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Trigonal warping, pseudodiffusive transport, and finite-system version of the Lifshitz transition
in magnetoconductance of bilayer graphene Corbino disks
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Using the transfer matrix in the angular-momentum space we investigate the impact of trigonal warping
on magnetotransport and scaling properties of a ballistic bilayer graphene in the Corbino geometry. Although
the conductivity at the charge-neutrality point and zero magnetic field exhibits a one-parameter scaling, the
shot-noise characteristics, quantified by the Fano factor F and the third charge-transfer cumulant R, remain
pseudodiffusive. This shows that the pseudodiffusive transport regime in bilayer graphene is not related to the
universal value of the conductivity but can be identified by higher charge-transfer cumulants. For Corbino disks
with larger radii ratios, the conductivity is suppressed by the trigonal warping, mainly because the symmetry
reduction amplifies backscattering for normal modes corresponding to angular-momentum eigenvalues ±2�.
Weak magnetic fields enhance the conductivity, reaching the maximal value near the crossover field BL =
4
3

√
3 (�/e) t ′t⊥[t2

0 a(Ro−Ri)]
−1

, where t0 (t⊥) is the nearest-neighbor intralayer (interlayer) hopping integral, t ′ is
the skew-interlayer hopping integral, and Ro (Ri) is the outer (inner) disk radius. For magnetic fields B � BL we
observe quasiperiodic conductance oscillations characterized by the decreasing mean value 〈σ 〉 − σ0 ∝ BL/B,
where σ0 = (8/π ) e2/h. The conductivity, as well as higher charge-transfer cumulants, show beating patterns
with an envelope period proportional to

√
B/BL. This constitutes a qualitative difference between the high-field

(B � BL) magnetotransport in the t ′ = 0 case [earlier discussed in Rut and Rycerz, J. Phys.: Condens. Matter
26, 485301 (2014)] and in the t ′ 	= 0 case, providing a finite-system analog of the Lifshitz transition.

DOI: 10.1103/PhysRevB.93.075419

I. INTRODUCTION

Bilayer graphene (BLG) rises as a top-tier candidate
material for the upcoming carbon-based electronics [1–3]
either due to a tunable band gap [4] or due to topologi-
cally protected quantum channels along domain walls [5–7],
recently proposed to host nonlocal Einstein-Podolsky-Rosen
pairs [8]. Low-energy physics of BLG is mainly governed by
microscopic parameters describing the coupling between the
two layers [4], some of which are still far from being precisely
determined.

In the most common Bernal stacking, the leading tight-
binding parameters, the intralayer hopping integral between
nearest neighbors t0 = 3.16 eV and the nearest-neighbor
interlayer hopping integral t⊥ = 0.38 eV, are both linked to
the basic BLG band-structure characteristics, which are the
Fermi velocity

vF =
√

3 t0a

2�
≈ 106 m/s (1)

and the electron effective mass

meff = t⊥
2v2

F

≈ 0.033 me, (2)

where a = 0.246 nm is the lattice constant in a single layer and
me is the free-electron mass. For the next-nearest-neighbor
(or skew) interlayer hopping integral t ′, the corresponding
characteristic is the Lifshitz energy

EL = 1
4 t⊥(t ′/t0)2, (3)

which can be defined as a value of the electrochemical
potential below which the Fermi surface splits into a four-
element manifold. EL is difficult to be directly determined
in the experiment; values of t ′ obtained from the infrared
spectroscopy cover the range from 0.10 [9] up to 0.38 eV [10].

On the other hand, in BLG even a tiny band-structure
modification near the Dirac point due to t ′ 	= 0 may have
a significant impact on the minimal conductivity [11]. For
t ′ = 0, both the mode-matching analysis [12] and the Kubo
formalism [13] lead to

σ0 = 2σMLG = 8e2

πh
, (4)

where σMLG denotes the universal conductivity of a mono-
layer [14–16]. For t ′ 	= 0, similar theoretical considerations
show the conductivity σ (L) is no longer universal but size
dependent, and monotonically grows with the system size L.
Depending on the crystallographic orientation of a sample, the
conductivity approaches (7/3) σ0 � σ (∞) � 3 σ0 [17]. The
transport anisotropy appears as the secondary Dirac cones,
present for t ′ 	= 0, break the rotational invariance of the
dispersion relation [18]. In principle, the experimental study
of σ (L) for clean bilayer samples should be sufficient to
determine t ′ [19], also in the presence of small interaction-
induced energy gap [20–22]. (For instance, the value of
σ ≈ 2.5 σ0 reported by Mayorov et al. [23] coincides with the
above-mentioned large-L predictions.) Unfortunately, device-
to-device conductance fluctuations in real disordered systems
may put the effectiveness of such a procedure in question.
For this reason, new phenomena, unveiling the influence of
t ′ on transport characteristics which can be measured in a
single-device setup, are desired.

In this paper, we consider the Corbino geometry, in which
a disk-shaped sample is surrounded from both interior and
exterior sides with metallic leads [see Fig. 1(a)]. Such a
choice is motivated by the absence of boundary effects, and
irrelevance of the sample crystallographic orientation. It is
worth to stress that anisotropic aspects of quantum transport
are still present in such a system as the rotational symmetry is
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FIG. 1. Systems discussed in the paper (schematic). (a) The
Corbino disk in Bernal-stacked bilayer graphene. The current flows
through the disk-shaped area with the inner radius Ri and the
outer radius Ro in a perpendicular magnetic field B = (0,0,B).
The coordinate system and the electrostatic potential U (r) (with
r = √

x2 + y2) are also shown. The leads (white areas) are modeled
as infinitely doped graphene regions (|U∞| → ∞). (b) An artificial
(nanotubelike) system formed of a BLG strip of the width W ,
contacted by two electrodes at a distance L in uniform field B, upon
applying periodic boundary conditions.

intrinsically broken due to trigonal warping. In effect, the total
angular momentum is not conserved, and the standard mode-
matching method cannot be applied as in simpler systems
studied earlier (namely, the monolayer disk [24,25] and the
BLG disk with t ′ = 0 [26]). Here, we overcome this difficulty
by developing a numerical transfer-matrix approach in the
angular-momentum space. Contrary to real-space discretiza-
tion applied in some related works [27–29], our approach
takes benefit from the sparsity of transfer matrix in such a
representation allowing highly efficient (albeit conceptually
simple) transport calculations for physical disk diameters
exceeding 10 μm. Recently developed linear-scaling approach
employing the time evolution scheme [30] seems to be a
possible counterpart, but its efficient adaptation for calculating
higher charge-transfer cumulants might be difficult.

The paper is organized as follows. In Sec. II, we present
details of the system considered, the effective Dirac equation
for low-energy excitations, and provide a description of our nu-
merical procedure. Section III focuses on the size dependence
of the conductivity σ , the Fano factor F , and the third charge-
transfer cumulant for BLG Corbino disk at zero magnetic field.
In Sec. IV, the effects of perpendicular magnetic field on the
above-mentioned transport characteristics are discussed. Also
in Sec. IV, the numerical results for the disk are compared with
analytical ones, obtained for an artificial system [a rectangular
device with periodic boundary conditions, see Fig. 1(b)],
for which the mode-matching analysis is possible, and the
universal magnetoconductance characteristics, relevant for
large system sizes and high magnetic fields, are identified.
The conclusions are given in Sec. V.

II. THE MODEL AND THE NUMERICAL APPROACH

A. Effective Dirac equation

The Corbino disk in Bernal-stacked BLG is depicted
schematically in Fig. 1(a). We start our analysis from the

four-band low-energy Hamiltonian for K valley [4], which
is given by

H =

⎛
⎜⎜⎝

0 π t⊥ 0
π † 0 0 νπ

t⊥ 0 0 π †

0 νπ † π 0

⎞
⎟⎟⎠ + U (r), (5)

where π = vF (px + ipy) = −i�vF eiϕ(∂r + i
∂ϕ

r
− eB

2�
r), with

the gauge-invariant momenta pj = (−i�∂j + eAj ) (j = 1,2)
and the symmetric gauge (Ax,Ay) = (B/2)(−y,x) corre-
sponding to the uniform magnetic field parallel to the z

axis. We have further defined the dimensionless parameter
ν = t ′/t0, and introduced the polar coordinates (r,ϕ). The
potential energy U (r) depends only on r =

√
x2 + y2, and

the remaining symbols are the same as in Eqs. (1)–(3).
As mentioned earlier, the available values of t ′ following
from different experimental [9,10,31] and computational [32]
approaches are far from being consistent. Magnetotransport
through BLG disk with t ′ = 0 was discussed in analytical
terms in Ref. [26]. In this paper, we take the values of t ′ varying
from 0.1 up to 0.3 eV in order to investigate numerically how
it affects the system behavior.

For the disk area, Ri < r < Ro, we set U (r) = 0 and the
effective Dirac equation Hψ = Eψ (with E the Fermi energy)
can be written as⎛

⎜⎝
ε −f −it 0

−f ∗ ε 0 −νf

−it 0 ε −f ∗
0 −νf ∗ −f ε

⎞
⎟⎠ψ(r,φ) = 0, (6)

where t = t⊥/(�vF ) ≡ l−1
⊥ , f = eiϕ(∂r + i

∂ϕ

r
− 1

2l2
B

r), ε =
E/(�vF ), and the magnetic length lB = √

�/(e|B|).
In the absence of trigonal warping (ν = 0) the system

possesses a cylindrical symmetry and the effective Hamilto-
nian (5) commutes with the total angular-momentum opera-
tor [33]

Jz = −i�∂ϕ + �

2

(
σ0 0
0 −σ0

)
+ �

2

(−σz 0
0 σz

)
, (7)

where σ0 is the 2 × 2 identity matrix, and σz is one
of the Pauli matrices. In such a case, the wave func-
tions are products of angular and radial parts φm(r,ϕ) =
eimϕ[φm

1 ,e−iϕφm
2 ,φm

3 ,eiϕφm
4 ]

T
(r) with m being an integer

angular-momentum quantum number.

B. Outline of the approach

In the presence of trigonal warping (ν 	= 0), the cylindrical
symmetry is broken, and the wave functions do not corre-
spond directly to eigenstates of Jz. A generic workaround
has been developed for systems with symmetry-breaking
potentials (or impurities), where one can still express wave
functions as linear combinations of eigenfunctions of an ideal
system [34–36]. Souma and Suzuki [35] considered quantum
transport through Corbino disks in two-dimensional electron
gas and showed that the effects of impurities can be studied
numerically, starting from truncated wave functions in the
basis of angular-momentum eigenstates. Here, we adapt this
method for BLG Corbino disk, as the term proportional to ν
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in the Hamiltonian (5) can be regarded as a peculiar type of a
symmetry-breaking potential.

A general solution of the Dirac equation (6) can be
written as an infinite linear combination of angular-momentum
eigenfunctions, namely,

ψ(r,φ) =
∑
m

amφm(r,ϕ), (8)

with arbitrary amplitudes am, m = 0,±1,±2, . . . . Multiplying
the Dirac equation (6) by the factor e−ilϕ (with l an arbitrary
integer) and integrating over the polar angle ϕ, we obtain the
system of equations

∂rφ
l
1 = −g(l,r)φl

1 + iεφl
2 + iνtφl−3

1

− iνεφl−3
3 + 2νg(l − 2,r)φl−3

4 ,

∂rφ
l
2 = iεφl

1 + g(l − 1,r)φl
2 − itφl

3,

∂rφ
l
3 = g(l,r)φl

3 + iεφl
4 + iνtφl+3

3

− iνεφl+3
1 − 2νg(l + 2,r)φl+3

2 ,

∂rφ
l
4 = −itφl

1 + iεφl
3 − g(l + 1,r)φl

4, (9)

where

g(l,r) = l

r
+ r

2l2
B

. (10)

Notice that the terms proportional to ν correspond to the mode
mixing due to trigonal warping. The D3d dihedral symmetry of
these terms (coinciding with the BLG lattice symmetry) results
in the fact that equation for φl is coupled only to φl−3 and φl+3,
which tremendously simplifies the numerical integration.

Equations (9) and (10), along with the mode-matching
conditions for r = Ri and Ro (we model the leads as heavily
doped BLG areas), allow us to construct a transfer matrix
(see Appendix A for details) which can be utilized in the
Landauer-Büttiker formalism in order to calculate the con-
ductivity and other charge-transfer characteristics. Typically,
the convergence is reached for the wave function truncated
by taking |l| � M in Eq. (9), with M = 25–500 depending
on the system size, the strength of the trigonal warping,
and the applied field (with the upper value corresponding to
Ro ≈ 5 μm, t ′ = 0.3 eV, and B ≈ 80 T). Other computational
aspects are also described in Appendix A.

III. QUANTUM TRANSPORT DEPENDENCE
ON THE SYSTEM SIZE

A. One-parameter scaling

A particularly intriguing property, arising from the earlier
theoretical study of ballistic transport in BLG with skew
interlayer hoppings (t ′ 	= 0), is the one-parameter scaling [22].
In the absence of disorder and electron-electron interactions,
the scaling function

β(σ ) = d lnσ

d lnL
, (11)

which plays a central role in conceptual understanding of
the metal insulator transition [37], reproduces the scenario
predicted for disordered Dirac systems with Coulomb interac-
tion [38]. Here, the discussion is complemented by calculating

the Fano factor F quantifying the shot-noise power, and the
factor R quantifying the third charge-transfer cumulant.

Employing the Landauer-Büttiker formula for the linear-
response regime one can write [39]

σ = g0�αTr T, (12)

F = Tr[ T(1 − T) ]

Tr T
, (13)

R = Tr[ T(1 − T)(1 − 2T) ]

Tr T
, (14)

where g0 = 4e2/h is the conductance quantum (with the
factor 4 following from the spin and valley degeneracies),
the dimensionless prefactor (�α) in Eq. (12) is equal to
�Cor = ln(Ro/Ri)/(2π ) for the Corbino geometry of Fig. 1(a)
or �rec = L/W for the rectangular geometry [40], and T = t†t,
with t the transmission matrix determined via the transfer
matrix (see Appendix A). It was shown in Refs. [19,22] that
the conductivity of ballistic BLG with t ′ 	= 0 scales with the
system size. For a rectangular geometry, we still get σ ≈ σ0

for small systems, while for the larger ones (L � 500 nm) the
conductivity can be rationalized as

σ (L) � σ[ 1 − (λ/L)γ ], (15)

with typical parameters

σ ≈ 3 σ0, γ ≈ 0.5, (16)

and λ depending both on t ′ and the sample orientation [22]. The
approximating formula given by Eqs. (15) and (16) applies for
generic crystallographic orientation of the sample. However,
for some particular orientations one obtains different asymp-
totic behaviors, including a slower power-law convergence
to σ with the exponent γ ≈ 0.25 if the current is passed
precisely along an armchair direction [19], or the oscillating
conductivity with the lower bound of σ � ( 7

3 ) σ0 if the current
is passed precisely along a zigzag direction [17]. Such issues
are absent in the Corbino geometry, allowing one to focus on
the universal scaling properties of the material.

In the numerical calculations presented in this section, we
chose radii ratios Ro/Ri = 2 and 1.5, for which the number
of nonzero transmission eigenvalues Tl is relatively large
even at the charge-neutrality point, allowing one to expect
some remainders of the pseudodiffusive behavior known
for a monolayer [15,40]. It is also worth to mention that
such radii ratios are close to that of real Corbino device
in a monolayer [41]. A multimode character of the charge
transport, combined with a mode mixing due to the trigonal
warping, and with a necessity to study large systems in attempt
to demonstrate a one-parameter scaling, provides us with an
excellent test case to investigate computational aspects of the
numerical approach presented in Sec. II B. (For the details, see
Appendix A.)

Zero-magnetic field results are presented in Figs. 2–5. In
order to present the data for different t ′ on a single plot, we have
defined the length �, related to the distance between primary
and secondary Dirac points in quasimomentum space

2π

�
≡ k� = ν

l⊥
= 2

3

√
3

t ′t⊥
t2
0 a

, (17)
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FIG. 2. Minimal conductivity of unbiased BLG Corbino disk
with the radii ratio Ro/Ri = 2 as a function of the radii difference
Ro − Ri, specified in the units of � [see Eqs. (17) and (18) in
the main text], for different values of t ′. Triangles, squares, and
circles represent the data obtained numerically for t ′ = 0.3, 0.2, and
0.1 eV (respectively), with the lines (dotted-dashed, solid, and dotted)
depicting the approximating Eq. (15) with best-fitted parameters
listed in Table I. The inset in the top panel presents the scaling function
β(σ ) [see Eq. (11)], with L ≡ Ro − Ri, extracted numerically from
σ (Ri) data sets. (Notice that the best-fitted lines almost overlap each
other.) The bottom panel is a zoom-in, for smaller radii differences,
which allows to depict the region where the actual value of the
conductivity may deviate from Eq. (15). We further notice that only
selected data points from the bottom panel are shown in the top panel
for clarity.

leading to

� t ′ = 35.2 nm·eV. (18)

Briefly speaking, the actual conductivity reaches a close-to-
asymptotic behavior, described by Eq. (15) with L ≡ Ro − Ri,
for radii differences lying in a relatively narrow interval of
4 � L/� � 6 (notice that varying the skew-interlayer hopping
from t ′ = 0.1 to 0.3 eV is equivalent to changing the parameter
� by a factor of 3 between the data sets). For larger L, lines in
Figs. 2 and 3, corresponding to Eq. (15) with the least-squares-
fitted parameters σ, λ, and γ listed in Tables I and II, are
closely followed by the data points obtained numerically for
t ′ = 0.1, 0.2, and 0.3 eV. For each case, the specific value of
L0.01, i.e, the radii difference above which the approximating
Eq. (15) matches the actual conductivity with an accuracy
better than 1%, is also given in Table I or II. For smaller L,
in particular for L/� ∼ 1 (see bottom panels in Figs. 2 and 3),

Ro Ri

e

e

Ro Ri

e

FIG. 3. Same as Fig. 2 but for the radii ratio Ro/Ri = 1.5. For
the parameters in Eq. (15) corresponding to the lines depicted, see
Table II.

the conductivity becomes nonuniversal (both parameter and
geometry dependent [42]) approaching σ0 for L � �.

Although the conductivity strongly deviates from the
pseudodiffusive value σ0 (even for the lowest considered
value of t ′ = 0.1 eV), the shot-noise power and the third
charge-transfer cumulant are close to their pseudodiffusive
values, i.e., F ≈ 1

3 and R ≈ 1
15 , which are usually approached

for 4 � L/� � 6 (see Figs. 4 and 5).
The approximating Eq. (15) leads, via Eq. (11), to the

scaling function of the form

β(σ ) � − γ (1 − σ/σ ). (19)

In turn, the parameters γ and σ define the position and
the slope coefficient at the attractive fixed point [β(σ) = 0,
β ′(σ) > 0] of the renormalization group flow [22]. The scaling
functions β(σ ) [see Eq. (11)], calculated numerically for the
Corbino disks with Ro/Ri = 2 and 1.5 (see insets in Figs. 2
and 3, respectively), t ′ = 0.1, 0.2, and 0.3 eV, suggest that
one-parameter scaling is universal with respect to the strength
of the trigonal warping. These numerical results coincide
with the corresponding analysis of Ref. [22] for a rectangular
sample.

B. Crossover to a quantum-tunneling regime

It was pointed out that generic MLG billiard with (at
least) one narrow opening shows a crossover to the so-called
quantum-tunneling transport regime [40], in which charge-
transfer characteristics are governed by a limited number of
quantum channels, with transmission probabilities showing a
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FIG. 4. The Fano factor F (red solid lines) and the third charge-
transfer cumulant R (blue dashed lines) for the Corbino disk with
Ro/Ri = 2 as functions of Ro − Ri. Skew-interlayer hopping t ′ is
varied between the panels. For large system size, where the Fabry-
Perot oscillations become negligible, the numerical results obtained
in the presence of trigonal warping approach the pseudodiffusive
values of F = 1

3 and R = 1
15 (horizontal lines).

power-law decay with the system size. In particular, for an
undoped Corbino disk the conductance G = 2πσ/ ln(Ro/Ri)
at zero field reads as

GMLG

g0
=

∑
j=± 1

2 ,± 3
2 ,...

1

cosh2 [ j ln(Ro/Ri) ]
� 8Ri

Ro
, (20)

where the asymptotic form applies for Ro � Ri, and represents
contributions from the two channels with angular-momentum
quantum numbers j = − 1

2 and 1
2 .

For BLG billiards, the conformal mapping technique
employed in Ref. [40] cannot be utilized even in the absence
of trigonal warping, and the existence of a quantum-tunneling

0.31

0.36

1/3

t'=0.3eV 0.1

0.04

1/15

0.31

0.36

1/3

t'=0.2eV 0.1

0.04

1/15

0 4 8 12

0.31

0.36

1/3

t'=0.1eV

0 4 8 12

0.1

0.04

1/15

Ri[ ]Ro Ri

FIG. 5. Same as Fig. 4 but for Ro/Ri = 1.5.

TABLE I. Least-squares-fitted parameters in Eq. (15) correspond-
ing to the lines in Fig. 2. The last column gives the values of
L0.01/�, such that the function given by Eq. (15) matches the actual
conductivity with 1% accuracy.

t ′ (eV) � (nm) σ (8e2/h) λ (nm) γ L0.01/�

0.1 352 0.97 97 0.47 6.21
0.2 176 0.97 40 0.49 5.19
0.3 117 0.98 21 0.48 4.44

regime is not obvious. For BLG Corbino disk the conductance,
for t ′ = 0 and at the charge-neutrality point, can be written
as [26]

GBLG(t ′ = 0)

g0
=

∑
m

(T +
m + T −

m ), (21)

T ±
m = 1

cosh2[(m ± A) ln (Ro/Ri)]
, (22)

where the transmission probabilities T ±
m (with m = 0, ±

1, ±2, . . . being the angular-momentum quantum number)
correspond to eigenvalues of the matrix T = t†t in Eqs. (12)–
(14), and we have further defined

A = − ln(ϒ − √
ϒ2 − 1)

2 ln (Ro/Ri)
, (23)

ϒ = cosh

[
ln

(
Ro

Ri

)]
+ R2

o −R2
i

4l2
⊥

sinh

[
ln

(
Ro

Ri

)]
. (24)

We focus now on the system behavior for Ro � Ri �
l⊥ [43]. In such a parameter range, Eqs. (23) and ( 24) lead to

A ≈ 3

2
+ ln [ Ri/(2l⊥) ]

ln (Ro/Ri)
. (25)

For any integer A = q � 2 the conductance, analyzed as a
function of Ro/Ri, reaches a local maximum with GBLG ≈
2g0, following from the presence of two ballistic channels
with T −

q = T +
−q = 1 [see Eqs. (21) and (22)], occurring at

Ro

Ri
≈

(
Ri

2l⊥

)2/(2q−3)

. (26)

Similarly, Eq. (26) with half-odd integer q � 5
2 approximates

a local conductance minimum (as A ≈ q) with GBLG ≈
16g0Ri/Ro, i.e., twice as large as the MLG disk conductance
[see Eq. (20)], and four dominant channels characterized
by T −

q+1/2 = T +
−q−1/2 ≈ T −

q−1/2 = T +
−q+1/2 ≈ 4Ri/Ro. In turn,

a quantum-tunneling regime reappears periodically when

TABLE II. Least-squares-fitted parameters in Eq. (15) corre-
sponding to the lines in Fig. 3. The last column is same as in Table I,
but for Ro/Ri = 1.5.

t ′ (eV) � (nm) σ (8e2/h) λ (nm) γ L0.01/�

0.1 352 1.01 110 0.48 4.79
0.2 176 1.00 38 0.49 4.29
0.3 117 1.02 23 0.49 3.79
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varying Ro/Ri, near any local conductance minimum. The
number of well-pronounced minima can roughly be estimated
as 0.72 × ln[ Ri/(2l⊥) ], as for Ro/Ri � 4 the system enters
a multimode pseudodiffusive transport regime. On the other
hand, for Ro/Ri � R2

i /(4l2
⊥), where the threshold value

corresponds to the last conductance maximum following
from Eq. (26) with q = 2, charge transport is governed by
two equivalent channels, with angular momenta ±2� and
T −

2 = T +
−2 monotonically decaying with increasing Ro/Ri.

This suggests the system may reenter a quantum-tunneling
limit for Ro/Ri � R2

i /(4l2
⊥).

In fact, for a fixed Ri � l⊥ and Ro → ∞ we have A → 3
2 ,

and such a limit can be regarded as an additional conductance
minimum. The asymptotic form of Eq. (21) then reads as

GBLG(t ′ = 0)

g0
� 2R3

i

l2
⊥Ro

(Ri � l⊥, Ro → ∞). (27)

Although qualitative features of the quantum-tunneling regime
for the Corbino geometry are reproduced [in particular,
GBLG(t ′ = 0) ∝ R−1

o ], the asymptotic conductance is elevated
by a large factor of R2

i /(4l2
⊥) in comparison to the MLG disk

case [44].
In Fig. 6, we compare the conductance (in the top panel) and

the effective number of transmission channels (in the bottom

G
 [8

e 
 /h

]
N

ch
2

t = 0

t = 0.1 eV
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FIG. 6. Radii-ratio dependence of the conductance G =
2πσ/ ln(Ro/Ri) (top panel) and the effective number of transmission
channels (bottom panel) at a fixed Ri = 15 l⊥ ≈ 24 nm and varying t ′

(specified for each line). Vertical lines mark the values ofA ≈ 3 (left),
A ≈ 5

2 (middle), and A ≈ 2 (right) following from Eq. (25). The
corresponding results for two decoupled MLG disks (t⊥ = t ′ = 0)
are also shown.

panel)

Nch = G

g0(1 − F)
=

( ∑
l Tl

)2∑
l T

2
l

, (28)

with the index l ≡ (m,±) accounting for angular momenta
and layer degrees of freedom, following from Eqs. (21)–(24)
(red lines) for t ′ = 0, as well as for the case of decoupled
MLG disks (t⊥ = t ′ = 0) (blue lines), with the numerical
results obtained from Eqs. (12) and (13) for t ′ = 0.1, 0.2,
and 0.3 eV (remaining lines). The inner radius is fixed at
Ri = 15 l⊥, and the outer radius is varied in the range of 1.5 <

Ro/Ri < 80. The effects of trigonal warping are visible for all
radii ratios considered, and become particularly significant
when approaching Ro/Ri = R2

i /(4l2
⊥) ≈ 56, corresponding

to A ≈ 2 [following from Eq. (25)]. In such a parameter
range, G systematically decreases, whereas Nch systematically
increases when enlarging t ′. We also notice that Fabry-Perot
resonances, corresponding to integer k�(Ro − Ri), are visible
for t ′ 	= 0, indicating the contribution from secondary Dirac
points.

For smaller radii ratios, including Ro/Ri = 7.5 (corre-
sponding to A ≈ 5

2 ) and Ro/Ri = 3.83 (corresponding to
A ≈ 3) (see vertical lines in Fig. 6), the system is close to the
pseudodiffusive charge-transport regime. In the t ′ = 0 case,
the conductance minimum is shifted from Ro/Ri = 7.5 to
Ro/Ri ≈ 10 due to the influence of transmission channels
with higher angular momenta. (We further notice that the
effective number of channels has a local maximum Nch ≈ 4.2
at Ro/Ri ≈ 7.5, where it also precisely matches the value
for two decoupled MLG disks, in good agreement with
predictions for a quantum-tunneling regime reported earlier
in this subsection.) The trigonal warping noticeably enhances
the conductance for Ro/Ri � 10, i.e., the effect is opposite
then for larger Ro/Ri, with some exception for the smallest
considered t ′ = 0.1 eV and Ro/Ri � 7, as the disk diameter
2Ro � � in such a case.

The evolution of G and Nch with the trigonal warping
strength, illustrated in Fig. 6, clearly shows that the role
of two transmission channels with angular momenta ±2�,
prominent for t ′ = 0 and large Ro/Ri, is strongly suppressed
for t ′ 	= 0, indicating the gradual crossover to a quantum-
tunneling regime characterized by G ∝ R−1

o . We attribute it
to the fact that a d-wave symmetry of normal modes in leads
with m = ±2 does not match the D3d dihedral symmetry of
the low-energy Hamiltonian for t ′ 	= 0. Moreover, for the two
largest considered values of t ′ = 0.2 and 0.3 eV, both G and
Nch are noticeably amplified in comparison to the relevant
characteristics for two decoupled MLG disks, signaling the
role of quantum states close to the secondary Dirac points is
important when the crossover to a quantum-tunneling regime
occurs.

IV. MAGNETOTRANSPORT CHARACTERISTICS

A. Analytically soluble disk-shaped systems

Our discussion of the magnetotransport characteristics
starts from pointing out that the influence of a uniform
magnetic field B [45] on analytical results given by Eqs. (20)
and (21) can be expressed in a very compact form: namely,
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it is sufficient to replace j and m in arguments of hyperbolic
cosine by [24–26]

j = j + �D

�0
and m = m + �D

�0
, (29)

with

�D = πB
(
R2

o − R2
i

)
(30)

and �0 = 2h

e
ln(Ro/Ri), (31)

denoting the flux piercing the disk area (�D) and the basic
period of magnetoconductance oscillations (�0).

All the considered charge-transfer characteristics σ

[Eq. (12)], F [Eq. (13)], and R [Eq. (14)] are predicted
theoretically to show periodic oscillations with the magnetic
flux �D [see Eq. (30)] piercing a graphene-based Corbino
disk [24–26,46], provided the Fermi energy corresponds to the
Dirac point or to any other Landau level (LL). The oscillations
appear due to a limited number of transmission channels for
Ro � Ri, and show a formal analogy with similar effects
discussed for a nanotube in a magnetic field applied along
the axis [47]. One should notice, however, that the oscillation
period �0 [see Eq. (31)] for a disk in a uniform, perpendicular
field, corresponds to a physical field of 18 mT for a typical
1 μm disk (Ro = 5Ri = 500 nm), while for a 1-nm diameter
nanotube in axial field the period, given by the standard
Aharonov-Bohm flux quantum �AB = h/e, corresponds to
B ≈ 5300 T.

Similar effects were also considered for graphene disks with
strain-induced pseudomagnetic fields [48] and with the spin-
orbit coupling [49], extending the list of different theoretical
proposals for producing a valley polarization with graphene-
based nanostructures [50–55] and related systems [56–59].

For MLG disks, the oscillations’ magnitude depends
only on the radii ratio Ro/Ri. For the conductivity, we
have �σMLG � 0.1σMLG if Ro/Ri � 5. For BLG disks, the
mode-matching analysis for the t ′ = 0 case [26] unveils an
interference between the two transmission channels for each
angular momentum eigenvalue, following from the coupling
between the layers quantified by t⊥. In turn, the oscillations’
magnitude depends also on the physical system size. For
instance, conductivity oscillations are predicted to vanish
(�σ = 0) for

Ro

Ri
�

(
Rit⊥
2�vF

)4/p

(for Ro � Ri), (32)

where p = 1,2,3, . . . . Equation (32) with even p [equivalent
to half-odd integer q in Eq. (26)] gives the condition for
maximal oscillations, with the magnitude �σ = 2�σMLG,
same in the limit of decoupled layers (t⊥ → 0).

If the Fermi energy E is close but not precisely adjusted to
the Dirac point, the oscillations in both MLG and BLG disks
are still predicted to appear in the limited range of magnetic
fluxes, namely,

|�D| � �max
D � − 2h

e
ln(kF Ri) (for kF Ri � 1), (33)

with kF = |E|/(�vF ), away from which the conductivity is
strongly suppressed. Equation (33) can be rewritten to obtain

the corresponding energy range for a given field

|E| � �vF

Ri
exp

(
−R2

o − R2
i

l2
B

)
. (34)

The limits given by Eqs. (33) and (34) essentially apply
to higher charge-transfer cumulants as well, albeit the di-
mensionless characteristics F and R were recently found to
show stable, quasiperiodic oscillations in the high source-drain
voltage limit [46].

Later in this section, we employ the numerical procedure
described in Sec. II in order to find out how the magnetotrans-
port characteristics of BLG disks are affected by the trigonal
warping (t ′ 	= 0).

B. Rectangular BLG device with periodic boundary conditions

Before discussing magnetotransport of the Corbino disk, it
is instructive to consider a simpler artificial system depicted
schematically in Fig. 1(b). A BLG strip of width W , contacted
by the electrodes at a distance L, in a uniform field B, and
with periodic boundary conditions in the transverse direction,
was earlier discussed in the W � L limit [19], in which
the pseudodiffusive charge transport is predicted to appear
near LLs. Here, we primarily focus on the W � πL range
(a nanotubelike geometry) which does not seem to have a
direct physical analog, but can be treated in analytical terms
and possesses a discrete spectrum of transmission channels
closely resembling the situation in the Corbino disk.

The wave functions for a rectangular sample are presented
in Appendix B. Each spinor component can be written as a
product of the exponential function and the Airy function,
with their arguments scaling as l−2

B ∝ B for high fields [see
Eq. (B2)]. In turn, taking the asymptotic form of the Airy
function Ai(z) � exp(−2z3/2/3)/(2z1/4√π ), we find the con-
ductivity in the high-field limit can roughly be approximated
by

σL�lB ≈ g0L

W

∑
k,±

cosh−2

{
L

(
k − L

2l2
B

)

± 1

24
Re[γk(L) − γk(0)]

}
, (35)

where k = 0,±2π/W,±4π/W, . . . ,

γk(x) =
√

− iνlB

l⊥

(
8x

lB
− 8klB − iνlB

l⊥

)3/2

, (36)

and Re(z) denotes the real part of z. In the absence of trigonal
warping, Eq. (35) is replaced by exact expression for the
conductivity, namely,

σrec(t ′ = 0)

σ0
= 1 +

∞∑
n=1

{(
πnW

L

)
cos(nkcW )

×
[

sinh

(
πnW

2L

)]−1

cos
(πne

h
LWB

)}
,

(37)

where kc = (1/L) arcsinh[ Lt⊥/(2�vF ) ]. A Fourier series on
the right-hand side represents periodic (approximately
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sinusoidal for moderate aspect ratios W/L � 2)
magnetoconductance oscillations with the period
T0 = (2h/e)(LW )−1 [60].

For t ′ 	= 0, the approximating expression given by Eqs. (35)
and (36) is particularly convenient when extracting the
beating frequency which governs high-field magnetotransport
characteristics of the system. It can be shown that the presence
of two relevant transmission eigenvalues for each momentum
k in Eq. (35) follows directly from the fact that the lowest
LL in BLG has an additional twofold degeneracy absent
for higher LLs [19]. We define the two field-dependent
effective system sizes determining transmission probabilities
in Eq. (35), namely,

L± = Lμ±, (38)

and the corresponding momentum-quantization shifts

�k± = L

2l2
Bμ±

, (39)

where

μ± = 1 ±
√

8νl2
B

9Ll⊥
. (40)

The above reasoning holds true for high magnetic fields
and arbitrary W/L ratio. For instance, the conductivity in the
W � L limit can be approximated by

σW�L�lB ≈ 2g0

π

(
1

μ+
+ 1

μ−

)
= σ0

(
1 − 8νl2

B

9Ll⊥

)−1

, (41)

restoring the t ′ = 0 value (σ → σ0) for lB → 0.
In Fig. 7, we compare exact numerical results obtained

from Eq. (12) for W = 10L = 3000 l⊥ and different values of
skew-interlayer hopping t ′ (red solid lines) with corresponding
results following from the approximating Eqs. (35) and (36)
(blue solid lines) and Eq. (41) (dashed lines). For low magnetic
fields, the conductivity monotonically grows with increasing
B (for any t ′ 	= 0), up to the maximal value (at B = Bpeak)
which may exceed 3σ0 for larger t ′’s. For B > Bpeak, the
effect of trigonal warping on the conductivity is gradually
suppressed, leading to σ − σ0 ∝ t ′/B, in agreement with the
approximating Eq. (41).

The value of Bpeak is related to the quasimomentum shifts
given by Eq. (39). For a finite aspect ratio W/L, maximal
conductivity appears when the average shift is of the same
order of magnitude as the distance between primary and
secondary Dirac points [given by Eq. (17)], namely,(

�k+ + �k−
2

)
peak

∼ k�, (42)

which can be rewritten as

Bpeak ∼ 2h

e

1

L�
≡ BL, (43)

where we have defined the crossover Lifshitz field BL. It is
also visible in the top panel of Fig. 7 that the approximating
Eqs. (35) and (36) (blue dashed lines) reproduce the peak
position (albeit not the maximal conductivity) with a good
accuracy for t ′ = 0.3 eV.

The conductivity maximum at Bpeak ∼ BL 	= 0 can be
regarded as the first effect of the trigonal warping, appearing

t'=0.3eV
exact

L lB

W L lB

1/

0.6

3/

1.2

1/

0.6

.8

0.4

[8
e2

/h
]

t'=0.2eV

0.1 0.2 0.3
1/

0.6

0.5

0.4

B [T]

t'=0.1eV

FIG. 7. Conductivity of the rectangular BLG sample at the
charge-neutrality point as a function of the magnetic field B. The
sample length is fixed at L = 300 l⊥ � 480 nm, the width is W =
10L, and the skew-interlayer hopping integral t ′ is varied between
the panels. Red solid lines: exact numerical results obtained from the
mode-matching analysis via Eq. (12). Blue solid lines: results from
Eqs. (35) and (36) for L � lB . Dashed lines: results from Eq. (41)
for W � L � lB .

for samples with finite aspect ratios, but still well visible for
W/L = 10.

The second effect, present in systems with W � πL, is
the emergence of beating patterns. In the top panel of Fig. 8,
we display the conductivity, as a function of magnetic field,
for W = 2L = 90 l⊥. Quasiperiodic beatings are character-
ized by the field-dependent envelope period, which can be
approximated by

T (B) ≈ 4h

eLW

μ+μ−
μ+ − μ−

� 3h

e

1

LW

(
B

BL

)1/2

, (44)

while the period of internal oscillations remains the same as in
Eq. (37). The comparison between the actual envelope periods
refined from the numerical data (data points) and the values
following from Eq. (44) (lines) is provided in the bottom panel
of Fig. 8.

For high magnetic fields, Eq. (44) leads to T (B) ∝√
B. In turn, the t ′ = 0 behavior characterized by single-

frequency, sinusoidal magnetoconductance oscillations with
a size-dependent amplitude [see Eq. (37)] cannot be restored
for any t ′ 	= 0 in the high-field limit. We interpret this effect
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FIG. 8. Magnetoconductance oscillations for the rectangular
BLG sample of the length L = 45 l⊥ � 72 nm and the width W = 2L

at the charge-neutrality point. Top panel: the conductivity as a
function of magnetic field for three values of the skew-interlayer
hopping integral t ′ (specified for each line). The lines for t ′ = 0.3 and
0.2 eV are shifted by 1 and 1

2 for clarity. Bottom panel: consecutive
periods of the beating envelope extracted from the data shown in
the top panel, for t ′ = 0.1 eV (circles), t ′ = 0.2 eV (squares), and
t ′ = 0.3 eV (diamonds). Solid lines correspond to the approximating
Eq. (44).

as a finite-system analog of the zero-temperature conductance
instability (the parameter-driven Lifshitz transition) in bulk
BLG samples [11].

C. BLG Corbino disks

Our numerical study of magnetotransport through BLG
Corbino disks focuses on two different systems: first one,
characterized by Ri = 300 l⊥ and Ro = 2Ri, is in the pseu-
dodiffusive charge-transport regime, whereas the second one,
with Ri = 15 l⊥ and Ro = 4.84 Ri, shows the beating patterns.
In the latter case, the parameters are chosen such that
the magnetoconductance oscillations vanish for t ′ = 0 (see
Ref. [26]), in order to illustrate the role of trigonal warping
more clearly.

The numerical results for σ , F , and R are presented,
as functions of magnetic field B, in Figs. 9 and 10. In the
pseudodiffusive transport regime (see Fig. 9), some irregular
fluctuations, visible for all the discussed charge-transfer char-
acteristics (and all three values of t ′), are suppressed for mag-
netic fields B � 0.5 T. We attribute these fluctuations rather
to a Fabry-Perot interference than to the angular-momentum
quantization. A striking feature of the data presented in Fig. 9
is that a distinct conductance peak appears at each panel near
the field

BL = 4

3

√
3

� t ′t⊥
e t2

0 a(Ro − Ri)
, (45)

1/15

1/3
0.5

0.7

0.9

1.1

1.3
t'=0.3eV

Ro/Ri=2
Ri =300l

1/15

1/3

0.5
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,
,

t'=0.2eV

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1/15

1/3

0.5

0.7

B[T]

t'=0.1eV

FIG. 9. Conductivity σ ( specified in the units of 8e2/h ), the
Fano factor F , and the R factor for BLG Corbino disk with Ri =
300 l⊥, Ro = 2Ri, and different skew-interlayer hopping integrals t ′

(specified for each panel). Vertical lines correspond to B = BL [see
Eq. (45)], the horizontal lines mark the pseudodiffusive valuesF = 1

3
and R = 1

15 , the dashed lines represent the approximating Eq. (46).

closely resembling the phenomena described above for a
rectangular sample. [Notice that the rightmost equality in
Eqs. (43) and (45) is equivalent provided that L ≡ Ro −
Ri.] Above the crossover field BL, the conductivity can be
approximated by the formula

σB�BL
≈ σ0

(
1 − 0.5

BL

B

)−1

, (46)

which is visualized with dashed lines in Fig. 9, and can be
regarded as a version of Eq. (41) for BLG disk.

For the disk with larger radii ratio (see Fig. 10), all three
magnetotransport characteristics exhibit quasiperiodic beating
patterns for t ′ = 0.3 eV. This is not the case for t ′ = 0,
when each characteristic shows approximately sinusoidal,
single-frequency, oscillations with a constant amplitude. As
the system no longer possesses a rotational symmetry in the
presence of trigonal warping, the magnetotransport cannot be
simply rationalized by defining two effective system sizes in
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FIG. 10. Charge-transfer characteristics σ , F , and R for BLG
disk with Ri = 15 l⊥, Ro = 4.84 Ri. Each of the main panels
compares the numerical results for t ′ = 0 (blue line) and t ′ = 0.3 eV
(red line). The vertical gray line in the top panel marks the value of
BL obtained from Eq. (45) for t ′ = 0.3 eV. The inset: period of the
beating envelope for three different values of t ′ = 0.3 eV (circles),
0.2 eV (orange squares), 0.1 eV (triangles). Solid lines correspond to
Eq. (47).

analogy to Eq. (38). Comparing to the rectangular system
case (which can be regarded, due to the periodic boundary
conditions, as a nanotubelike, i.e., possessing the rotational
symmetry also for t ′ 	= 0) illustrated in Fig. 8, the beatings
are slightly less regular now, clustering in the groups of three.
This certain feature of the data displayed in Fig. 10 suggests the
presence of four, rather than two, quasiperiodic components
determining the transmission probabilities.

It is worth to stress here that the main features of the
magnetotransport characteristics still resemble the rectangular
(or a nanotubelike) system case. In particular, we found that
the beating-envelope period can now be approximated by

T (B) ≈ 6.9

π
(
R2

o − R2
i

) h

e

(
B

BL

)1/2

(47)

(see the inset in Fig. 10). On the other hand, the period of
the internal oscillations T0 = �0/[π (Ro

2 − Ri
2)] remains the

same as the basic period for MLG disks or BLG disks with
t ′ = 0 [24–26]. Also, a high-field behavior of the conductivity
averaged over consecutive intervals, each one of the T0 width,
can be approximated by Eq. (46).

V. CONCLUSIONS

We have investigated, by means of numerical transfer-
matrix approach in the angular-momentum space, the effects of
the skew-interlayer hopping integrals (the trigonal warping) on
selected transport characteristics of bilayer-graphene (BLG)
Corbino disks. Additionally, the analytical mode matching for
an artificial (nanotubelike) system, formed of a BLG strip

upon applying the periodic boundary conditions, was briefly
presented and the analogies between these two systems were
put forward.

If the Fermi energy is close to the charge-neutrality point,
both the scaling behavior at zero magnetic field (which would
require a comparison between devices of different sizes in an
experimental study) and the single-device magnetotransport
discussion unveils several phenomena, in which transport
characteristics, such as the conductivity, the Fano factor, and
the third charge-transfer cumulant, are noticeably affected by
the trigonal warping.

In the pseudodiffusive transport regime, corresponding to
the disk radii ratios Ro/Ri � 2, the conductivity shows a one-
parameter scaling, in agreement with predictions of Ref. [22]
for a rectangular sample. In the Corbino geometry, however,
the role a crystallographic orientation is eliminated, and the
zero-field minimal conductivity can be approximated by

σmin ≈ 3σ0

[
1 −

(
λ

Ro−Ri

)0.5
]
, (48)

where λ = λ(t ′) depends only on the skew-interlayer hopping
t ′, and varies from λ ≈ 20 nm for t ′ = 0.3 eV to λ ≈ 100 nm
for t ′ = 0.1 eV. In the uniform magnetic field B, the conduc-
tivity increases reaching the maximal value σmax � 3σ0 near
the so-called Lifshitz field BL, for which the magnetic length
follows the relation

(Ro−Ri)� = 4πl2
B, (49)

where � = √
3 πat2

0 /(t⊥t ′) is defined by t ′ and other mi-
croscopic parameters: the lattice spacing a as well as the
nearest-neighbor intralayer and interlayer hoppings t0 and
t⊥. Above BL, the conductivity gradually decreases, showing
the asymptotic behavior σ − σ0 ∝ BL/B [see Eq. (46)]. The
second and third charge-transfer cumulants stay close to their
pseudodiffusive values (F = 1

3 , R = 1
15 ) when varying the

system size or the magnetic field.
In the opposite, quantum-tunneling regime (corresponding

to Ro/Ri � 4), the charge-transfer characteristics are also
sensitive to t ′. At zero field and t ′ = 0, the transport is governed
by two quantum channels with angular momenta ±2�. For
t ′ 	= 0, the backscattering is enhanced for these channels, as
the related wave functions no longer match the symmetry
of the low-energy Hamiltonian. At high magnetic fields, all
the charge-transfer characteristics show quasiperiodic beating
patterns, with the envelope period T (B) ∝ √

B/BL [see
Eq. (47)]. Most remarkably, the beating patterns, triggered by
the trigonal warping (t ′ 	= 0), remain well pronounced in the
Landau quantization regime (unlike the average conductivity
enhancement, which is usually eliminated by a few Tesla
field). It seems this finite-system version of the Lifshitz
transition can be related to numerous phenomena appearing
in different branches of physics, starting from semiconducting
heterostructures [61], via strongly correlated electron sys-
tems [62], to neutrino physics [63], in which scattering the par-
ticles between quantum states with different effective masses
leads to oscillations in relevant counting statistics, although
this time the interference occurs between the evanescent
waves.
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We stress here that finding the Lifshitz field BL, via
the asymptotic behavior of the conductivity, or via the
beating period, may allow one, at least in principle, to de-
termine the value of t ′ from a single-device magnetotransport
measurement.

Apart from the possible verification of tight-binding param-
eters in BLG Hamiltonian, we believe the effects we describe,
when confirmed experimentally, will provide a thorough
insight into the interplay between massless- and massive-chiral
states ruling the quantum transport through BLG devices
near the charge-neutrality point. For instance, the conductiv-
ity enhancement for B ∼ BL may dominate the signatures
of interaction-related magnetic catalysis phenomenon [64]
(particularly in finite-size systems), and one should precisely
distinguish single- and many-body aspects when searching for
this intriguing phenomenon in BLG.

As we have focused on clean ballistic systems, several
factors which may modify the transport properties of graphene-
based devices, including the disorder [4], lattice defects [65],
or magnetic impurities [66–68], are beyond the scope of
this work. Some experimental [16,23] and numerical [30,69]
findings suggest that charge-transfer characteristics in the
pseudodiffusive transport regime are quite robust against such
factors. For the opposite, quantum-tunneling regime, we put
forward the following reasoning: In the presence of trigonal
warping, the rotational symmetry supposed in earlier studies of
MLG [24,25] or BLG [26] disks no longer applies. In spite of
this fact, the basic oscillation period [ �0 = 2 (h/e) ln(Ro/Ri),
in terms of magnetic flux piercing the disk area] remains
unaltered, allowing one to believe that oscillations and beat-
ing patterns would appear in a more general situation as
well.

ACKNOWLEDGMENTS

We thank S. Roche for the correspondence. The work
was supported by the National Science Centre of Poland
(NCN) via Grants No. 2014/14/E/ST3/00256 (A.R.) and
No. 2014/15/N/ST3/03761 (G.R.). Computations were partly
performed using the PL-Grid infrastructure.

APPENDIX A: TRANSFER-MATRIX APPROACH
IN THE ANGULAR-MOMENTUM SPACE

A version of the transfer-matrix approach utilized in this
paper is chosen such that the differential equation for transfer
matrix can be directly derived from Eqs. (9) and (10) (see
Sec. II B) for the wave functions, and solved analytically in the
absence of trigonal warping (ν ≡ t ′/t0 = 0). The numerical
procedure for ν 	= 0 is described in the following.

First, a basis set for the transfer matrix is constructed
starting from a general angular-momentum eigenstate in
the disk area (Ri < Ro), corresponding to a given angular-
momentum quantum number l = 0,±1,±2, . . . , a radial part
of which can be written as a linear combination of four spinor
functions φl(r) = ∑4

α=1 al
αφl

α(r). The coefficients {al
α} are

arbitrary amplitudes and φl
α(r) = (φα,l

1 ,φ
α,l
2 ,φ

α,l
3 ,φ

α,l
4 )

T
(r) is a

normalized spinor function. (The normalization is carried out
in such a way that the total radial current remains constant.)

The wave function φl(r) can be represented as

φl(r) = Wl(r)al , (A1)

where Wl(r) is the 4 × 4 matrix with elements [Wl(r) ]m,n =
φn,l

m (r), and al = (al
1, al

2, al
3, al

4)
T

.
Next, the radial part of the actual wave function [see

Eq. (8) in the main text], describing the system in the presence
of trigonal warping, is truncated by the linear combination
of limited number (2M + 1) of basis functions, each given
by Eq. (A1), corresponding to angular-momentum quantum
numbers l = −M, . . . ,M . Namely, we define

φ(r) = [φ1(r),φ2(r),φ3(r),φ4(r)]T , (A2)

with

φi(r) =
4∑

j=1

M(i,j ; r)aj (i = 1, . . . ,4), (A3)

where aj = [a−M
j , . . . ,aM

j ]
T

, and the (2M + 1) × (2M + 1)
matrix M(i,j ; r) is to be specified later in this appendix. The
relation between wave functions at different radii, say r and
Ri, can be expressed within the propagator U(r,Ri) as follows:

φ(r) = U(r,Ri)φ(Ri). (A4)

Substituting Eq. (A4) into (9) in the main text, we obtain

∂rU(r,Ri) = A(r)U(r,Ri), (A5)

with the boundary condition

U(Ri,Ri) = I(8M+4)×(8M+4), (A6)

where IN×N denotes the N × N identity matrix. The sparse
matrix A(r) in Eq. (A5) has nonzero elements [A(r) ]m,n

directly following from Eq. (9). Defining

lm = M − [(m − 1)mod(2M + 1)],

αm = �(m − 1)/(2M + 1)�, (A7)

where �x� denotes the largest integer smaller or equal to x,
one can write

[A(r)]m,n = [−g(lm,r)δm,n + iνtδm,n−3

+ 2νg(lm − 2,r)δm,n−6M−6]δαm,0

+ [g(lm − 1,r)δm,n − itδm,n−2M−1]δαm,1

+ [g(lm,r)δm,n + iνtδm,n+3

− 2νg(lm + 2,r)δm,n+2M+4]δαm,2

− [g(lm + 1,r)δm,n + itδm,n+6M+3]δαm,3, (A8)

where 1 � m,n � 8M + 4, the symbol δα,β denotes the
Kronecker delta of α and β, t = t⊥/(�vF ), and g(l,r) is given
by Eq. (10) in the main text.

The angular-momentum cutoff M is chosen to be large
enough to reach the convergence of the charge-transfer charac-
teristics. We observe that the desired relative precision of 10−4

requires M growing approximately linearly with the system
size Ro − Ri, the magnetic field B, and the skew-interlayer
hopping t ′. For instance, in our numerical examples with
t ′ = 0.3 eV, the number of modes varies from 2M + 1 = 50
for Ro − Ri = 90 nm and B = 0, up to 2M + 1 = 1000 for
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Ro − Ri = 5 μm and B = 80 T. It is also worth to mention
that in the magnetic field B > 0 efficient computation requires
the angular-momentum quantum numbers are varied in a
range

l = −M − ��D/�0�, . . . ,M − ��D/�0�, (A9)

where �D = π (R2
o − R2

i )B.
The numerical integration of Eq. (A5), with the boundary

condition given by Eq. (A6) and the matrix A(r) given
by Eqs. (A7) and (A8), was carried out by employing the
fourth-order explicit Runge-Kutta method with a fixed step
size [70,71]. Floating-point arithmetic, with up to 300 decimal
digits, was used to guarantee the numerical stability when
inverting the blocks of the resulting transfer matrix for the
whole system (see following).

A procedure, described in the above, brings us to the
propagator for the disk area U(Ro,Ri). Writing the standard
mode-matching conditions for wave functions in the leads and
in the disk area

φlead(Ro) = φsample(Ro),
(A10)

φsample(Ri) = φlead(Ri),

together with Eq. (A4) for r = Ro, gives us

φlead(Ro) = U(Ro,Ri)φ
lead(Ri). (A11)

In order to find the transfer matrix for the whole system, we
choose the wave functions in the leads such that

φlead(Ro) = Mlead(Ro) a,
(A12)

φlead(Ri) = Mlead(Ri) b,

where the vector a (b) contains 8M + 4 amplitudes for normal
modes in the outer (inner) lead. Taking the limit of infinite
doping in the leads, one can disregard the parameter ν, and
write

Mlead(r) = B(r) ⊗ I(2M+1)×(2M+1) (A13)

for r < Ri or r > Ro, where

B(r) = 1√
r

⎛
⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

−1 1 −1 1

−1 1 1 −1

⎞
⎟⎟⎟⎠, (A14)

A ⊗ B denotes the Kronecker product of the matrices A
and B, and we have further skipped the physically irrelevant
constant phase. In turn, the matrices M(i,j ; r) defining the
wave function via Eqs. (A2) and (A3) can be found as blocks
of the matrix U(r,Ri)Mlead(Ri).

The transfer matrix thus reads as

T = M−1
lead(Ro)U(Ro,Ri)Mlead(Ri)

=
(

(t†)−1 r′ · (t′)−1

−(t′)−1 · r′ (t′)−1

)
, (A15)

where the rightmost equality maps the matrix blocks of
T onto the elements of the scattering matrix: t, r, the
transmission and reflection matrices for a wave function
incoming from the inner lead, and t′, r′, the transmission and

reflection matrices for a wave function incoming from the outer
lead [39].

APPENDIX B: WAVE FUNCTIONS FOR A RECTANGULAR
SAMPLE IN UNIFORM MAGNETIC FIELD

In this Appendix, we present the wave functions utilized
in Sec. IV B to discuss the magnetotransport through a
rectangular BLG sample at the charge-neutrality point. The
low-energy Hamiltonian has a general form as given by Eq. (5)
in the main text, but the potential energy now depends only on
the x coordinate

U (x) =
{
U∞, if x < 0 or x > L

0, if 0 < x < L
(B1)

and we choose the Landau gauge (Ax,Ay) = (0,Bx). Sub-
sequently, the solution of the Dirac equation Hψ = Eψ ,
corresponding to a given transverse wave number k, can be
written as ψ(x,y) = φk(x) exp(iky). (For the sample width W

and the periodic boundary conditions along the y direction, we
have k = 0,±2π/W,±4π/W, . . . .)

Using the compact notation ψα
β (x)≡ψα

β , γ≡[γk(x)/16 ]2/3

[see Eq. (36) in the main text], and χ =
x[k + itν/2 − x/(2l2

B)], one can write a zero-energy wave
function for the sample area (0 < x < L) as a combination of
four linearly independent spinors

φ
sample
k (x) = Ck

1

⎛
⎜⎜⎝

ψ1
1

0
0

ψ4
1

⎞
⎟⎟⎠ + Ck

2

⎛
⎜⎜⎝

ψ1
2

0
0

ψ4
2

⎞
⎟⎟⎠

+Ck
3

⎛
⎜⎜⎝

0
ψ2

1

ψ3
1

0

⎞
⎟⎟⎠ + Ck

4

⎛
⎜⎜⎝

ψ2
2

0
ψ3

2
0

⎞
⎟⎟⎠, (B2)

with Ck
1 , . . . ,Ck

4 being arbitrary coefficients. The spinor
components in Eq. (B2) are given by

ψ1
1 = eχ [iτAi′(γ ) − (ν/2)Ai(γ )],

ψ1
2 = eχ [iτBi′(γ ) − (ν/2)Bi(γ )],

ψ2
1 = e−χ∗

Ai(γ ∗),

ψ2
2 = e−χ∗

Bi(γ ∗),

ψ3
1 = e−χ∗

[iτ ∗Ai′(γ ∗) − (ν/2)Ai(γ ∗)],

ψ3
2 = e−χ∗

[iτ ∗Bi′(γ ∗) − (ν/2)Bi(γ ∗)],

ψ4
1 = eχAi(γ ),

ψ4
2 = eχBi(γ ), (B3)

where Ai(z) and Bi(z) are the Airy functions [72], and we have
further defined τ = 3

√−2iνt−2. The remaining details of the
mode-matching analysis are the same as in Refs. [12,19].
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