n) away from the Dirac point, and as such will be
closer fit by our numerical results in Fig. 1.

The most surprising thing about the fit is the large values of
all coefficients, compared to previous theories. For example, it
is predicted [19,60] that C0 � 3.4, and we find C0 ∼ 10. This
is a direct consequence of the large values of the density n

over which the Dirac fluid is present (as measured by where
strong deviations from the Wiedemann-Franz law occur). The
naive theoretical estimate is that the Dirac fluid should not
extend past about n ∼ 40 μm−2 [69], yet we see the Dirac
fluid all the way to about n ∼ 200 μm−2; we will comment
more on this issue shortly. As in nonrelativistic fluid dynamics,
our hydrodynamic theory has a large number of rescaling
symmetries (Appendix B), and these rescaling symmetries
turn out to lead to very large values for all hydrodynamic
coefficients as a consequence of the large scale on the density
axis in Fig. 1.

Another consequence of this rescaling is a dramatically
large shear viscosity: η0 ∼ 100. It is now canonical to
normalize this by the entropy density, and so the “proper
units” to measure η in are η0/C0 ≈ 10. This scaling is
a consequence of a proposition [70] that strongly coupled
theories would have η/s ≈ �/4πkB, or η0/C0 ≈ 1/4π . The
viscosity is a helpful measure of the interaction strength in a
theory; if the interactions are perturbatively controlled by a
small parameter g, then we expect η ∼ g−2; only when the
interaction strength is large can η ∼ s, up to a prefactor of
order unity. Hence coming close to saturating the bound of
Ref. [70] is a signature that the fluid is strongly interacting.
Our estimate for η0/C0 is about 100 times larger than the
bound of Ref. [70]. Smaller values of η/s ∼ 0.5�/kB have
been reported in other experiments in cold atomic gases [71]
and quark-gluon plasma [72]. The possibility of adding the
Dirac fluid to a list of strongly interacting quantum fluids is
tantalizing, and a more direct measure of η in the Dirac fluid
is of interest.

One possibility is that our bare coefficients C0, η0 etc. are
anomalously large because [35] has measured the average
charge density in the entire sample. However, some regions
of the sample (notably close to the contacts on the edges [73],
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or regions very close to impurities) may have such large local
values of μ0 that they are always in a Fermi liquid regime.
So long as these Fermi liquid regimes do not percolate across
the entire sample, our hydrodynamic description of transport
may be quite reasonable in the bulk. However, these regions
have a much smaller compressibility, and so can absorb a lot
of charge relative to a clean Dirac fluid. It may be that the
total averaged charge density is then not equal to the averaged
hydrodynamic charge density, leading us to overestimate n.
Rescaling n → λn would rescale C0 → λC0 and η0 → λ2η0.
Choosing λ = 0.2, in accordance with our previous estimates
on the regime of the Dirac fluid at T0 ∼ 75 K, we obtain C0 ∼ 2
and η0/C0 ∼ 2, which are both reasonable for a strongly
interacting fluid.

As noted previously, we expect that future measurements
in cleaner samples may give a wider separation between lee

and ξ . Together with a better understanding of edge effects
and the charge puddle profile, we expect this approach to lead
to cleaner estimates of C0,2,4, η0 and σ0.

VI. PHONONS IN GRAPHENE

Throughout this work, we have neglected the effects of
electron-phonon coupling in graphene [32,33]. In this section,
we provide some brief qualitative comments on the role of
electron-phonon coupling in the experiment [35] and discuss
signatures for future experiments.

Generically, phonons extract both energy and momentum
from the electronic fluid, and in doing so hamper a hydrody-
namic description [74]. In graphene, the acoustic branch(es)
of phonons have dispersion relation [75]

ωac(q) ≈ �va|q| (29)

with va ≈ 2 × 104 m/s and so va � vF. By considering
conservation of energy and momentum in electron-phonon
scattering events, one finds that the phonon energies are
negligible, and thus the scattering event can be treated as elastic
from the point of view of the electrons.

If only acoustic phonons couple to the electronic fluid, we
may approximate that the momentum conservation equation
is modified, following the phenomenology of Ref. [27]:

∂μT μi ≈ Fνi
extJν − T ti

τa
. (30)

The latter term implies that the momentum of the electronic
fluid degrades at a constant rate τ−1

a , which we take to be

1

τa
= BT a, (31)

where a > 0 and B > 0 are constants that are phenomenologi-
cal. Reference [75] computed their values using kinetic theory
and found a = 4 far from the Dirac point. This effect has been
observed experimentally [76], but a is expected to change
near the Dirac point. Following arguments similar to [3,75],
we can estimate a by assuming a quasiparticle description
of transport, and that the dominant events are absorption or
emission of a single phonon. Since acoustic phonons cannot
effectively carry away energy, a Dirac quasiparticle of energy ε

can scatter into ∼ε states. All phonons with relevant momenta
are thermally populated, and we estimate the scattering rate

T

κ

FIG. 8. A sketch of κ(T ), accounting for coupling to acoustic
phonons, for samples of graphene with three different amounts of
disorder (measured by u). We take a = 3 and b = 1 in this plot.

to be proportional to the momentum of the phonon. Thus we
estimate, using that the typical quasiparticle energy is ε ∼ T ,
a = 1 + 1 = 2 [77].

Assuming that the charge puddles are small and can be
accounted for perturbatively, κ is approximately given by (2)
at the Dirac point, with

1

τ
≈ u2

2σQ(ε + P )

(
∂n

∂μ

)2

+ BT a = Au2

T b
+ BT a. (32)

Our analytic theory predicts b = 1. The contribution κ from
electron-phonon coupling is negligible so long as

T � T ∗ ≡
(A
B u2

) 1
b+a

. (33)

Note that T ∗(u) is an increasing function—the weaker the
disorder, the lower the temperature at which electron-phonon
coupling cannot be neglected in the Dirac fluid. The thermal
conductivity scales as

κ ∼
{
T 2+b T � T ∗

T 2−a T � T ∗. (34)

If a > 2, we find phenomenology quite similar to that observed
in Ref. [35], with κ(T ) growing nonmonotonically. We also
find that

κ(T ∗) = C(T ∗)2−a, (35)

a result that can be tested in experiment by measuring T ∗
via the peak in κ for different samples. The prefactor of this
proportionality C may not be very sensitive to the particular
sample, since it is independent of u. Figure 8 shows a sketch
of κ(T ), accounting for acoustic phonons, in three samples
with different disorder strengths u. This mechanism is also
consistent with the fact that the cleaner samples in Ref. [35]
had peaks in κ(T ) at lower temperatures, which suggests
our proposed mechanism for the nonmonotonicity in κ(T )
is sensible. Although our perturbative quasiparticle-based
argument found a = 2 above, the presence of local charge
puddles may increase the effective value of a to somewhere
between 2 and 4, and lead to κ(T ∗) be a decreasing function.
A careful analysis of electron-phonon coupling in disordered
Dirac fluids is worth more study.

At higher temperatures, we expect optical phonons to
couple non-negligibly to the electron fluid. These phonons
can exchange both energy and momentum effectively, and at
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this point we expect the measured thermal conductivity to
increase due to electron-phonon coupling. in Ref. [35], there
is a sharp upturn in κ(T ) at all densities at temperatures of
100 K, which is likely due to activation of optical phonons in
the boron nitride subtrate [34].

VII. CONCLUSIONS

We have developed a theory of transport in realistic
hydrodynamic electron fluids near a quantum critical point.
This theory provides a substantially improved quantitative
fit to κ(n) and σ (n) simultaneously. We have further found
reasonable quantitative fits to σ (T ) and κ(T ) at the Dirac
point, giving us valuable information about the mechanism of
momentum relaxation beyond the theory of Ref. [27].

Although we have managed to find fluids where the growth
in σ (n) is quite slow, there are still differences between the
shape of σ (n) found numerically and in experiment. There are
numerous possibilities for residual discrepancies. One of the
most important possibilities is that the disorder is so strong
that the full thermodynamic equation of state is necessary—in
this paper, we have only kept the three leading order terms.
Alternatively, we may simply not have found the correct
equation of state of graphene. A disorder profile more subtle
than superimposed sines and cosines may also be responsible
for deviations with our theory, although our investigation into
this possibility suggests that other disorder profiles cause
σ (n) to have more substantial density dependence. We have
assumed that the disorder profile is unaltered both by changes
in T and in μ̄0. This is a very strong assumption and need
not be true. Finally, there may be other sources of momentum
relaxation, such as out-of-plane distortions in the graphene
lattice, or interactions with phonons. An understanding of
the aforementioned issues is an important future task, though
may be quite challenging given the possibility that strong
interactions in the Dirac fluid at T ∼ 70 K may lead to the
failure of standard perturbative techniques. The most fruitful
direction for resolving at least some of these questions may
be directly in experiments: for example, techniques to directly
resolve the local charge density on length scales �10 nm are
well known [48], and can shed light into the evolution of μ0

as a function of T , as well as the spatial correlations in μ0.
Experimentally, it may be possible to generate samples of

graphene with much weaker charge puddles using suspended
devices [78,79]. Thermodynamic measurements can also
be used to determine the coefficients C0,2,4, though these
measurements are complicated by the presence of disorder, as
we discuss in Appendix A. Nonetheless, measurements of the
specific heat and compressibility in the Dirac fluid will serve
as valuable guideposts for future hydrodynamic models. Such
measurements have been made in the Fermi liquid [45], and
their extension to the Dirac fluid form the basis for worthwhile
experiments.

Previous experiments that measured the ac conductivity
[80] were not in the hydrodynamic limit. Comparing the
momentum relaxation time τ between measurements of κ ,
and a putative Drude peak in ac transport, may provide a
quantitative test of our theory. Studying magnetotransport [27]
may also be a fruitful direction in experiments. A theoretical
discussion of transport at finite frequency and magnetic field

beyond the weak disorder limit will appear elsewhere [81].
The thermopower of graphene has recently been measured at
T ∼ 200 K [82], and it would be interesting to measure σ , α,
and κ in the same sample in the Dirac fluid and compare with
our hydrodynamic formalism.

ACKNOWLEDGMENTS

We would like to thank Richard Davison and Koenraad
Schalm for helpful discussions. A.L. and S.S. are supported
by the NSF under Grant DMR-1360789 and MURI grant
W911NF-14-1-0003 from ARO. Research at Perimeter In-
stitute is supported by the Government of Canada through
Industry Canada and by the Province of Ontario through
the Ministry of Research and Innovation. J.C. thanks the
support of the FAME Center, sponsored by SRC MARCO and
DARPA. K.C.F. acknowledges Raytheon BBN Technologies’
support for this work. P.K. acknowledges partial support from
the Gordon and Betty Moore Foundation’s EPiQS Initiative
through Grant GBMF4543 and Nano Material Technology
Development Program through the National Research Foun-
dation of Korea (2012M3A7B4049966).

APPENDIX A: THERMODYNAMICS

In this Appendix and in every subsequent Appendix,
we will work in units where � = kB = vF = e = 1. It is
straightforward using dimensional analysis to restore these
units.

We consider the equations of state of the relativistic plasma
in a relativistic strongly interacting fluid in d = 2. Without
specific microscopic details, these are very general facts about
relativistic plasmas without an intrinsic mass scale (or gap).
The discussion generalizes straightforwardly to other d. The
only relevant energy scales are the temperature T and the
chemical potential μ. We have the general Gibbs-Duhem
relation:

ε + P = μn + T s, (A1)

where ε is the energy density, P is the pressure, s is the entropy
density and n is the charge density (n = 0 at the particle-hole
symmetric Dirac point). In a relativistic fluid,

P = T 3F
(μ

T

)
(A2)

for some dimensionless functionF . Thermodynamic identities
imply that

n = ∂P

∂μ
= T 2F ′

(μ

T

)
, (A3a)

s = ∂P

∂T
= 3T 2F − μTF ′

(μ

T

)
= 3P − μn

T
. (A3b)

Combining (A1) and (A3), we obtain

ε = 2P. (A4)

The hydrodynamic description is only sensible for μ �
T –for μ � T the standard Fermi liquid description applies.
Furthermore, the equations of state of the Dirac fluid are charge
conjugation symmetric, implying that F is an even function
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of μ. So we Taylor expand:

F
(μ

T

)
≈ C0

3
+ C2

2

(μ

T

)2
+ C4

4

(μ

T

)4
. (A5)

Using (A3):

n = C2μT + C4
μ3

T
, (A6a)

s = C0T
2 + C2μ

2

2
− C4μ

4

4T 2
. (A6b)

We also require that C0,C2 � 0, so that s � 0 and that n/μ

is positive as μ → 0, as it should be.

1. Thermodynamics of disordered fluids

Already at this point, we can make interesting predictions
about the thermodynamics of the strongly interacting hydro-
dynamic regime in graphene. For concreteness, let us suppose
that the background chemical potential is

μ0(x) = μ̄0 + μ̂(x), (A7)

with μ̄0 a constant and μ̂ a zero-mean random function;
for simplicity, suppose that μ̂ is evenly distributed about
zero, and has a disorder correlation length of ξ � lee, so that
the hydrodynamic description applies. In this case, spatially
averaging over μ0, we find

〈ε〉 = 2C0

3
T 3 + C2T

(
μ̄2

0 + 〈μ̂2〉)
+ C4

2

(
μ̄4

0 + 6μ̄2
0〈μ̂2〉 + 〈μ̂4〉) + · · · . (A8)

The · · · denotes higher-order terms in the equation of state
that we have neglected. A similar expression can be found for
the charge density:

〈n〉 = C2T μ̄0 + 3C4

T
μ̄0〈μ̂2〉 + · · · . (A9)

Let us focus on a clean limit where μ̂ is very small
relative to T . Let us also assume that we are close to the
Dirac point, so that only C0 and C2 terms need to be kept.
Thermodynamics then gives tight constraints on the behavior
of measurable quantities: specific heat and compressibility,
in an experimentally testable regime, due to the ability to
easily tune both T and μ̄0 (the average charge density)
experimentally. In the limit above, the (spatially averaged)
compressibility K is

1

K = ∂〈n〉
∂μ

= C2T , (A10)

where as before, we use 〈· · · 〉 to denote a uniform spatial
average. Note that the independence of K to μ̄0 and μ̂ is
simply a consequence of the fact that we did not expand (A5)
to quartic order. The spatially averaged specific heat

c = ∂〈ε〉
∂T

= 2C0T
2 + C2

(
μ̄2

0 + 〈μ̂2〉). (A11)

The experimental consequence of this result is as follows.
Very close to the Dirac point, we expect that K is approxi-
mately constant. Restoring all dimensional prefactors, we can

therefore set

C2 ≈ (�vF)2

KkBT
(A12)

and rewrite

c ≈ 2C0
k3

BT 2

(�vF)2
+ 2

μ̄2
0 + 〈μ̂2〉
KT

≈ 2C0
k3

BT 2

(�vF)2
+ 2

〈μ̂2〉
KT

+ 2Kn2

T
. (A13)

We thus see that the quadratic dependence in c(n) gives us an
independent measurement of K through a measurement of the
heat capacity. In principle, a quadratic polynomial fit to c(n)
thus determines both K and C0, up to the residual effects of
disorder, which will lead to an overestimate of C0. Repeating
measurements of K directly, as well as c(n) at different T ,
provide nontrivial checks on the above theory. It is important
to note that this argument does not rely on the validity of
hydrodynamics, only that graphene is gapless, μ̄0 � T , and
that μ̂ is very small. Of these three requirements, the last poses
the biggest experimental hurdle.

In the above argument, there is no reason a priori why to
truncate the Taylor expansion to neglect C4 and higher order
corrections, beyond appealing to the weak disorder limit. In
particular, inclusion of C4 complicates our ability to obtain
an accurate measure of μ̄0 from n. The argument above is
simply meant to give a flavor for the constraints on measurable
quantities imposed by scale invariant thermodynamics. A more
systematic treatment is likely necessary to make quantitative
contact with future experiments.

APPENDIX B: RESCALING SYMMETRIES
OF DC TRANSPORT

Solutions to (14) are invariant, up to global rescalings, under
certain rescalings of the linearized hydrodynamic equations of
motion. These symmetries are, assuming λ > 0 is a constant
scaling parameter:

η → λ2η, x → λx; (B1a)

η → λη, σ → λσ, α → λα, κ → λκ, P → λP ;

(B1b)

α → λα, κ → λ2κ, η → λ−2η, μ0 → λμ0,

C2 → λ−2C2, C4 → λ−4C4, etc.; (B1c)

α → λα, κ → λκ, σ → λσ, η → λ−1η. (B1d)

Everything not listed is invariant. ζ and η have the same
scalings, as do σ and σQ, and so we have only listed some of
these parameters.

These rescalings are useful to help us compare simulations
to experimental data from graphene. The latter three rescalings
can be used to help fix the overall magnitude of κ and σ , as
well as the values of n, as measured in experiment. These
are exactly analogous to the symmetries of the Navier-Stokes
equation, which allow us to reduce all such hydrodynamic
problems to a universal equation, up to a single dimensionless
parameter [35], neither measured the viscosity directly nor the
charge puddle size, and the first scaling above implies that we
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cannot determine viscosity alone. So, as mentioned in the main
text, we assume that ξ = lee, the shortest possible value of ξ

for which hydrodynamics seems sensible.

APPENDIX C: WEAK DISORDER

Many analytic results can be obtained in the limit where the
disorder strength is “small.” We provide detailed derivations
of all such results in this Appendix. We introduce disorder as
in (17). Below we denote n0 = n(μ̄0), etc.

The perturbative solution is found exactly as was done in
Ref. [36]: we split the velocity field into a constant piece v̄i ∼
u−2, and a fluctuating zero-mean piece v̂i ∼ u−1; similarly,
μ ∼ T ∼ u−1. It proves convenient to work in Fourier space.
At O(u−1), the momentum conservation equation becomes

−iki(n0μ(k) + s0T (k)) = η0k
2v̂i(k) + ζ0kikj v̂j (k), (C1)

and the conservation laws become (at the same order)

0 = iki(n̂(k)v̄i + n0v̂i(k)) + σQ0k
2

(
μ(k) − μ0

T0
T (k)

)
,

(C2a)

0 = ikiT0(ŝ(k)v̄i + s0v̂i(k)) − μ0σQ0k
2

(
μ(k) − μ0

T0
T (k)

)
.

(C2b)

Combining these equations we obtain expressions for T , μ

and ki v̂i :

ki v̂i(k) = −μ0n̂(k) + T0ŝ(k)

μ0n0 + T0s0
ki v̄i , (C3a)

T (k) = − iki v̄i

σQ0k2(ε0 + P0)2
(σQ0k

2(η0 + ζ0)(μ0n̂ + T0ŝ)T0

− T0n0(T0s0n̂ − T0n0ŝ)), (C3b)

μ(k) = − iki v̄i

σQ0k2(ε0 + P0)2
(σQ0k

2(η0 + ζ0)(μ0n̂ + T0ŝ)μ0

+ T0s0(T0s0n̂ − T0n0ŝ)). (C3c)

Spatially averaging over the momentum conservation equa-
tion at O(u0), and defining

(ε + P )τ−1
ij v̄j ≡

∑
k

iki[n̂(−k)μ(k) + ŝ(−k)T (k)], (C4)

we find that

τ−1
ij =

∑
k

kikj

k2

|T0s0n̂(k) − T0n0ŝ(k)|2 + σQ0k
2(η0 + ζ0)|μ0n̂(k) + T0ŝ(k)|2

σQ0(ε0 + P0)3
(C5)

and that the spatially averaged momentum equation reduces to

0 = n0Ei + T0s0ζi − (ε0 + P0)τ−1
ij v̄j . (C6)

In this equation, we have used the fact that Ji ≈ nv̄i at
leading order in perturbation theory. The resulting transport
coefficients are analogous to (18):

σij = n2
0

ε0 + P0
τij , (C7a)

ᾱij = αij = n0s0

ε0 + P0
τij , (C7b)

κ̄ij = T s2
0

ε0 + P0
τij . (C7c)

In the expression for σ , we have not included a σQ0

contribution, as was done in Ref. [27], as this is a subleading
order in perturbation theory.

Using our Taylor expanded equations of state for the fluid
and assuming C4 = 0, since

ŝ(k) ≈ C2μ0μ̂(k) = μ0

T0
n̂(k), (C8)

we can simplify (C5) to

τ−1
ij =

∑
k

kikj

k2

(T0s0 − μ0n0)2 + 4σQ0k
2(η0 + ζ0)μ2

0

σQ0(ε0 + P0)3
|n̂(k)|2

(C9)
Similar results were presented (in a different format) in
Ref. [31], though the practical consequences of this formula,

as discussed in the main text, have not previously been
understood.

We cannot take the naive limit where σQ0 ∼ u−2 in order
to recover (2) in full generality. The simplest way to see
that something goes wrong is to study κ̄ near μ̄0 = 0 (more
precisely, μ̄0 ∼ u): if σQ ∼ u−2, we find that τ ∼ u−4, and
this implies that the heat current (and thus κ̄) would be
parametrically larger than anticipated. Thus our perturbative
scaling breaks down. The breakdown of the perturbative theory
for u ∼ μ̄0 was also advocated in Ref. [36].

Although we have argued there are problems in principle
with (2) when μ̄0 ∼ u, even when u is perturbatively small,
in practice the mean-field model of Ref. [27] can be quite
good in practice near μ̄0 ∼ u, as shown in Fig. 4. Note that
it is also important that C0T

2 � C2u
2—when this limit is

violated, we see substantial deviations from (2) at all μ̄0, as
shown in Fig. 4. This may be a consequence of our assumption
that σQ is independent of μ0.

APPENDIX D: EQUATIONS OF STATE
OF THE DIRAC FLUID

The thermodynamics of graphene is similar to that pre-
sented in Appendix A, with some minor differences. Perturba-
tive computations and renormalization group arguments, valid
as T → 0, give [19,60]

C0 = 9ζ (3)

π

(
αeff

α0

)2

≈ 3.44

(
α

α0

)2

, (D1a)
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FIG. 9. Finite size effects with u0 = 0.3, C0 = 3, C2 = 1, σ0 = 1, η0 = 20. Numerical averages are performed over 100 disorder realizations.

C2 = 4 ln 2

π

(
αeff

α0

)2

≈ 0.88

(
α

α0

)2

. (D1b)

Equation (D1) can be derived by computing the thermody-
namics of two species of noninteracting Dirac fermions, with
Coulomb interactions leading to a logarithmically increasing
Fermi velocity [19,60]. As αeff(T ) is not a constant, this implies
that the entropy has an additional contribution related to the
logarithmic T dependence of C0,2(αeff). Assuming C0 and C2

above, and assuming C4 = 0 for simplicity as its value for free
fermions is quite small [20], we find

s = C0T
2
(

1 + αeff

6

)
+ C2

2
μ2

(
1 + αeff

2

)
. (D2)

This equation directly implies ε > 2P . Using the estimate
αeff ∼ 0.25 from above, we see that the corrections to s (and
ε) are rather minor (<10%); n is unchanged. In fact, (D2)
is not quite right: the computation of (D1) is only a leading
order perturbative computation: there are corrections to (D1)
at higher orders in ln αeff . Nonetheless, our general conclusion
that ε > 2P is possible in graphene continues to hold, given
any logarithmic running of the Fermi velocity.

As noted above, these theoretical computations of the
thermodynamic coefficients in graphene are all perturbative
computations in αeff , yet we only expect αeff/α0 ∼ 0.5: there
is no reason to expect that higher order corrections, which
can be as large as ∼ ln αeff , are negligible. More sensitive
experiments may find discrepancies with Lorentz invariant
hydrodynamics, associated with these peculiar properties of
the Dirac fluid. Similar logarithms can appear in σQ [28] and
η [29], and in both cases, for the reasons above, we neglect
these logarithms and use the theory of Sec. III.

APPENDIX E: NUMERICAL METHODS

We solved the hydrodynamic equations (14) on a periodic
domain of size L × L, employing pseudospectral methods
[83] using a basis of N Fourier modes in each direction,
with 25 � N � 43. For simplicity, we set T0 = 1, as this can
be restored straightforwardly by dimensional analysis. Our
numerical methods involve approximating continuous partial
differential equations in the form

Lu = s. (E1)

u contains the linear response fields μ, T , vx , and vy , evaluated
on a uniformly distributed discrete grid, and s contains the
source terms, linear in Ei and ζi , evaluated at the same
points. L is a matrix with two zero eigenvectors, which
correspond to constant shifts in μ and T respectively. We
thus remove two rows of L and replace them with constraints
that μ(0) = T (0) = 0. A simple matrix inversion thus gives
u = L−1s. Inverting this (4N2 − 2) × (4N2 − 2) matrix four
times (once for sources Ex,y and ζx,y) limits the size of the
domain we can analyze. More complicated algorithms exist
[84] to solve such problems but we did not find finite size
effects to qualitatively alter our comparison to experimental
data, as we discuss below.

As mentioned in the main text, our disorder realizations
consisted of random sums of sine waves. More precisely,

μ0(x) = μ̄0 +
∑

|nx |,|ny |�k

μ̂0(nx,ny) sin

(
φx + 2nxπx

kξ

)

× sin

(
φy + 2nyπy

kξ

)
(E2)

with μ̄0 a constant, μ̂0(nx,ny) uniformly distributed on
[−c,c] where c = √

(2 − δnx,0 − δny,0)/2, and φx,y uniformly
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3

4
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−1 −0.5 0 0.5 1
1

2

3

4

μ̄0

κ
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k = 3
k = 4
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FIG. 10. Finite size effects with u0 = 0.3, C0 = 1, C2 = 1, σ0 = 1, η0 = 1. Numerical averages are performed over 100 disorder realizations.
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FIG. 11. Exponential convergence of our pseudospectral code
with an increasing number of grid points. We computed κ and
σ using our code, employing the “experimental” equations of
state given in Fig. 1, and the disorder profile μ0(x) = μ̄0 +
2u cos(2πx/L) cos(2πy/L). Red data points denote the error in κ ,
and blue points denote the error in σ . Circles denote data at μ̄0 = 2u,
and triangles at μ̄0 = 0.4u. Absolute error is determined by, e.g.,
|σ (N ) − σ (29)|/σ (29), where we use the data points at N = 29 as a
reference point.

distributed on [0,2π ). The lack of heavy tails in μ̂0(nx,ny),
perhaps associated with pointlike impurities, is consistent with
experiment [45]. The form of c is chosen so that we do not add
random charge density bias to our disorder (as the zero mode
has no amplitude), and so that all Fourier modes included at
finite wave number have the same average amplitude.

1. Finite-size effects

The first source of finite size effects is simply related to
the fact that we only have a finite number of disorder modes.
Averaging over a large number of ensemble samples allows us
to approximately, but not exactly, undo this effect: see Figs. 9
and 10. In both cases, we used 8k + 3 grid points in each
direction for various k. To the best of our knowledge, in all
numerical simulations we have studied, it appears as though the
result converges to a finite fixed answer as k → ∞. However,
residual errors from finite size effects may lead to some error
in our estimation of the thermodynamic and hydrodynamic
coefficients of the Dirac fluid in graphene.

The other source of finite size effects is related to the
finite number of grid points in our pseudospectral methods.

However, we expect standard exponential accuracy [83] in the
number of grid points per ξ , which we have taken to be at least
ten in all figures in the main text. Numerical evidence suggests
that our spectral methods have converged to within about
0.1%–1% of the correct answer by this relatively small number
of grid points per ξ , depending on the precise equations of state
used. In the case of the experimentally relevant parameters
used in Fig. 1, we see exponential convergence of our spectral
methods with increasing grid points, with numerical error of
only 0.1% by the time the number of grid points per ξ is 11,
as shown in Fig. 11. This spectral convergence is dramatically
faster in the weak-disorder limit.

Methods are known to improve our simple algorithms,
which can reduce both types of finite size effects discussed
above. Given the preliminary nature of the experiments to
which we compare our simulations, we have found the
numerical errors described above tolerable.

2. Dimensional analysis

We have performed numerical computations in dimen-
sionless units, since we can trivially restore the units to
our numerical results via dimensional analysis. Setting � =
kB = e = vF = T0 = 1 completely nondimensionalizes the
problem, while setting no dimensionless parameters to unity.
We can now trivially restore the units as follows:

L = �vF

kBT0
× Lnumerics ∼ (100 nm) × Lnumerics, (E3a)

μ = kBT0 × μnumerics ∼ (5 meV) × μnumerics, (E3b)

σ = e2

�
× σnumerics ∼ (0.25 k�−1) × σnumerics, (E3c)

α = kBe

�
× αnumerics ∼

(
20

nW

V

)
× αnumerics, (E3d)

κ = k2
BT0

�
× κnumerics ∼

(
0.1

nW

K

)
× κnumerics. (E3e)

We have also noted the approximate scale of each important
physical quantity in the problem for convenience.
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