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High-frequency homogenization for layered hyperbolic metamaterials
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We propose an analytical approach for calculation of the homogenized dielectric functions ε‖(ω) and ε⊥(ω) of
one-dimensional periodic metal-dielectric structure. The obtained formulas are valid at high frequencies near the
points of topological transition from an elliptic to hyperbolic regime. The proposed method of high-frequency
homogenization takes into account rapidly varying electromagnetic fields within the metallic component of a unit
cell, in particular, the evanescent character of the plasmonic mode and oscillatory behavior of the waveguidelike
modes. Our results show good correspondence to the exact solution of the Rytov’s dispersion equation and
significant deviation from the widely used quasistatic formulas obtained by spatial averaging along the direction
of periodicity z of ε(z) and 1/ε(z). The quasistatic approach ignores z dependence of the fields that leads to its
limited applicability near the frequency of topological transition.
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I. INTRODUCTION

Uniaxial metamaterials with optical anisotropy going be-
yond the difference in the absolute values of the components
of the dielectric tensor εik(ω) = diag(ε‖,ε‖,ε⊥) and showing
extreme birefringence when ε‖ ε⊥ < 0 are known as hyper-
bolic metamaterials [1–4]. Due to (formally) infinite values
of the wave vector allowed by hyperbolic dispersion relation
for propagating electromagnetic mode these materials strongly
modify the rate and direction of spontaneous emission [5]. The
dielectric function of a periodic structure becomes negative at
sufficiently low frequencies when the contribution to polar-
ization from the metallic layers overcomes the contribution
from the dielectric constituent. Since polarizations along the
layers and perpendicular to them differ, the elements of the
dielectric tensor ε‖(ω) and ε⊥(ω) vanish at different frequen-
cies, giving rise to the frequency bands with either elliptic
[ε‖(ω) ε⊥(ω) > 0] or hyperbolic [ε‖(ω) ε⊥(ω) < 0] dispersion.
Here the subindices ‖ and ⊥ refer to the propagation parallel
or perpendicular to the optical axis, respectively.

The most complete characterization of infinite periodic
layered structure is given by Rytov’s dispersion equation [6]

cos(Kzd) = cos(kzaa) cos(kzbb)

− 1

2

(
εbkza

εakzb

+ εakzb

εbkza

)
sin(kzaa) sin(kzbb), (1)

which is an implicit relation between the frequency ω and
the Bloch vector K = (kx,ky,Kz) for the transverse-magnetic
(TM) eigenmode (vector H parallel to the layers) propagating
at some angle with respect to the optical axis (axis z). Here
k2
za = ω2

c2 εa − k2 and k2
zb = ω2

c2 εb − k2 are the longitudinal
components of the wave vector inside the layers a and b,
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respectively, and a + b = d. The system is homogeneous
along the xy plane, and therefore the corresponding projection
of the transverse wave vector k =

√
k2
x + k2

y conserves from
layer to layer.

For any frequency ω the values of the dielectric functions
ε⊥(ω) and ε||(ω) can be calculated from the dispersion relation
ω = ω(K) obtained from Eq. (1). In particular, the well-known
quasistatic dielectric constants are easily obtained in the limit
ω,K → 0,

1

ε⊥
= f

εa

+ 1 − f

εb

, (2)

ε|| = ε̄ = f εa + (1 − f )εb. (3)

Here f = a/d is the portion occupied by material a in a unit
cell of length a + b.

If the component a of a superlattice (SL) is a metal, then its
dielectric function εa(ω) = 1 − ω2

p/ω2 has a pole at ω = 0 that
leads to ε|| = −∞ and ε⊥ = εb/(1 − f ). Because of strong
frequency dispersion in metals at low frequencies, calculation
of the effective dielectric tensor for hyperbolic materials is not
an easy problem. Several homogenization theories have been
recently proposed for layered hyperbolic materials. At low (but
finite) frequencies Eq. (3) for ε|| can be formally rewritten in
standard Drude form,

ε|| = ε̄

(
1 − ω2

0

ω2

)
, (4)

with effective plasma frequency

ω0 = ωp

√
f

ε̄
(5)

and average permittivity ε̄ = f + (1 − f )εb. This formula,
obtained in the static limit, ignores the skin effect, and therefore
it becomes invalid if the metal layer thickness a becomes
comparable with the skin depth δ0 = c/ωp. Strong decay of
the electromagnetic field in a thin metal layer and its oscillatory
behavior inside a thick dielectric layer allows approximation
when the field inside the unit cell is replaced by the field in a
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Fabry-Perot resonator. This leads to universal effective plasma
frequency [7]

ω0 = πc/(b
√

εb), (6)

which is independent of ωp and metal layer thickness a.
This result is in agreement with an idea [8,9] that a metal-
dielectric structure with very low metal filling (f � 1) can be
considered a “diluted” metal with effective plasma frequency
which depends on geometry of the unit cell but not on metal
conductivity. The region of frequencies where a SL exhibits
hyperbolic behavior [ε||(ω) < 0] is 0 < ω < ω0, assuming that
within this interval the homogenization conditions Kzd � 1
is satisfied.

In the region where spatial inhomogeneity of the fields in
metal becomes essential (δ0 � a), a more advanced approach
proposed in Ref. [10] gives the following result:

ε||(ω) = εb

⎧⎨
⎩1 − 1

1 − (ωd/2c)
√

εb

tan[(ωd/2c)
√

εb] − εb

f (εa (ω)−εb)

⎫⎬
⎭. (7)

It is obtained from earlier developed comprehensive theory
of homogenization of bianisotropic periodic medium [11].
Within this approach the result for ε⊥ given by Eq. (2) remains
unchanged. Analytically Eq. (7) does not look like the result
of the Drude model [Eq. (4)]. However, it is reduced to Eq. (4)
in the homogenization limit d � c/ω. If the last term in the
denominator plays the principal role, i.e., f � (δ0/a)2 � 1,
the effective plasma frequency ω0 is given by Eq. (4). In the
opposite case when the skin effect is strongly manifested,
(δ0/a)2 � f � 1, the second term in the denominator is
expanded up to the quadratic term and the effective plasma
frequency can be introduced as follows:

ω0 = (c/d)
√

12/εb. (8)

While numerically this formula is close to the result (6) of
Ref. [7], there is a systematic deviation by approximately 10%.
The source of this discrepancy is the ratio

√
12/π ≈ 1.103,

which is not exactly 1. This discrepancy is reflected in
Fig. 3(a) of Ref. [10], showing that neither Eqs. (4)–(6) nor
Eq. (7) give appropriate frequency dependence for the effective
permittivity ε||(ω).

It is important to note that the quasistatic approximation (2)
and (3) can be used only within its range of validity and with
appropriate justification. While validity of this approximation
for metal-dielectric composites long has been criticized [12],
it is still widely used. This approximation becomes invalid if
the angle of incidence is close to the angle of total internal
reflection [13]. Breakdown of the quasistatic approach for this
special case has been recently demonstrated experimentally
for all-dielectric SL [14]. Applicability of the quasistatic
approximation for calculation of the rate of spontaneous
emission was analyzed in Refs. [15,16]. It was shown that
this approximation usually overestimates the rate. At the
same time, the quasistatic approximation may be successfully
applied, provided that rigorous justification and range of
validity are given [17].

Apart from frequency dispersion a layered (or wired)
medium exhibits spatial dispersion which gives rise to k depen-
dence of the effective permittivity [3,4,9,18–21]. Comparison

of the exact dispersion relation (1) with the equation of crystal
optics in an uniaxial crystal shows that the effective dielectric
tensor enquires off-diagonal elements if the wave propagates
under some angle to the optical axis [19]. However, these
off-diagonal elements vanish for propagation parallel and
perpendicular to the optical axis. In the diagonal elements
the nonlocal terms appear as k-dependent corrections to the
quasistatic values (2) and (3). Here we show that in general
case the quasistatic approximation is not valid since the skin
effect in metal cannot be neglected at finite frequencies.
Therefore, Eqs. (2) and (3) can be used as zero approximation
in very limited situations as well as the nonlocal corrections
to these quasistatic values. This conclusion is in agreement
with the well-known fact that at room temperatures under
the conditions of normal skin-effect temporal dispersion in
metals is much more important than spatial dispersion [22].
Domination of temporal dispersion also follows from identity
of the wave equation in layered hyperbolic metamaterial to the
Klein-Gordon equation for a massless field [23].

In order to clarify the problem of frequency dependence
of the tensor of effective permittivity of a layered hyperbolic
material, we propose a simple homogenization scheme which
takes into account the effects of frequency and spatial
dispersion directly from Rytov’s equation (1). We calculate
analytically the effective dielectric functions ε||(ω) and ε⊥(ω)
and establish the limits of applicability of the Drude model
with effective plasma frequencies (5) and (6) and of the
result given by Eq. (7). Propagation in plane of periodicity
and parallel to the layers are considered separately. In the
latter case the bands originated from the evanescent surface
plasmonlike mode and from the oscillating waveguidelike
mode lead to different results for the effective dielectric
function. The proposed method of homogenization is quite
general. It is valid not only for one-dimensional (1D) SL
but for any periodic structure. Unlike the quasistatic approach
(2) and (3), our method accounts for spatial variation of the
fields within the unit cell and, thus, may be valid at high
frequencies. For elastic periodic medium a homogenization
theory valid at high frequencies was proposed in Ref. [24]. It
gives the parameters of the effective medium for the parts of the
dispersion curve close to the edge of the Brillouin zone where
group velocity vanishes and each Bloch eigenmode becomes
a standing wave with the maximum value of the Bloch vector.
The term “‘high-frequency homogenization” is borrowed from
Ref. [24]. Here we are interested in the long-wavelength part of
the spectrum, where the Bloch vector is small but the frequency
can be arbitrarily high, i.e., our approach is valid close to the
center of the Brillouin zone (� point). Note that small value
of the Bloch vector does not exclude spatial oscillations of the
fields in the metallic component of the SL.

II. HOMOGENIZATION OF PERIODIC
DISPERSIVE MEDIUM

Homogenization procedures for static fields are well
developed for 2D and 3D periodic structures [25–31]. At
finite frequencies local resonances as well as the effects of
dispersion may lead to strong gradients in the distribution of
electric (or magnetic) field within a unit cell. Homogenization
procedure in this case requires more sophisticated methods.

075418-2



HIGH-FREQUENCY HOMOGENIZATION FOR LAYERED . . . PHYSICAL REVIEW B 93, 075418 (2016)

Current progress in fabrication and application of optical
metamaterials gave rise to more advanced approaches to
the problem of calculation of effective medium parameters,
see, e.g., Refs. [9,11,32–39]. As a rule calculations of the
effective parameters based on these advanced approaches
require extensive numerical efforts, which not always can
be justified for 1D periodic superlattices. Here we propose
relatively simple new analytical method of calculation of ε||(ω)
and ε⊥(ω). It is based on well-known formulas for phase and
group velocities:

Vph = ω

k
= c

n
, (9)

Vg = dω

dk
= c

n(ω) + ωdn(ω)
dω

. (10)

Combining these formulas, a simple differential equation for
the effective dielectric function εeff = n2(ω) can be obtained:

c2

VphVg

= n

(
n + ω

dn

dω

)
= εeff + 1

2
ω

dεeff

dω
= F (ω). (11)

Solution of this equation gives a frequency-dependent dielec-
tric function of the equivalent homogeneous medium

εeff(ω) = 2

ω2

∫ ω

ωn

ω′F (ω′)dω′. (12)

Here ωn is the constant of integration, which is the fre-
quency where the effective dielectric function vanishes, i.e.,
εeff(ωn)=0. Thus, Eq. (12) defines exactly the effective
dielectric function if the group and the phase velocities are
known within some interval of frequencies. In what follows we
calculate the function F (ω) for metal-dielectric SL, obtain two
dielectric functions ε||(ω) and ε⊥(ω), and apply these results
for different metal-dielectric SL.

III. PROPAGATION PERPENDICULAR TO THE LAYERS

For the wave propagating along axis z the Bloch vector
K = (0,0,K) and kx = ky = 0. The component a of the
superlattice is a metal with εa = −|ε(ω)| and the component
b is a dielectric. The local wave vector in metal is kza =
i(ω/c)

√|ε(ω)| = i/δ, where δ(ω) = c/(ω
√|ε(ω)|) is the skin

depth. In the limit of frequencies well below ωp the skin depth
approaches its lowest limiting value δ0 = c/ωp. Taking into
account that kza is pure imaginary, the dispersion equation (1)
is rewritten in the following form:

D||(ω) = cos(Kd), (13)

where

D||(ω) = cosh

[
a

δ(ω)

]
cos

(
ωb

c

√
εb

)
+ 1

2

[√
|ε(ω)|

εb

−
√

εb

|ε(ω)|
]

sinh

[
a

δ(ω)

]
sin

(
ωb

c

√
εb

)
. (14)

Calculating the derivative dω/dK and the ratio ω/K from
Eq. (13) we obtain

F (ω) = c2 K

ω

dK

dω
= − c2

d2

Kd

sin(Kd)

1

ω

dD(ω)

dω
. (15)

In the homogenization limit Kd � 1 the ratio Kd/ sin(Kd)
can be replaced by 1. Substitution of Eq. (15) into Eq. (12)
gives the final result for the effective dielectric function:

ε||(ω) ≈ 2c2

ω2d2
[D||(ωn) − D||(ω)] = 2c2

ω2d2
[1 − D||(ω)].

(16)
Here we used that D||(ωn) = 1. This property originates from
Eq. (12) where ωn is defined as a frequency separating the
region of transparency (εeff > 0) from the region where prop-
agation is prohibited (εeff < 0). Spectrum of metal-dielectric
SL has a gap which starts at ω = 0. The gap appears because
D||(ω = 0) = cosh(a/δ0) + (b/2δ0) sinh(a/δ0) > 1, i.e., the
dispersion equation (13) does not have real solution for K .
However, the function D||(ω) decreases and oscillates with ω.
A series of frequencies ωn, giving rise to a series of allowed
zones starting at K = 0 are obtained from the equation

D||(ωn) = 1. (17)

This equation has an infinite number of solutions, ω1 < ω2 <

ω3 < · · · .
For frequencies higher than ωn the SL is transparent, i.e.,

each ωn plays the role of the effective plasma frequency.
Spectrum of metal-dielectric SL has an infinite number of
allowed bands separated by gaps. Thus, it is a metamaterial
which exhibits plasmalike behavior within several intervals
of frequencies. Each frequency ωn is a point of an optical
topological transition [40]. The lowest frequency ω1 is the
most interesting point of transition since the gap below it and
the allowed zone above it are usually the widest in the spectrum
of the SL.

Note that unlike the formulas (5), (6), and (8), which are
valid within some approximations, the solutions of Eq. (17)
give the exact values for the effective plasma frequency. The
effective plasma frequency ωn depends in general on the
properties of the metal and the dielectric and on the geometry
of the unit cell. In the case of small filling fractions, f � 1,
the effective plasma frequency ω1 lies well below ωp. At these
frequencies |ε(ω1)| 
 εb and the second term in Eq. (14) gives
the principal contribution. The solutions of Eq. (17) are close
to the solutions of the equation sin(ωb

√
εb/c) = 0, i.e., the

lowest solution ω1 is close to ω0 given by Eq. (6). In previous
studies [7,41] one more condition, δ0 ∼ a, is usually required
for the effective plasma frequency to be given by Eq. (6).
However, it is easy to see that even if a 
 δ0 the effective
plasma frequency ω1 still can be approximated by Eq. (6),
provided that ω0 � ωp.

The quasistatic result (5) is obtained from Eq. (17) in the
low-frequency limit (ωb/c)

√
εb � 1 when the skin effect is

negligible, a � δ(ω). While the result given by Eq. (8) cannot
be obtained from the exact equation D(ωi) = 1, numerically
ω0 becomes close to ω1 in the limit of small filling, f � 1.

The formula (16) for the effective dielectric function is
valid not only within the first gap and first transmission band
but also for any frequency in the vicinity of the � point.
It is also valid not only for a metal-dielectric SL but for
a SL of any constituents if D(ω) is replaced by the right-
hand side of Rytov’s equation (1). The only approximation
used in derivation of the effective dielectric function is
Kd/ sin(Kd) = 1 + O(K2d2), i.e., Eq. (16) is valid in a linear
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FIG. 1. Permittivity ε‖ vs normalized frequency ω/ωp for a
SL with small filling fraction f = 1/21 and width of the layers
a = δ0/2,b = 10δ0. The red line (stars) is the exact result given by
Eq. (18), the blue line (circles) is the effective permittivity obtained
from Eq. (16), the green line (squares) plots Eq. (7), and the brown
line (triangles) is the dependence obtained in the quasistatic limit
(3). Insert shows a narrow region of frequencies near the point of
topological transition ω/ωp = 0.123.

approximation over the homogenization parameter Kd � 1.
Nonlocal quadratic corrections can be calculated but they do
not lead to new effects and can be neglected [21].

The exact result for ε‖(ω) is calculated directly from
Eq. (13)

ε||(ω) =
(

kc

ω

)2

=
[

c

dω
arccos D‖(ω)

]2

. (18)

This formula gives negative values for ε||(ω) since function
arccos D‖(ω) is pure imaginary within the band gaps where
D(ω) > 1. The proposed dielectric function in Eq. (16) also
becomes negative if D(ω) > 1. For D(ω) < −1 the function
arccos D‖(ω) takes complex values, therefore the effective
permittivity cannot be introduced using definition (18). The
points where D(ω) = −1 belong to the edge of the Brillouin
zone, Kd = π , i.e., here the long-wavelength approximation is
irrelevant. The method of homogenization valid at the edge of
Brillouin zone was proposed in Ref. [24]. The same result (16)
for the effective dielectric function can be obtained directly
from Eq. (18) using the asymptotical expansion arccos x ≈√

2(1 − x), which is valid if 1 − x � 1.
First we consider a SL with the parameters that were used in

Refs. [7,10]. The thickness of the metal layer is a = δ0/2 and
of the dielectric layer is b = 10δ0. The filling fraction of this SL
is quite small, f = a/(a + b) = 1/21. The dielectric function
of the metal is given by Drude model, ε(ω) = 1 − ω2

p/ω2

and for the dielectric εb = 2.25. Figure 1 demonstrates the
dependence ε‖(ω) obtained using Eqs. (3), (7), (16), and (18).

Looking at Fig. 1 one may conclude that for small filling
fractions all three homogenization schemes represented by
Eqs. (3), (7), and (16) give very similar results for ε||(ω). This
impression, however, is due to the scale along the horizontal
axis where frequency is measured in units of ωp. Since for the
noble metals ωp ≈ 9 eV, even a small difference in the position

FIG. 2. The same as Fig. 1 but for a wider interval of frequencies.

of topological transition measured in ω/ωp becomes quite
large in the units of wavelength (nm). For small filling the topo-
logical transition occurs at relatively low frequencies where
the error measured in the units of wavelength is emphasized
by the small denominator in the formula �λ = −hc�ω/ω2.
Here �ω is an error in the frequency (eV) and �λ is an error
in the wavelength (cm). For example, the exact position of
the topological transition in Fig. 1 is ω/ωp = 0.123, which
corresponds to the wavelength of 1120 nm. The point of
transition obtained from Eq. (7) is red shifted by 0.002ω/ωp,
that is, about 20 nm in the units of wavelength. The quasistatic
approach Eq. (3) gives a blue shift by 0.024ω/ωp for the
transition frequency, that is, about 180 nm. If the error of 20 nm
can be considered as acceptable for some optical measurement,
then it is absolutely unacceptable if �λ = 180 nm. Thus, the
widely used quasistatic limit (3) gives too-large an error in
the frequency of topological transition. Inapplicability of the
quasistatic approach and Eq. (7) becomes more evident at
higher frequencies. In Fig. 2 we plot the same functions as in
Fig. 1 but for much wider interval of frequencies. The spectrum
of the SL contains two more band gaps near the � point. They
are quite narrow and the corresponding values of ε||(ω) are
only slightly negative, as shown in the insert to Fig. 2. Within
these bands the SL behaves as a metamaterial with epsilon
near zero. Here a periodic layered structure may provide the
bandwidth comparable with the bandwidth of the structures
proposed in Ref. [42].

The approximation (16) is in excellent agreement with
the exact result near every point of topological transition.
Moreover, it can be used even away from these points. The
only regions where this approximation fails are those where
D‖(ω) � −1 and the dielectric function cannot be defined in
a standard form of Eq. (18) because of complex values of
arccos D‖(ω). Unlike this, the quasistatic approximation and
Eq. (7) do not follow at all the behavior of the dielectric
function at frequencies higher than the first topological
transition at ω/ωp = 0.123.

The situation with larger fillings also demonstrates that
the validity of the homogenization approaches (3) and (7)
may be questionable. When the metal filling increases the
effective medium becomes more dispersive and the topological
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FIG. 3. The same as in Fig. 1 but for a SL with filling f = 1/2.

transition occurs at higher frequencies. Figure 3 shows the
dispersion of the effective dielectric functions for a SL of
the same constituents but with equal fillings, a = b = 2δ0.
Since the thickness of the metal layer exceeds the skin
depth, the electromagnetic field is strongly inhomogeneous
inside it. The quasistatic approach completely ignores this
fact, therefore it underestimates the value of the effective
permittivity. The approach proposed in Ref. [10] takes into
account the skin effect; however, the values of ε||(ω) obtained
from Eq. (7) far exceed the exact result. Also this approach
gives the position of the topological transition red shifted
by 90 nm from the exact result of 290 nm (this wavelength
corresponds to ω/ωp = 0.478). The quasistatic approach gives
too-small values for ε||(ω) and the frequency of the transition
is blue shifted by 35 nm. Thus, the accuracy of both these
approximations is not sufficient for modern optical studies.
Unlike this, Eq. (16) exhibits frequency dispersion which is
practically undistinguishable from the exact result within a
wide interval of frequencies near the topological transition.

The accuracy of the quasistatic approach, which ignores
spatial variations of the fields, becomes much better for a SL
with narrower layers. Here the fields change smoothly and they
can be approximated by constant (electrostatic) values. Since
in a metal layer the fields oscillate at a shorter distance than in a
dielectric, the width of the metal layer a should not exceed the
skin depth δ0 in order for the quasistatic approach to be valid.

Now we consider a SL which was fabricated to study an in-
crease of radiative decay rate of rhodamine molecules placed in
the vicinity of a hyperbolic metamaterial [43]. The SL consists
of 16 alternating layers of gold and alumina. The thickness of
each layer is a = b = 19 nm, i.e., for optical frequencies this
is a deeply subwavelength region. The permittivity of alumina
for optical frequencies is εb = 3.24. The frequency dispersion
for gold is taken in the following form:

Re ε(ω) = 1 − ω2
p

ω2 + α2�2
p

+ F1ω
2
1

(
ω2

1 − ω2
)

(
ω2

1 − ω2
)2 + �2

1ω
2

+ F2ω
2
2

(
ω2

2 − ω2
)

(
ω2

2 − ω2
)2 + �2

2ω
2
, (19)

FIG. 4. Permittivity of a gold-alumina SL fabricated in Ref. [43].
The width of the layers is equal, a = b = 19 nm. The permittivity of
the gold layer is modeled by Eq. (19) and the permittivity of alumina
is εb = 3.24. The labels for the curves are the same as in Fig. 1.

with Drude parameters from Johnson and Christy data [44]
ωp = 9 eV and �p = 0.07 eV, and with two Lorentzian
oscillators with F1 = 0.3, ω1 = 2.7 eV, �1 = 0.3 eV, and
F2 = 0.8, ω2 = 3.05 eV, �2 = 0.5 eV. The loss factor α =
1.35 is introduced to modify the bulk value of gold damping
term �p. The optical skin depth for these metal parameters
is δ0 = c/ωp = 22 nm, that is, slightly longer than the SL
period. The rate of spontaneous emission near this hyperbolic
metamaterial was evaluated by the authors of Ref. [43] using
the quasistatic approach and a reasonable agreement with
experimental data has been achieved. In order to evaluate
the accuracy of the quasistatic approach we plot in Fig. 4
the dielectric function ε‖(ω) for this SL. The quasistatic
approximation (dotted orange line) (3) turns out to be close
to the exact result (red thick solid line) for all frequencies. It is
seen in the insert to Fig. 4 that the position of the topological
transition is blue shifted by 10 nm. Relatively good accuracy
of the quasistatic approximation in this particular case is due
to very narrow layer widths, which is less than the skin depth,
and also due to high filling of metal that shifts the topological
transition to ultraviolet region. Unlike this, the accuracy of
Eq. (7) is reduced as compared to the case of small filling
fractions. It gives an error of 30 nm in the position of the
topological transition and the values of ε‖(ω) are considerably
overestimated.

IV. PROPAGATION PARALLEL TO THE LAYERS

The Bloch vector for parallel propagation vanishes, Kz = 0.
Let the wave propagates along the x axis with wave vector
kx = k. The dispersion equation (1) can be written as follows:

D⊥(ω,k) = cosh[ap(ω,k)] cos[b q(ω,k)]

+1

2

[ |ε(ω)|q
εbp

− εbp

|ε(ω)|q
]

× sinh[ap(ω,k] sin[b q(ω,k] = 1. (20)
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Here

p(ω,k) =
√

k2 + δ−2(ω), q(ω,k) =
√

(ω/c)2εb − k2. (21)

Unlike the dispersion equation (13) where frequency
and wave vector are separated, these variables cannot be
separated in general case in Eq. (20). The reason is lack
of periodicity along the direction of propagation. One more
principal physical difference between these two geometries
is a possibility of propagation of surface plasmons along the
layers. Depending on the sign of q2(ω,q) the fields in the
dielectric layer exhibit either oscillating

q2 = (ω/c)2εb − k2 > 0 (22)

or evanescent

q2 = (ω/c)2εb − k2 < 0 (23)

behavior along z. In the former case an eigenmode propagates
due to partial reflection from the metal layers and partial
penetration through them. In the latter case the trigonometric
functions in Eq. (20) become evanescent, which is a signature
of surface plasmon field in dielectric.

It is known that waveguide propagation is not allowed below
some cut-off frequency ωc. Unlike this, the spectrum of surface
plasmon starts from zero frequency. Also the phase velocity
of a waveguide mode (surface plasmon) is greater (less) than
c/

√
εb. These facts mean that the lowest allowed mode which

propagates parallel to the layers is of plasmonic nature.

A. Plasmoniclike mode

It follows from Eq. (23) that the parameter q(ω,k) is pure
imaginary, q = iQ. Having in mind the long-wavelength limit,
we assume that

kδ0 = kc

ωp

≈ ω
√

εb

ωp

� 1. (24)

This inequality defines the frequencies where the conducting
component of the SL exhibits metallic behavior. For typical
metals this range extends up to near the UV region. Due to this
inequality the k dependence in the parameter p(ω,k) can be
neglected, i.e., p ≈ 1/δ(ω). Now the dispersion equation (20)
is reduced to

cosh

[
a

δ(ω)

]
cosh(b Q) − 1

2

[ |ε(ω)|Qδ

εb

+ εb

|ε(ω)|Qδ

]
sinh

[
a

δ(ω)

]
sinh(b Q) = 1. (25)

In the low-frequency limit the dispersion of surface plasmon
is linear. Substituting the linear dependence ω = kc/ε⊥ into
Eq. (25) and expanding the hyperbolic functions in the limit
ω,k → 0 the low-frequency effective dielectric constant of the
SL is easily calculated,

ε⊥(ω → 0) = εb

[
1 + 2

δ0

b
tanh

(
a

2δ0

)]
. (26)

This formula defines the slope of the plasmoniclike mode in
the low-frequency limit. It is reduced to the well-known result
ε⊥ = εb if the neighboring unit cells are electromagnetically
uncoupled, δ0 � a + b. The static result (2), which for metal-
dielectric SL is reduced to ε⊥ = εb/(1 − f ), is obtained from
Eq. (26) if the screening effect from the skin layer vanishes, i.e.,
δ0 
 a. Note that ε⊥ > εb, which means that in a multilayered
metal-dielectric structure the plasmonic-like mode propagates
slower than surface plasmon. This also becomes evident from
Eq. (23), which is true only for the waves propagating slower
than light.

B. Waveguidelike modes

At higher frequencies (and small k) the condition (22)
becomes true and propagation of the modes with phase
velocities greater than c/

√
εb is allowed. The spectrum consists

of infinite number of waveguidelike modes. Each mode starts
with finite cut-off frequency 
n at k = 0 and at k → ∞ it
approaches the light line. The series of cut-off frequencies,
ω = 
n, n = 1,2, . . . are obtained from the equation

cosh

[
a

δ(ω)

]
cos

(
b ω

c

√
εb

)
+ 1

2

[√
|ε(ω)|

εb

−
√

εb

|ε(ω)|
]

sinh

[
a

δ(ω)

]
sin

(
b ω

c

√
εb

)
= 1. (27)

The effective dielectric constant ε⊥(ω) must change its
sign from negative to positive when frequency ω passes
through any of the cut-off frequencies 
n. The asymptotical
dependence ε⊥(ω) near 
n can be easily calculated from the
exact dispersion equation (20). Explicit dispersion relation
near the � point is obtained from Eq. (20) by expanding the
function D⊥(ω,k) at k = 0 and ω = 
n,

D⊥(
n,k = 0) +
[
∂D⊥
∂ω

+ ∂D⊥
∂q

∂q

∂ω

]
(ω − 
n)

+∂D⊥
∂q

∂q

∂k
k = 1. (28)

The derivatives in this equation are taken at ω = 
n and
k = 0. According to Eq. (27) the first term equals 1. The
derivatives ∂q/∂ω = √

εb/c and ∂q/∂k = −kc/(
n

√
εb) are

calculated from Eq. (22). Then the dispersion relation near a
cut-off frequency turns out to be quadratic, i.e., ω − 
n ∝ k2.
Similar quadratic dispersion is known from the theory of
metallic waveguides. Quadratic dispersion relation gives rise
to dielectric permittivity linearly vanishing near the cut-off
frequency ω = 
n,

ε⊥(ω) =
(

kc


n

)2

= εb

(
1 + c√

εb

∂D⊥/∂ω

∂D⊥/∂q

)
ω − 
n


n

. (29)
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Here the derivatives of D⊥(ω,q) can be easily calculated directly from Eq. (20),

∂D⊥
∂ω

∣∣∣∣ω = 
n

k = 0

= a

c

[√
|ε(
n)| + 
n

2
√|ε(
n)|

d|ε(
n)|
d
n

]{
sinh

[
a

δ(
n)

]
cos

(
b 
n

c

√
εb

)
+ |ε(
n)| − εb

2
√

εb|ε(
n)|

× cosh

[
a

δ(
n)

]
sin

(
b 
n

c

√
εb

)}
+ |ε(
n)| + εb

4
√

εb|ε(
n)|
[

1

|ε(
n)|
d|ε(
n)|

d
n

− 2


n

]
sinh

[
a

δ(
n)

]
sin

(
b 
n

c

√
εb

)
,

(30)

∂D⊥
∂q

∣∣∣∣ω = 
n

k = 0

= −b cosh

[
a

δ(
n)

]
sin

(
b 
n

c

√
εb

)
+ δ(
n)

|ε(
n)| + εb

2εb

sinh

[
a

δ(
n)

]
sin

(
b 
n

c

√
εb

)

+b
|ε(
n)| − εb

2
√

εb|ε(
n)| sinh

[
a

δ(
n)

]
cos

(
b 
n

c

√
εb

)
. (31)

While these formulas look quite cumbersome they serve to
calculate only the numerical coefficient in the dispersion of
the effective dielectric function (29).

C. Results and discussion

A typical band structure for propagation parallel to the
layers is shown in Fig. 5. It is calculated from the dispersion re-
lation (20) for a SL with low filling fraction f = 1/21. At low
frequencies the spectrum starts from a plasmonic-like mode
and above it there are several waveguidelike modes, depending
on the number of real roots of Eq. (27) lying below ωp [41].
The exact dispersion relations are shown by solid lines. The
plots obtained in the effective medium approximation ω =

kc/
√

ε⊥(ω) are shown by dotted lines. The long-wavelength
effective dielectric function ε⊥ is approximated by the constant
value (26) for the plasmonic mode and by the linear function
(29) for each of the waveguidelike modes. A piecewise contin-
uous behavior of the effective dielectric function is shown in
the right panel in Fig. 5. It can be seen that the proposed linear
approximation gives the results which are very close to the
exact ones. Moreover, the region where the effective medium
approximation is valid turns out to be much wider than one
may expect from the long-wavelength limit kd � 1.

For the SL with small filling, f = 1/21, the plasmonic
mode exhibits linear dispersion up to kd ≈ 3. The slope of
this mode is indistinguishable from that given by Eq. (26)

FIG. 5. Propagation parallel to the layers in a SL with low filling, f = 1/21. Left panel: Band structure (blue solid lines) calculated from the
exact equation (20). It consists of a single plasmonic mode which starts at ω = 0 and five waveguidelike modes starting at cut-off frequencies

n calculated from Eq. (27). The results of the effective medium approximation ω = kc/

√
ε⊥(ω) with ε⊥(ω) given by Eq. (29) are shown by

dashed orange lines. The dispersion of the plasmonic mode is almost linear; therefore the exact curve practically coincides with the straight line
of the effective medium approximation shown by dashed red line. For all the waveguidelike modes the proposed parabolic approximation are in
excellent agreement with the exact results. Insert: Blowup of the region of crossing of the plasmonic mode and the lowest waveguidelike mode.
Even on this scale the exact and approximate lines for the plasmonic mode are undistinguishable. Right panel: Effective dielectric function vs
frequency (solid lines). For the plasmonic mode the effective dielectric function (26) is frequency independent. Near each cut-off frequency 
n

the effective dielectric function ε⊥(ω) exhibits linear behavior with different slopes. The quasistatic approximation (2) is shown by the dashed
red line.
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FIG. 6. Propagation parallel to the layers for a SL with high filling, f = 1/2 and a = b = 2δ. Left panel: Band structure (blue solid lines)
calculated from the exact equation (20). It consists the plasmonic mode which starts at ω = 0 and of single waveguidelike mode starting at
cut-off frequency 
1 = 0.48 calculated from Eq. (27). The result of the effective medium approximation ω = kc/

√
ε⊥(ω) with ε⊥(ω) given

by Eq. (29) is shown by dashed orange line. Unlike the plasmonic mode in Fig. 5, here the dispersion of the plasmonic mode is strongly
nonlinear. Therefore, the effective medium approximation (straight red dashed line) is close to the exact curve only for kd < 2, which is
still wider that is expected for the long-wavelength limit. For the waveguidelike mode the proposed parabolic approximation are in excellent
agreement with the exact results for kd < 3. Right panel: Effective dielectric function vs frequency (black solid lines). For the plasmonic mode
the effective dielectric function (26) is frequency independent, ε⊥ = 3.96. Near the cut-off frequency 
1 the effective dielectric function ε⊥(ω)
exhibits linear behavior. The quasistatic approximation (2) is plot by dashed red line. It shows quite different results within the whole range of
frequencies.

(shown by dashed red line). Due to very low filling, the
slope of the plasmonic mode is practically the same as
that for the light line ω/k = √

εb. This occurs because the
correction to εb = 2.25 given by Eq. (26) in this case is
small, 2(δ0/b) tanh(a/2δ0) ≈ 0.11. Sublinear dispersion of the
plasmonic mode can be seen for much larger values of the
wave vector, at kd > 10. The dispersion of the waveguidelike
modes is very well approximated by the proposed parabolic
dependence Eq. (29). There are five waveguidelike modes
with cut-off frequencies 
1 = 0.12ωp, 
2 = 0.399ωp, 
3 =
0.456ωp, 
4 = 0.799ωp, and 
5 = 0.845ωp. For the lowest
band the parabolic approximation is valid up to kd ≈ 3, i.e., the
region of validity is the same as that for the plasmonic mode.
The dispersion curves for these two modes cross at kd ≈ 2.7.
This region is shown in the insert. For the higher waveguidelike
modes the region of validity of parabolic approximation is even
wider. It extends up to kd = 4 for the second mode, to kd = 5
for the third and forth modes, and to kd = 7 for the highest,
fifth, mode.

The graph for the effective dielectric function ε⊥(ω)
consists of several straight lines with different slopes, shown
in Fig. 5 (right panel). In the region of low frequencies only
the plasmonic mode exists for which ε⊥(ω) is a positive
constant given by Eq. (26). Passing through any of the cut-off
frequencies 
n the effective dielectric function ε⊥(ω) changes
its sign. All the transitions occur linearly. However, the rates
of the transitions differ. The fastest transition takes place near

1 where ε⊥(ω) = 123.5(ω/ωp − 0.12). For higher modes the
rate of transition gradually decreases. The slowest transition
occurs for the fifth mode where ε⊥(ω) = 5.66(ω/ωp − 0.845),

i.e., the rate is decreased by 20 times. The dashed red line
in Fig. 5 shows the dispersion of the effective permittivity
obtained from the quasistatic limit (2). It is clear that the
quasistatic approximation is valid only at low frequencies
where the plasmonic mode exists. Because of the very low
filling fraction the effective dielectric constant for plasmonic
mode is close to εb. In this case Eqs. (2) and (26) give
the values close to εb. However, for higher frequencies the
quasistatic approximation is not valid at all. It predicts sign
change at ω = 0.95ωp, which is not close to any of the cut-off
frequencies obtained from the exact equation (27). Thus, in a
SL with a low filling fraction the quasistatic approximation is
not valid above the first cut-off frequency. In Fig. 6 we plot
the band structure and the results of the effective medium
theory for a SL with f = 1/2 and a = b = 2δ0. Here the
eigenfrequency of the plasmonic mode has a clear tendency
to saturation if kd > 7. For kd < 32 the dispersion is close
to linear with the slope given by Eq. (26). In this case the
effective dielectric constant ε⊥ = 2.25(1 + tanh 1) ≈ 3.96 is
greater than εb = 2.25; therefore the plasmonic mode in this
SL propagates essentially slower than surface plasmon along a
metal-dielectric boundary with the same dielectric parameters.
Due to the higher filling fraction this SL exhibits much stronger
“metallic” behavior than the previous one with f = 1/21. In
particular, there is only a single waveguidelike mode with
cut-off frequency at 
1 = 0.48. The dispersion of this mode is
well approximated (for kd < 3) by a parabola ω/ωp − 0.48 =
1.95 × 10−3(kd)2, shown in Fig. 6 by dashed orange line. The
corresponding effective dielectric function is approximated
by a linear dependence ε⊥(ω) = 139(ω/ωp − 0.48). It is
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FIG. 7. Propagation parallel to the layers for gold-alumina SL fabricated in Ref. [43]. The layers are of equal width, a = b = 19 nm. The
permittivity of gold layer is modeled by Eq. (19) and the permittivity of alumina is εb = 3.24. Left panel: Band structure (blue solid lines)
calculated from the exact equation (20). It consists of the plasmonic mode, which starts at ω = 0, and of the waveguidelike mode starting
at cut-off frequency 
1 = 0.58 calculated from Eq. (27). The result of the effective medium approximation ω = kc/

√
ε⊥(ω) with ε⊥(ω)

calculated from Eq. (29) is shown by a dashed orange line. Unlike the plasmonic mode in Fig. 5, here the dispersion of the plasmonic mode
is strongly nonlinear. Therefore, the effective medium approximation (straight red dashed line) is close to the exact curve only for kd < 1.
The waveguidelike mode exhibits very weak dependence on the parameter kd . In accordance with this, the proposed parabolic approximation
has very small curvature and it is in excellent agreement with the exact results for kd < 4. The insert shows blowup of the flat waveguidelike
band. Right panel: Effective dielectric function vs frequency (black solid lines). For the plasmonic mode the effective dielectric function (26) is
frequency independent, ε⊥ = 6.29. Near the cut-off frequency 
1 the effective dielectric function ε⊥(ω) exhibits sharp topological transition.
The quasistatic approximation (2) is plotted with dashed red line. It is valid at low frequencies only. This region is shown in the insert.

shown by a black solid line (right panel of Fig. 6). For
this SL the quasistatic approximation (dashed red line) does
not give satisfactory results. Even at very low frequencies
it gives ε⊥ = 4.5, which exceeds the result of the effective
medium approximation ε⊥ = 3.96. For higher frequencies the
discrepancy is even bigger.

Numerical results for the gold-alumina SL [43] are plotted
in Fig. 7. Like in the previous case with the same filling fraction
f = 1/2, the spectrum contains only a single waveguidelike
mode. It starts at the cut-off frequency 
1 = 0.58 and exhibits
very weak dependence on the wave vector k. This dependence
is given by the parabola ω/ωp = 0.58 + 5.5 × 10−3(kd)2. Due
to very small curvature this parabola can be approximately
considered as an example of a flat band. Periodic systems
with macroscopically degenerated flat bands attract a lot
of attention. Due to the dispersionless character of the
corresponding mode, the Bloch functions are represented
by strongly localized states. It was shown that the basis
formed by localized states may lead to the existence of new
topological phases and an anomalous Anderson transition, the
appearance of Fano resonances, and many other interesting
effects [45–50]. While the band in Fig. 7 is not exactly
flat—weak dependence on kd is seen in the insert—the
gold-alumina SL may be considered as a good approximation
of a real system with approximately flat band. Because of
flatness of the waveguidelike band the topological transition
at 
1 is very sharp; see the black solid line in the right panel
of Fig. 7. It is described by a linear dependence ε⊥(ω) =
197(ω/ωp − 0.58). The rate of this transition is the highest
among the others that we consider. For a perfectly flat band the

rate becomes infinite, i.e., the transition occurs along a vertical
line.

The quasistatic approximation Eq. (2) for gold-alumina SL
can be used only at low frequencies where plasmonic mode
exhibits linear dispersion. Even here it gives an error of ∼5%;
see the insert to Fig. 7, right panel. For higher frequencies
the static approximation becomes invalid. In the experiment
[43] the measurements were performed at the wavelengths
exceeding 630 nm. This region corresponds to the interval
ω/ωp < 0.2 in Fig. 7, where the quasistatic approximation
is still valid; therefore the authors of Ref. [43] reported
a good agreement between their experimental results and
theoretical predictions made on the basis of the quasistatic
approximation.

Since the proposed approach for calculation of the effective
dielectric tensor of a layered medium is valid not only near
the frequencies of topological transitions but also within a
wide range of frequencies where the dielectric function is not
close to zero, it can be used for engineering layered samples
with dielectric constants matching some prescribed values.
Such a sample may exhibit anomalously weak scattering of
electromagnetic waves if its dielectric constants match those
of the environment [51].

V. CONCLUSIONS

In conclusion, we have proposed an analytical approach for
calculation of the effective dielectric functions ε‖(ω) and ε⊥(ω)
of metal-dielectric superlattices which gives asymptotically
correct results in the long-wavelength limit. It gives the exact
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positions for all frequencies of the topological transitions
where one of the dielectric functions changes its sign. Near any
of the frequencies of the topological transition the accuracy
of the proposed theory exceeds that of any other known
approaches. In particular, it is shown that the widely used
formulas Eqs. (2) and (3) obtained by Rytov [6] in the
quasistatic approach may be not applicable at all, or their
accuracy turns out to be insufficient for modern optical studies.
The accuracy of the quasistatic approach becomes low if the
width of the metallic layer exceeds the skin depth. Applications
of hyperbolic metamaterials are due to their ability to increase
the rate of spontaneous emission. The rate increase depends on
the both components of the dielectric tensor [52] and if even

one of these components gives a considerable error as a result
of quasistatic approximation, the frequency dependence of the
rate of spontaneous emission may be incorrect, as shown in
Ref. [15,16]. This is of particular importance for the type 1
hyperbolic metamaterials when the component ε⊥(ω) changes
its sign, since the quasistatic approach is not applicable near
the frequency where ε⊥(ω) = 0.
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