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D. Krychowski and S. Lipiński
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(Received 29 October 2015; published 5 February 2016)

Strong electron correlations and interference effects are discussed in parallel-coupled single-level or orbitally
doubly degenerate quantum dots. The finite-U mean-field slave boson approach is used to study many-body ef-
fects. The analysis is carried out in a wide range of parameter space including both atomic-like and molecular-like
Kondo regimes and taking into account various perturbations, like interdot tunneling, interdot interaction, mixing
of the electrode channels, and exchange interaction. We also discuss the influence of singularities of electronic
structure and the impact of polarization of electrodes. Special attention is paid to potential spintronic applications
of these systems showing how current polarization can be controlled by adjusting interference conditions and
correlations by gate voltage. Simple proposals of double dot spin valve and bipolar electrically tunable spin filter
are presented.
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I. INTRODUCTION

Coherent transport in the presence of strong electron-
electron interactions is one of the central issues in the field
of nanoscale systems examined both experimentally [1–5]
and theoretically [6–11]. Perhaps the most interesting regime
occurs when electrons in the dot acquire antiferromagnetic
correlations with electrons in the leads, giving rise to the
well-known Kondo effect [12–14]. A continuing goal is to
understand, how coupled, multiple quantum dot systems may
lead to variants of the Kondo effect involving both spin and
orbital degrees of freedom. Another theme that has received
considerable attention is the role of interference between
different current paths. Interference conditions can be changed
by magnetic field (Aharonov-Bohm oscillations [15,16]) or
by modification of geometry. The example of the latter are
Fano or Dicke resonances [17–22] present when background
and resonance scattering processes occur simultaneously. The
simplest system to study the interplay between interference
and many-body correlations are coupled parallel quantum dots
(PDQD) [23]. The easy control of the couplings in these
systems allows examination of a broad variety of transport
regimes. Most of the papers devoted to Kondo-assisted
transport through double dots have focused on dots connected
in series [6–9,24–30], where interference does not appear, and
much less attention has been paid to parallel dots [9,23,31–35].
Recently, it has been also realized that PDQDs are much more
experimentally suitable than the dots in series for studying spin
entangled state composed of coherent Kondo resonances [23].
The present paper is devoted to the analysis of transport in
parallel coupled dots of different symmetries. We discus how to
manipulate the Kondo state by interference conditions in order
to reach new device functionality particularly in spintronic
applications. Our general discussion based on variants of two-
impurity Anderson model that take into account degeneracy
and various perturbations is addressed to double-dot devices
formed in various materials, including GaAs two-dimensional
electron gas [2–4], semiconductor nanowires [36], and carbon
nanotubes [37,38]. Carbon nanotube quantum dots (CNTQDs)
are very attractive not only due to the potential applications, but
also from cognitive point of view due to high degeneracy of the

energy levels leading to the appearance of exotic many-body
effects of enhanced symmetry. Besides the spin, also other
degrees of freedom, e.g., orbital [39] or charge [40,41] can
trigger the Kondo correlations. More generally, pseudospin can
represent degenerate states that involve both, spin and orbital
(charge) degrees of freedom. This occurs, for example, for
capacitively coupled quantum dots placed in a magnetic field
with independently adjusted gate potentials of each dot [42].
The spin-orbital SU(2) Kondo state can be achieved in this
way and pseudospin orientations correspond to the spatially
separated parts of the device. This property can be used for
spin filtering. The most interesting case occurs, however, when
spin and orbital degeneracies occur simultaneously leading to
a highly symmetric Kondo state of SU(4) symmetry. In this
case, the simultaneous screening of orbital and spin degrees
of freedom is caused by tunneling processes causing spin,
orbital, pseudospin, and spin-orbital fluctuations. Experimen-
tally, the spin-orbital SU(4) Kondo has been investigated in
carbon nanotube quantum dots (CNTQDs) [43–46], in vertical
semiconductor QDs [39], in capacitively coupled QDs [47],
and Si-fin-type field effect transistors [48]. Orbital degeneracy
commonly occurs also in various organic molecules, such
as metal phtalocyanine, metal porphyrine, etc. and thus
similar many-body effects as these observed in CNTQDs
should be also realized for these molecules in the range of
weak coupling with electrodes [49]. SU(4) symmetry is also
believed to arise in graphene nanostructures due electron’s
spin and valley degrees of freedom [50]. The problem of
simultaneous screening of charge or orbital degrees of freedom
and spin has been also discussed theoretically [51–59]. Due
to the enhanced degeneracy, the Kondo temperature in these
systems is typically at least one order of magnitude higher
than for the common spin Kondo effect, what makes them
interesting for practical applications. SU(4) group is the
minimal group allowing orbital-spin entanglement, which
guarantees rotational invariance in spin and orbital spaces. The
four-state entanglement is interesting for quantum computing,
because each four-state bit is equivalent to two state bits,
so the four-state bits double the storage density. In realistic
systems, there are many perturbations which break SU(4)
symmetry. The external magnetic field or magnetic impurities
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remove spin degeneracy, orbital degeneracy can be lifted by
gate voltage or nonmagnetic impurities. In some cases, also
orbital degeneracy is removed by the magnetic field. This
happens, for example, in CNTQDs in parallel field. The
symmetry can be also lifted by asymmetry of couplings to
the leads. Spin-orbit (s-o) interaction by itself breaks SU(4)→
SU(2)×SU(2) and in consequence the pairs of spin-orbital
Kramers doublets are formed [60]. Since spin-orbital coupling
in some semiconducting dots reaches values up to several
tenths of meV (e.g., in InAs quantum dots, �s-o = 0.25 meV
[61]), s-o interaction might be relevant for SU(4) Kondo
physics, characterized by a comparable energy scale. This
problem has been discussed, e.g., in Ref. [62]. Often the
spin-orbit length characterizing the strength of this interaction,
is much larger than the size of the devices (in GaAs this
length is typically 1–10 μm [60]). In this case, the electron
spin states will be hardly affected by spin-orbit interaction.
In quantum dots formed in nanotubes of small radius, s-o
interaction is of importance due to curvature [63]. Spin-orbital
splitting in CNTQDs can be different in both magnitude and
sign for electrons and holes and depends on the shell fillings,
what allows its control by gate voltage [64]. Electrical gating
can be also used to vary the energy of s-o interaction in
semiconducting dots [65]. In view of different symmetry-
breaking mechanisms, some of them mentioned above, an
important question arises, how far an approximate description
in the language of SU(4) Fermi liquid can be used. SU(4)
fixed point is robust at least for weak perturbations (i.e., for
perturbations of energy scale �E � kBTK ) [29,62,66]. As
particularly shown, magnetic field or orbital splitting (analog
of magnetic field in orbital sector), as well as asymmetry of
the junctions stand for marginal perturbations in the sense
of renormalization group [67]. Strong enough perturbations,
however (�E > kBTK ), inevitably destroy SU(4) symmetry
leading to a one-channel Kondo crossover. Switching between
higher and lower symmetry can be driven by magnetic field
or electrically by the difference of gate voltages, which
gives a promising tool for manipulating transport regimes
and quantum bits [68–72]. In addition to tunneling, also
central to the design circuits for logic and quantum infor-
mation processing based on double dots is an examination
of capacitive coupling and interdot exchange. These topics
have been discussed both theoretically [8–10,52,73–87] and
experimentally [40,88–91], but only for SU(2) symmetry.
An example of lowering the SU(4) symmetry to SU(2) by
mixing of the orbitals via coupling to the leads in a pair of
capacitively coupled single-level dots with equal intra and
interdot repulsions is described in Ref. [92]. For complete
mixing of orbitals, the new Kondo state, two-level SU(2)
(2LSU2), is formed [70]. This state is characterized by
decoupling of one of the molecular many-body orbitals from
the charge reservoir and this manifests in double suppression of
conductance. We will discuss a similar effect for PDQD, but in
the limit of vanishing interdot interaction. Another theme that
has received considerable attention is the role of polarization
of electrodes in the weakening of Kondo correlations. This
problem has been widely discussed for single quantum dots
(see, e.g., Refs. [93–96]), but only a few papers have been
devoted to this issue for double dots [32,97,98] and all of them
are restricted also only to SU(2) symmetry.

In this paper, we perform a comparative study of strongly
correlated parallel coupled quantum dots of SU(4) and SU(2)
symmetries examining the impact of interdot tunneling,
interdot interaction, interdot exchange, and mixing of electrode
channels on the conductance. We also analyze the role of
singularities of the electronic structure of electrodes and the
effect of magnetic polarization. Discussing the problem of
coupled SU(4) dots we concentrate mainly on the case of
separate electrodes. Particular emphasis in this work is put on
displaying the potential inherent in playing the polarity of the
electrodes together with interference effects and many-body
correlations in PDQDs. To highlight this issue, we give few
examples of spintronic proposals. We elucidate the transfer
of the polarization of conductance by tunneling from the
dot coupled to magnetic electrodes to the dot attached to
nonmagnetic electrodes. We discuss the spin valve properties
of PDQDs and present a method of drastic modification of the
gate voltage characteristic of tunnel magnetoresistance. We
show that the double-dot system coupled to a common pair
of polarized electrodes can work as an efficient bipolar spin
filter. We also consider the case when the dots are additionally
coupled by exchange and discuss a competition between
Kondo correlations and interdot spin antiferromagnetic cor-
relations. We indicate on the possibility to perform a swap
operation between the entangled bonding and antibonding
Kondo resonances (singlet-triplet) by the change of interdot
tunneling or gate voltage.

II. MODEL AND SLAVE BOSON
MEAN-FIELD FORMULATION

We consider a system of two single-level or two-level
quantum dots connected in parallel to electron reservoirs.
Our predominant discussion concerns the case of separate
leads attached to each of the dots as presented in Fig. 1(a),
but we compare also some of the results with the case of
common electrodes [Fig. 1(b)]. The systems are modeled
by the generalized two-impurity (single level/double level)
Anderson Hamiltonian:

H = H(1) + H(2) + H1−2
dir + H1−2

ind + H1−2
int + H1−2

exch, (1)

FIG. 1. Schematic of the parallel double-quantum dot setup
attached to separate leads (a) and to common electrodes (b).
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where H(i) denote Hamiltonians of quantum dots coupled to
the leads, and H1−2 Hamiltonians describe interdot couplings:
direct tunneling coupling H1−2

dir , indirect coupling via the
channels of common electrodes H1−2

ind , interdot interaction
H1−2

int , and interdot exchange H1−2
exch. For brevity, we give below

the corresponding expressions for the two-orbital case, in the
single orbital case, the orbital index takes only value l = 1 and
obviously vanishes interorbital Coulomb interaction

H(i) =
∑

l=1,2σ

Eilσ nilσ + Unil↑nil↓ + U
∑
σσ ′

ni1σ ni2σ ′

+V
∑

klσα=L,R

(c†kilασ dilσ + H.c.) +
∑
kilσα

εkilασ nkilασ ,

(2)

where c
†
kilασ is the creation operator of an electron in the state

characterized by the wave vector k, spin σ (σ = ↑,↓), subband
index l (l = 1,2), α = L,R labeling left and right electrode,
and i = 1,2 numbering electrodes of upper and lower dots.
Similarly, d

†
ilσ creates an electron at the lth orbital with spin

σ on the dot i. nilσ = d
†
ilσ dilσ and Eilσ are the bare energies

of local dot levels (with one exception [Fig. 8(b)] the energies
of the dots are taken equal E1lσ = E2lσ = Ed ). The terms
parameterized by U describe intra and interorbital Coulomb
interactions, V is the dot-lead hybridization amplitude, and the
last term describes electrons in the electrodes. Direct tunneling
between the dots is assumed to occur between the orbitals of
the same symmetry and is given by

H1−2
dir =

∑
lσ

(td†
1lσ d2lσ + H.c.). (3)

Marginally, we will also compare in Sec. III A some results
with the case of nonvanishing interdot-interorbital tunneling.
Mixing of states from different electrodes is then given by

H1−2
ind = V ′ ∑

lασ

(c†k1lασ d2lσ + c
†
k2lασ d1lσ + H.c.). (4)

The last two coupling terms, interdot interaction and the
exchange, are discussed in the text only for the single-level
dots and therefore the corresponding Hamiltonians are given
here only for these cases:

H1−2
int = U ′ ∑

σσ ′
n1σ n2σ ′ , (5)

H1−2
exch = J

∑
σσ ′

d
†
1σ d1σ ′d

†
2σ ′d2σ . (6)

To discuss correlation effects, we use the finite-U slave boson
mean-field theory (SBMFT) approach developed by Kotliar
and Ruckenstein (K-R) [99]. This approximation concentrates
on many-body resonances taking into account spin and orbital
fluctuations and strictly applies close to the unitary Kondo
limit, but due to its simplicity, this method is also often
used in discussion of the linear conductance in a relatively
wide dot-level range giving results in a reasonable agreement
with experiments and with numerical renormalization group
calculations [100]. At T = 0, K-R approach reproduces the
results derived by the well known analytical technique of
Gutzwiller-correlated wave function [101]. In the finite-U

slave boson approach, a set of auxiliary bosons ei , piσ , and di

are introduced for each of the single-level dots. These operators
act as projection operators onto empty, singly occupied (with
spin up or down) and doubly occupied states of quantum
dots respectively. For two-level dots, bosons are specified
additionally by the orbital indices and further new boson
operators representing triple occupied states tilσ and fully
(quadruple) occupied states (fi) are introduced. The single
occupation projectors pilσ are labeled by indices specifying the
corresponding single-electron states, tilσ operators by indices
of the state occupied by a hole, and the six di operators of the
ith dot denote projectors onto (↑↓,0) and (0,↑↓) (dil=1,2) and
(↑,↑), (↓,↓), (↑,↓), (↓,↑) (diσσ ′).

In order to eliminate unphysical states, the completeness
relation for these operators and the correspondence between
fermions and bosons have to be imposed, for brevity, both these
conditions included in (7), are written here only for the more
complicated case of two-level dots (the analogous formalism
for single dot with the use of only e, p, d operators can be
found, e.g., in Ref. [100]). The constraints can be enforced by
introducing Lagrange multipliers λi , λilσ and the effective SB
Hamiltonian for J = 0 then reads

HK−R =
∑

l=1,2σ

Eilσ n
f

ilσ + U
∑
il

d
†
ildil

+U ′ ∑
iσσ ′

d
†
iσσ ′diσσ ′ + (U + 2U ′)t+ilσ tilσ

+ (2U + 4U ′)f +
i fi +

∑
ilσ

λilσ

(
n

f

ilσ − Qilσ

)

+
∑

i

λi(Ii − 1) + V
∑

klσα=L,R

(c†kilασ zilσ filσ + H.c.)

+
∑
kilσα

εkilασ nkilασ +
∑
lσ

(tz†1lσ d
†
1lσ z2lσ f2lσ + H.c.)

+V ′ ∑
lασ

(c†k1lασ z2lσ f2lσ + c
†
k2lασ z1lσ f1lσ + H.c.)

(7)

with Qilσ = p+
ilσ pilσ + d+

il dil + d+
iσσ diσσ + d+

iσσ diσσ +
t+ilσ tilσ + t+

ilσ
tilσ + t+

ilσ
tilσ + f +

i fi , Ii = ∑
lσσ ′(e+

i ei +
p+

ilσ pilσ + d+
il dil + d+

iσσ ′diσσ ′ + t+ilσ tilσ + f +
i fi) and zilσ =

(e+
i pilσ + p+

ilσ dil + p+
ilσ

(δl,1diσσ + δl,2diσσ ) + p+
ilσ

diσσ +
d+

il
tilσ + d+

iσσ tilσ + (δl,2d
+
iσσ + δl,1d

+
iσσ )tilσ + t+ilσ fi)/√

Qilσ (1 − Qilσ ). zilσ renormalize interdot hoppings
and dot-lead hybridization (7). For polarized electrodes,
the bare coupling strengths between the QD and the
leads given by �ilσα = 2π |V |2 ∑

k δ(E − εkilασ ) are
spin dependent due the spin dependence of the density
of states. One can express coupling strengths for the
spin-majority (spin-minority) electron bands introducing
a polarization parameter P as �ilσα = �ilα(1 + σP ) with
� = �il = ∑

α �ilα . The stable SBMFA are then found
from the minimum of the free energy with respect to the
mean values of boson operators and Lagrange multipliers.
The spin-dependent linear conductances read Giσ =
e
h2 Tiσ = �̃LσGR

iσ iσ �̃RσGA
iσ iσ + �̃LσGR

iσ iσ
�̃RσGA

iσ iσ
, where

T denotes transmission matrix, �̃ασ are SB renormalized
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coupling strengths to electrodes and G
R(A)
iσ iσ are retarded

(advanced) Green’s function of the dot. The polarization of
conductance is given by PCi = (Gi↑ − Gi↓)/(Gi↑ + Gi↓). The
numerical results discussed below are presented with the
use of energy unit defined by its relation to the bandwidth
(2D = 100).

III. DIFFERENT MANY-BODY REGIMES

A. Interdot coupling

The coupling between the dots formed in semiconductor
electron gas system can be changed freely by applying the
split gate voltage between them. For CNTQDs and graphene
dots, similar gate control is much more difficult, but also in
these systems the methods of tuning the interdot potential
barrier through the gates have been elaborated [102–104].
In the absence of interdot tunneling, the screening processes
occurring on the dots are independent. For single orbital SU(2)
dots, the observed plateau of conductance centered around
particle-hole (p-h) symmetry point Ed = −U/2 [Fig. 2(a)]
reflects a spin Kondo effect occurring for single occupancy.
For a deep dot level, the Kondo peak is pinned at the Fermi
level (EF ) and the scattering phase at EF is δSU (2) = π/2 and
zero-temperature linear conductance reaches the unitary limit
GSU (2) = 2e2/h. In the spin-orbital SU(4) case (two-orbital
dot), the Kondo effect occurs not only for single (1e) and triple
occupancies (3e, single hole) of each dot, but also for double
occupancy (2e) [Fig. 3(a)]. Spin and isospin fluctuations result
from electron tunneling in and out of the dot, what in 1e
(3e) cases corresponds to transitions between four degenerate
states characterized by different spin or isospin of electron
(hole). The spin-orbital many body peak is shifted above (1e)
or below (3e) the Fermi level, what together with broadening of
the peaks in comparison to SU(2) case, means enhanced Kondo
temperature [see insets of Figs. 2(b), 3(b) and 2(d), 3(d)]. The
phase shifts for the deep levels are δ

1e(3e)
SU (4) = π/4(3π/4) and

the total conductance at the dot reaches similarly to SU(2)
case the limit 2e2/h [Fig. 3(a)]. In 2e valley the SU(4)
cotunneling processes differ from the effects in 1e and 3e
valleys, because now six degenerate low-energy two-electron
states participate in formation of Kondo resonance [56].
Coherent tunneling among all these states corresponds to
spin, orbital pseudospin and spin-orbital fluctuations and these
processes lead to a formation of a broad resonance centered
at EF , the corresponding phase shift is δ2e

SU (4) = π/2 [56] and
the conductance is doubled in comparison to the standard odd
occupation Kondo resonances 4e2/h [Fig. 3(a)]. Figures 2
and 3 illustrate the evolution of many-body processes with
the increase of coupling between the dots. For coupled dots
(t �= 0), the cotunneling processes include apart from direct
tunneling to the adjacent electrodes also the interdot hopping
and indirectly also higher order tunneling form the leads
not directly attached to the given dot. The interdot hopping
increases a coherent superposition of the Kondo states of each
of the dots.

1. Tunnel-coupled SU(2) dots

Let us consider first single-level dots coupled in parallel
for half-filling case (Ntot = 2) i.e., single occupancy of each
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FIG. 2. SU(2) PDQD, U = 3, � = 0.05 (if not specified dif-
ferently the same parameters apply also to other pictures). (a)
Conductances for different interdot tunneling [the same assignment
of the lines is valid also for (b), (c), and (d)]. Inset shows selected
conductances of bonding channel compared with conductance of iso-
lated dot. (b) SB tunneling renormalization parameter ziσ presented
for several hopping parameters and selected densities of states for
Ed = −U/2 (upper inset) and interdot contributions to conductance
(lower inset). (c) Occupations of bonding and antibonding coherent
many-body states. (d) Characteristic temperatures of coherent many-
body bonding state.

of the dots. 2 × SU(2) Kondo resonance splits [upper inset
of Fig. 2(b)] reflecting a formation of coherent bonding and
antibonding many-body states. In consequence, conductance
drops at half-filling and for strong enough coupling suppres-
sion of the Kondo state is observed. The strong renormalization
of the coupling between the dots occurring for small values
of t weakens for stronger coupling and this is represented in
SB MFA formalism by the gradual increase of |z| [Fig. 2(b)].
In one- and three-electron regimes of PDQD in the strong
interdot coupling regime, the new many-body molecular like
resonances emerge opening new transmission channels what
leads to the enhanced conductance in these ranges. For strong
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FIG. 3. SU(4) PDQD(a) Conductances for different interdot
tunneling [the same assignment of the lines is valid also for (c)
and (d)]. Inset shows selected conductances of bonding channel
compared with conductance of isolated dot. (b) SB tunneling
renormalization parameter zilσ for several hopping parameters and
in the inset densities of states for t = 0 and 0.09 (Ed = −U/2). (c)
Occupations of bonding and antibonding coherent many-body states.
(d) Characteristic temperatures of coherent many-body bonding state.

interdot coupling, direct conductance of the dot (Gii) becomes
equal to interdot conductance (Gij ) [lower inset of Fig. 2(b)].
The character of resonances can be easily understood looking
at the corresponding occupations of coherent bonding and
antibonding states presented in Fig. 2(c). Depending on the
strength of hybridization with the leads, these resonance can
be interpreted as Kondo bonding (Ntot ≈ 1) or antibonding
(Ntot ≈ 3) for weak hybridization or corresponding mixed
valence (MV) resonances for stronger hybridization (case
presented in Fig. 2). The characteristic many-body bonding
(antibonding) temperatures TB (TA) are defined by the position
of the corresponding quasiparticle resonances (̃εν , ν = A,B)
and their widths (�̃ν) as Tν = (̃ε2

ν + �̃2
ν)1/2 [12]. For strongly

correlated Kondo ground state, which in SB formalism

manifests in small values of |z| parameters, these temperatures
can be identified as Kondo temperatures. Figure 2(d) shows
characteristic temperatures of bonding many-body resonances,
the antibonding temperature curve can be obtained by a
mirror reflection with respect to Ed = −U/2. The described
evolution with the increase of t can be summarized as transition
from 2 × SU(2) many-body state (separate resonances at the
dots) occurring at half-filling to SU(2) double dot coherent
many-body states (bonding) for N ≈ 1 or (antibonding) for
N ≈ 3.

2. Tunnel-coupled SU(4) dots

Figure 3 shows conductance of two level dots coupled
in parallel. The presented evolution with the increase of
tunneling is much richer than in the case of SU(2) dots,
because larger number of many-body resonances are present
already for disconnected dots. Increase of interdot hopping,
which is assumed to bind only the states of the same
symmetry, results in splitting of the corresponding resonance
into two independent degenerate bonding and degenerate
antibonding coherent states. The 2 × SU(4) Kondo resonance
is split and gradually suppressed with the increase of t and
the conductance drops around half-filling (Ed = −U − U/2)
[Fig. 3(a)]. The conductance plateaus for Ntot = 2 (single
occupation on the dot) and Ntot = 6 (triple occupation) first
asymmetrically deform for weak hopping and then, for larger
interdot coupling, the two broad conductance peaks emerge.
The enhancement above the plateau values at intermediate
coupling reflects the interplay of bonding and antibonding
states from two successive resonances, both these coherent
molecular states contribute to conductance in these regions.
The conductance peaks in the strong coupling limit and single
minima in the curves of characteristic temperatures represent
pure bonding or antibonding many body resonances respec-
tively. The 2 × SU(4) symmetry characterizing the decoupled
dots with resonance at half-filling breaks and 2 × SU(2)
symmetry results (orbital degeneracy is preserved) for strongly
coupled dots with single occupations of each of two bonding
or antibonding states. For the sake of completeness, we also
present in Fig. 4 examples of conductance of SU(4) dots
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FIG. 4. Conductance of SU(4) PDQD system with interorbital
tunneling s: t = 0.02 and 0.5 (inset).
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FIG. 5. Temperature dependencies of conductances of tunnel
coupled dots (a) SU(2) (Ed = −U/2) for t = 0 (broken black line),
0.04 (solid grey), 0.05 (broken blue), and 0.08 (dotted red). Inset
presents conductances of decoupled dots (t = 0) vs dot energy for
several temperatures: T = 0 (solid black line), 0.0002 (solid grey),
0.005 (broken blue), and 0.05 (broken red). (b) Conductance of
SU(4) PDQD for Ed = −U/2 − U (half-filling) plotted for t = 0
(broken black line), 0.02 (solid grey), 0.04 (broken blue), and
t = 0.07 (dotted red). Inset presents conductances of decoupled dots
vs dot energy for several temperatures: T = 0 (solid black line),
0.002 (solid grey), 0.008, (broken blue) and 0.02 (broken red).
(c) Conductance of SU(4) PDQD for Ed = −U/2 − 2U plotted for
the same choice of tunneling parameters as in (b). Inset shows the
corresponding temperature dependencies of many-body antibonding
state contributions to conductance.

when additionally interorbital hopping is present between the
dots. The interorbital part of the tunneling Hamiltonian is
expressed by

∑
lσ (sd+

1lσ d2lσ + H.c.), where s is the strength
of the coupling between orbitals of different symmetries.
Whereas for weak intraorbital tunneling, the evolution of
conductance with the increase of interorbital tunneling is
similar to the evolution with t (Fig. 4), for large intraorbital
coupling (t = 0.5) increase of conductance is observed at
half-filling with plateau of conductance for s = t (inset of
Fig. 4). The latter observation is a consequence of restoration
of degeneracy of states.

Figure 5 presents temperature dependencies of conductance
for tunnel coupled SU(2) and SU(4) dots. As a reference,
we show in the insets the corresponding gate voltage char-
acteristics for isolated dots for several temperatures. At
half-filling, transmissions (not presented) are symmetrically
located around EF and therefore due to thermal smearing
deepening of conductances are observed around corresponding
e-h symmetry points [Ed = −U/2 for SU(2) or Ed = −U −
U/2 for SU(4)]. For odd occupancies of single SU(4) dot
(N ≈ 1, N ≈ 3) transmissions are shifted from the Fermi level
and consequently weaker temperature dependencies are seen
[Fig. 5(b)]. For coupled dots, the temperature dependencies
of conductance at half-filling of tunnel perturbed 2 × SU(2)
and 2 × SU(4) are not monotonous [Figs. 5(a) and 5(b)].
Transmissions split with the increase of t and for temperatures
exceeding this splitting clear maxima are observed. For odd
occupations of the single dots of tunnel perturbed 2 × SU(4)
system (Ntot ≈ 2 or Ntot ≈ 6) [Fig. 5(c)], no similar maxima
are observed in temperature dependencies of total conduc-
tances. This is a consequence of a shift of transmission peaks
from E = 0 already present for t = 0. Maxima are still visible
however in the corresponding partial conductances of Kondo
bonding (Ntot ≈ 2) or antibonding (Ntot ≈ 6) states [inset of
Fig. 5(c)].

B. Interdot interaction

Parallel dots can be fabricated to have both electrostatic
and interdot couplings. Here we focus on t = 0 case, but for
comparison we also plot conductance for finite tunneling. We
do not discuss here quantum phase transitions occurring in
the system of capacitively coupled quantum dots. This topic
has been extensively analyzed in a series of papers (see,
e.g., Refs. [75–77]). We restrict here to the case U ′/U � 1
and concentrate on a comparison of repulsive and attractive
interaction. The attractive interaction can be understood as
the effect of coupling with phonons or other boson excita-
tions which allows to overcome Coulomb repulsion [105].
The considerations for negative U ′ are addressed mainly to
molecular systems. In order not to prolong the discussion,
we restrict in this section to the case of SU(2) symmetry,
the effects in SU(4) case are similar. Figure 6(a) presents
the evolution of conductance with the change of the dot-dot
interaction and Fig. 6(b) the corresponding gate dependencies
of occupations. U ′ > 0 corresponds to the effective deepening
of the dot energy and U ′ < 0 shifts Ed closer to EF . In
consequence, in the former case, the unitary Kondo range
narrows and shifts to lower gate voltages and mixed valence
range extends. Special attention requires the case of U ′ = U ,
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FIG. 6. (a) Conductance of SU(2) dots coupled by interdot
interaction U ′, U = 3, and t = 0. (b) Corresponding dot occupations
for the same choice of interdot interaction parameters as in (a). (Inset)
Conductance for U ′ = −0.4 and t = 0 (dashed black) and t = 0.05
(solid gray).

where system reaches higher symmetry, SU(4), charge and
spin degrees of freedom become entangled and both spin and
charge pseudospin fluctuations are active in the formation of
Kondo resonance. This case has been already discussed in this
paper [compare Fig. 3(a) for t = 0]. For attractive interaction
(U ′ < 0) the Kondo ranges extend and move towards shallower
levels and transitions from MV to Kondo states sharpen. The
asymmetric shape of gate voltage dependence of conductance
is also seen for coupled dots, where the central Kondo plateau is
suppressed, but two conductance peaks at MV borders have in
opposite to cases presented in Fig. 2(a), different widths [inset
of Fig. 6(b)]. In the rest of the paper the case of vanishing
interdot interaction is considered (U ′ = 0).

IV. SEPARATE ELECTRODES VERSUS
COMMON ELECTRODES

Predominant part of the discussion carried out in this article
applies to the case of separated electrodes (�i,jα = �i,αδi,j =
�α , i,j = 1,2, α = L,R) and we assume �L = �R = �. In this
section, we discuss for comparison how transport of strongly
correlated PDQD is modified by the change of interference
conditions caused by mixing of the electrode channels. We
consider the case when matrix of hybridization is nondiagonal
in dot indices.

The off-diagonal elements are usually taken in the form
�12 = √

�1�2 = � [21]. The case of common electrodes
corresponds to equal diagonal and off-diagonal couplings,
we discuss also the case of reduced off-diagonal coupling
�12 = q�, q � 1 [106]. Figure 7(a) presents conductance of
two SU(2) dots for vanishing direct tunneling (t = 0) plotted
for different mixing parameters q. Completely symmetrical
parallel configuration, i.e., the case of common reservoirs is
described by q = 1 and the case of separate electrodes by
q = 0. In the latter situation, the Kondo processes take place
for each of the dots independently and the total conductance
of PDQD doubles the conductance of the single dot. For
q �= 0, in addition to the direct cotunneling processes also the
indirect interdot tunneling via the states of electrodes comes
into play. Inset of Fig. 7(a) shows transmissions for heavily
mixed states of electrodes (q = 0.999). The lines are the sums
of two peaks, the broad coherent bonding Kondo resonance
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FIG. 7. Conductances of SU(2) PDQD system with hybridiza-
tions of each of the dots to both pairs of electrodes (a) (t = 0)—
plots for different strengths of the off-diagonal hybridization: q = 0
(grey solid line), 0.99 (broken black), 0.999 (broken blue), 0.9999
(dotted red), and 1 (solid black). Inset shows transmission for t = 0,
q = 0.999, and Ed = −U/2,0. (b) Conductance of tunnel coupled
dots (t = 0.05) for q = 0 (broken black), 0.5 (grey solid line), 0.99
(broken blue), 0.994 (dotted red), and 1 (solid black). Insets show
DOS and transmissions for completely symmetric case of common
electrodes (q = 1), t = 0.05 for Ed = −U/2 (left inset) and Ed = 0
(right).

characterized by Lorentzian shape and narrow antibonding
Kondo resonance. For Ed = −U/2, both are located at E = 0
and the unitary limit of conductance 2 × 2(e2/h) is preserved.
For other gate voltages, the peaks are shifted from E = 0, and
in consequence, depression of conductance is observed. The
spectral structure results from the constructive and destruc-
tive interference processes for electrons transmitted through
bonding and antibonding channels. In the limit of q = 1, the
antibonding resonance does not contribute to transmission,
but is still visible in density of states as Dirac δ peak [inset of
Fig. 7(b)]. This resonance is totally decoupled from the leads,
and this results in the double suppression of conductance, the
change from double to single-channel transport occurs. Since
the antibonding state cannot directly interact with conduction
electrons it is often called the dark state [107]. For capacitively
coupled dots, this phenomenon has been discussed in Ref. [92].
Figure 7(b) presents conductance for tunnel coupled dots. The
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FIG. 8. (a) Conductance of SU(4) PDQD with common elec-
trodes (q = 1) for three values of interdot tunneling: t = 0 (broken
black line), 0.002 (solid grey), and 0.05 (dotted blue). (b) Con-
ductance of SU(2) PDQD with different dot site energies �E =
E1 − E2 = 0.2 plotted vs average energy of the dots for t = 0 (black
dotted line) and t = 0.05 (dotted blue). Inset shows interdot correlator
N12 = 〈d+

1σ d2σ 〉.

gate dependencies of conductance curves become asymmetric
with respect to Ed = −U/2. Upon increasing direct tunneling
between the dots, the many body peaks move away from each
other. The bonding many-body resonance locates at Ẽd + t̃

and antibonding peak at Ẽd − t̃ , where Ẽd and t̃ denote
renormalized (SB) site energy and hopping [inset of Fig. 7(b)].
Around Ed ≈ −U/2, the conductance is suppressed and the
observed plateau structure corresponds to the contribution of
bonding Kondo resonance. For q = 1, only bonding resonance
contributes to transmission and consequently the conductance
is double suppressed in this case. For q < 1, the antibonding
resonance is not totally decoupled from the reservoirs. The
corresponding conductance exhibits the two-peak structure.
The higher peak reflects crossing the Fermi level by bonding
resonance and lower by antibonding. Figure 8(a) presents the
linear conductance for the 2 × SU(4) system with interdot
tunneling and common electrodes attached (q = 1). One can
roughly visualize the gate dependence of conductance as a
superposition of three asymmetric patterns (plateau and a peak
at higher energies) for each regions of occupations. Again
responsible for these shapes of conductance are interference
induced radical difference of many body bonding and anti-
bonding states and effective decoupling of the antibonding
states.

V. ELECTRODES WITH SINGULAR
ELECTRON SPECTRUM

Commonly used approximation in the description of
electronic states of electrodes, adopted also by us so far,
is the wide-band approximation, in which details of the
electrode band structure are ignored and the electronic energy
distribution is assumed to be uniform. However, in real
low-dimensional systems, the density of states may exhibit one
or more kinks, commonly referred as van Hove singularities
(VHs) [108]. When gate voltage shifts the Fermi level into one
of these singularities Kondo physics changes dramatically and
interference conditions are strongly modified. As an illustrative
example of electrodes with singular DOS we discuss carbon
nanotubes (CNTs). They exhibit excellent ballistic transport

1.2 0 1.2
0.15

0

0.15

E

Im R
e

VH 1

FIG. 9. Hybridization of the dot coupled to armchair carbon
nanotube C = (15,15). Designation V H−1 means first van Hove
singularity for E < 0. Inset is schematic view of tunnel coupled dots
or impurities placed in the top positions above carbon atoms from the
same graphene sublattice.

capabilities with mean free paths of order of microns [38,109].
The numerical results are presented for armchair metallic CNT
with chiral vector C = (15,15) (C is written in the basis
of unit vectors of graphene [50]). Graphene lattice consists
of two interpenetrating A and B triangular sublattices. We
focus on the case when both impurities are in top positions
above the sites from the same sublattice, say A (inset of
Fig. 9). The corresponding diagonal parts of hybridization
function �(E) = ∑

kNασ
|V |2

E−εkNασ
are presented in Fig. 9. The

off-diagonal parts, which are not presented here, are much
smaller. Figure 10(a) shows the conductance and characteristic
many-body temperature TK as a function of the position of the
Fermi level. According to the definition given in Sec. III A,
TK is specified by widths and position of the quasiparticle
resonance. Due to the symmetries of dot-CNT hybridiza-
tion functions (Im[�(E)] = Im[�(−E)] and Re[�(E)] =
−Re[�(−E)]) conductance and gate dependencies of Kondo
temperature are also symmetric G(Ed,EF ) = G(−Ed,−EF )
[inset of Fig. 10(a)], TK (Ed,EF ) = TK (−Ed,−EF ). The peaks
of imaginary parts of hybridization mean a strong enhancement
of effective coupling and consequently an increase of the
characteristic temperatures of many-body resonances. The
resonances in the vicinity of VHs take a mixed valence
character. When the Fermi level enters VHs, the dips of
conductance are observed. The asymmetric shape of �

around singularities dictates significantly different behavior
of conductances and TK on opposite sides of VHs. The gate
dependencies of linear conductance for different positions of
the Fermi level are presented in Figs. 10(b) and 10(c). The case
around EF = 0 [Fig. 10(b)] reproduces the earlier discussed
symmetric dependence for electrodes with a constant density
of states with a unitary limit around the electron-hole sym-
metry point Ed = −U/2 (real part of hybridization vanishes).
For EF �= 0, this symmetry is broken due to the asymmetry
of Re[�]. For EF < 0 lying above the first VH singularity,
but not too close to the divergence region of DOS, the
suppressed plateau in the center, a peak for deep dot levels
and reduced conductance at the right edge are observed
[Figs. 10(b) and 10(c)]. This behavior results from the shift

075416-8



SPIN-ORBITAL AND SPIN KONDO EFFECTS IN . . . PHYSICAL REVIEW B 93, 075416 (2016)

0.8 0.6 0.4 0.2 0
0.02

0.4

2

4

0.01

0.05

0.1

0.5

EF

K

1.2 0 1.2
0.02

0.4
4

EF

5 4 3 2 1 0 1
0

1.

2

3.

4

Ed

5 4 3 2 1 0 1
0

1.

2

3.

4

Ed

(a)

(b)

(c)

FIG. 10. (a) Conductance (dotted grey line) and characteristic
temperature of many-body resonance (solid magenta line) of SU(2)
dot coupled to a pair of CNTs C(15,15) presented as a function
of position of the Fermi level. Hybridization amplitude V = 0.5
and Ed = −1. Inset show conductance in the extended range
encompassing several VH singularities. (b) Gate dependence of
conductance in the range of constant density of states of CNT:
EF = 0 (red solid line), −0.003 (broken blue), and 0.003 (broken
grey) compared with the conductance of tunnel coupled SU(2) dots
(PDQD) with t = 0.002 for EF = 0.003 (grey solid line). (c) Gate
dependence of conductance close to the first van Hove singularity
(V H−1 = −0.519). Curves plotted for EF = −0.6 (short dashed
line), −0.55 (solid line), −0.54 (long dashed line), −0.53 (red dotted
line), −0.525 (double dashed line), and −0.52 (green dotted line).

of transmission peaks towards higher energies for lower Fermi
levels (Fig. 11). An analogous shift towards positive energies
reflects in mirror reflection of gate dependence of conductance
[inset of Fig. 10(a)]. For small values of EF , i.e., in the region
of weak hybridization, the Kondo effect is easily suppressed
even by small interdot tunneling and the conductance plateau
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FIG. 11. Transmissions (a) and corresponding densities of states
(b) for Ed = −3.52 and EF located close to singularity V H−1: EF =
−0.54 (black solid line) and EF = −0.52 (blue dashed line). (c)
and (d) Transmissions and DOS for the same values of EF but for
Ed = −2.3. The insets are the corresponding zoom views in the
narrowed energy ranges.

around a single occupancy of the dot disappears [grey line
in Fig. 10(b)]. In the vicinity of singularities, the densities
of the states of the dots are very sensitive to the position of
the Fermi level [Fig. 10(c)]. Interesting transmission, which is
determined by both imaginary and real parts of hybridization,
does not directly reflect the shape of DOS (Fig. 11). Depending
on the side EF enters the singularity, whether Im[�] is high
or low, conductance maintains the shape with sharp peak or
evolve into broad peak [Fig. 10(c)]. In close proximity to
singularities, however, the presented results should be treated
with caution, only as a visualization of tendencies due to a
break of applicability of SBMFA. In this range the system is
pushed into the non-Fermi liquid regime due to divergence
of self energy, and in principle for a detailed discussion
summation of higher order corrections to mean field approach
is indispensible [110].

VI. PARALLEL DOTS FOR SPINTRONICS

In this section, we present a few examples illustrating how
the unique properties of PDQDs in the strong correlation
range modified by the presence of magnetic electrodes may
be exploited in spintronic devices.

A. Transfer of polarization between the dots by tunneling

Here, we show how the spin polarization of conductance
is transferred between the dots. The considered system is
presented in the inset of Fig. 12(a), where the upper dot (QD1)
is coupled to polarized electrodes and the lower (QD2) to
nonmagnetic. The sign of the induced spin polarization of
conductance of QD2 can be manipulated by gate voltage.
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FIG. 12. SU(2) PDQD with upper dot attached to magnetic
electrodes and lower to nonmagnetic [inset of (a)]. Polarization of
conductance of the upper dot PC1 (solid lines) and polarization
of the lower dot PC2 (broken lines) for strong tunneling (t = 0.3)
presented for P = 0.1 (black) and P = 0.6 (grey). For comparison,
analogous polarization curves are also shown in the weak tunneling
range (t = 0.04) for P = 0.6 (blue lines). (b) and (c) Corresponding
examples of spin dependent transmissions (solid/dotted black and
gray lines for QD1/QD2) for P = 0.6, Ed = −U/2 and Ed = U
(insets) for t = 0.3 (b) and t = 0.04 (c).

In the single occupancy region of the dots (Ed around
−U/2) the induced spin polarization takes the same sign
as polarization of magnetic dot (QD1), this occurs both
in the weak coupling limit, where a Kondo resonance is
present and for strong coupling, where Kondo correlations are

suppressed. For dots almost filled or almost empty N2 ≈ 2,0,
the opposite polarization of conductance is observed. This
can be understood looking at the corresponding spin-resolved
transmissions [Figs. 12(b) and 12(c) for strong tunneling and
the corresponding insets for weak tunneling]. For Ed = −U/2,
where for t = 0 the many-body peaks are centered at E = 0
(not presented), sufficiently strong interdot coupling (t = 0.3)
splits the peaks and in accordance with the polarization of
the electrodes the majority peaks are higher. At QD2, the
peaks, which for t = 0 are identical for both spin orientations,
evolve with increasing t into spin dependent and the heights
are reversed in comparison to QD1. This is a consequence
of indirect contribution to the DOS of QD2 originating from
QD1, which is significant in the range of the poles of the
Green’s functions of the first dot GR

1σ1σ . This perturbation
introduces spin polarization opposite to QD1. Note that for
Ed = −U/2 [Figs. 12(b) and 12(c)] the heights and widths
of the transmission peaks become spin dependent, but the
interdot splitting does not depend on spin. For Ed �= −U/2, the
splitting becomes spin dependent. An interesting property is
that in e-h symmetry point (Ed = −U/2, EF = 0), the induced
polarization at QD2 is identical to the polarization at QD1
independent of the strength of coupling and polarization. By
changing the gate voltage, the spin preference of QD2 might
change, the center of mass of many-body peaks move away
from E = 0. For Ed = −U [insets of Figs. 12(b) and 12(c)],
the shift of transmission spectrum towards lower energies
is observed and opposite polarization of conductance results
[Fig. 12(a)].

B. PDQD spin valve

As the next problem let us discuss tunnel magnetore-
sistance. To examine this effect, the case with polarized
electrodes attached to both of the dots is considered. This
configuration allows the control of current based on the
dependence of the conductance on the relative orientation of
the magnetic moments of the leads. We discuss the case where
instead of commonly used left and right spin asymmetry,
the relative orientation of the upper and lower electrodes is
changed [inset of Fig. 13(b)]. Tunnel magnetoresistance is then
defined as the difference in resistance between the antiparallel
and the parallel arrangement of polarizations of upper and
lower electrodes [TMR = (G↑↑ − G↑↓)/G↑↓, whereG↑↑(↑↓) are
the total conductances for the corresponding magnetization
configurations]. As was discussed for the case of unpolarized
electrodes, in Sec. III A, by changing the gate voltage, one can
move the system from half-filling with the Kondo state (weak
interdot coupling) or suppressed Kondo state (strong interdot
coupling) to an MV state for almost empty or filled dots.
For PDQD with polarized electrodes positive, but suppressed,
TMR is observed around the e-h symmetry point for weak
coupling and enhanced for strong coupling. In the latter case,
it reaches the Jullière nonresonant limit 2P 2/(1 − P 2) [111].
As it is illustrated in the conductance dependencies for the
parallel and antiparallel orientations of electrodes [Fig. 13(c)],
this is a consequence of the stronger suppression of Kondo
correlations with the increase of interdot coupling for AP
configuration than for P orientation. Outside single-electron
occupations of the dots, TMR changes sign (inverse TMR)
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FIG. 13. (a) Tunnel magnetoresistance of SU(2) PDQD for P =
0.6 and t = 0.04 (black dashed line), 0.08 (solid grey line), 0.14
(short dashed blue line), 0.3 (dotted red line) and (b) TMR of SU(4)
PDQD for P = 0.6 and t = 0.02 (black dashed line), 0.07 (solid
grey line), 0.3 (short dashed blue line); the inset shows a schematic
view of the spin valve. (c) Corresponding conductances for the
same set of parameters t as in (a) for the parallel configuration of
polarization of electrodes (main picture) and for antiparallel (inset).
(d) Conductances for parallel and antiparallel configurations for the
same values of t as in (b).

and achieves large values for strong interdot coupling. This
in turn reflects the double-peak structure of conductance
for strong coupling in this occupation range for parallel
configuration and the single high peaks structure for the AP
orientation. Figures 13(b) and 13(d) present analogous gate
voltage dependencies of TMR and conductances for coupled
SU(4) dots. For weak coupling, inverse TMR is observed
around the e-h symmetry point, where an AP narrow Kondo
transmission peak dominates at EF over the broader Kondo
peak for the P configuration. For stronger coupling, the peaks
split and the Kondo correlations are suppressed, with a stronger
suppression for the P case than for AP, which results first in
the change of sign of TMR and then in a gradual increase
of TMR with the increase of tunneling. In the range of odd
occupations of the dots (molecular-like Kondo effects), in
addition to a tunnel-induced splitting of the Kondo peaks, also
exchange splitting comes to the fore for the P configuration,
and in consequence the AP transmission peaks dominate and
the inverse TMR results.

C. PDQD spin filter

The last example of a spintronic application of the parallel
QD system discussed in this paper is a spin filter based
on the spin-dependent Kondo-Dicke effect [112–114]. The
schematic view of the considered device is presented in the
inset of Fig. 14(a): parallel coupled quantum dots attached to
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FIG. 14. PDQD with polarized common electrodes as a spin filter
(a) Spin-resolved conductances for P = 0.1 and t = 0.05, G↑ (dotted
red line) G↓ (solid blue). Inset shows a schematic view of the device.
(b) The polarization of conductance of PDQD as a function of gate
voltage for P = 0.1 (black solid line) and P = 0.4 (blue dotted).

a common pair of polarized electrodes and directly coupled by
tunneling. An analogous system with nonmagnetic electrodes
has been analyzed in Ref. [21], where different dot levels
at the dots have been assumed �E = E1 − E2. To allow
the reader a comparison with the magnetic case discussed
here, we also show in Fig. 8(b) the corresponding plots of
conductance for the dots with nonmagnetic electrodes, similar
to these presented in Ref. [21]. Conductances of PDQD
system with common reservoirs depicted as a function on
average dots energy exhibit dips. Destructive interference
leads to a complete suppression of conductance for some gate
voltages. For t = 0, the deep occurs at e-h symmetry point
E = (E1 + E2)/2 = −U/2 and for finite direct tunneling
the conductance curve takes typical for the Fano resonance
asymmetric form. The occurrence of the dip of conductance
corresponds to passing of the correlator 〈d+

1σ d2σ 〉 through zero
[inset of Fig. 8(b)]. If one replaces the nonmagnetic electrodes
by ferromagnetic the analogous formation of interference
induced antiresonances characterized by strictly zero trans-
mission is possible for each of the spin channels separately
(Fig. 14). Spin-up and spin-down electrons individually reach
destructive interference for different gate voltages resulting
in suppression of conductance in one of the spin channels,
i.e., 100% spin polarization is achieved. Interestingly, this is
achieved no matter how small polarization of electrodes is.
Example presented in Fig. 14(a) purposely illustrates the case
for P = 0.1. One can reverse the sign of polarization slightly
varying the gate voltage [bipolar spin filter, see Fig. 14(b)]. The
gate voltage required to switch the polarization of conductance
depends on polarization of electrodes, dot level energies, and
interdot coupling.

Let us close this section by a formal remark on the use
of SB approach for a description of spin-dependent effects. In
Kotliar-Ruckenstein finite-U formalism for polarized systems,
the introduced auxiliary bosons are spin dependent. Due to
spin-dependent hybridizations, not only the resulting effective
widths of many-body peaks, but also the peak positions
differ in different spin channels. The level renormalization in
SBMFA is spin dependent. The physical mechanisms causing
spin splitting in K-R spin dependent formalism can not be
identified with the effects of spin dependent charge fluctuations
commonly invoked in more elaborate treatments of exchange
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effects, e.g., in Haldane scaling approach [95,115]. Interest-
ingly, the same sign of exchange field and the same gate voltage
at which this field vanishes are predicted in both approaches
and thus both pictures agree qualitatively. For a quantitative
analysis of spin effects in the SB approach, it is necessary to
go beyond the mean-field treatment taking into account charge
fluctuations. Such an extended analysis, needed especially in
MV regions, will be presented elsewhere [116].

VII. KONDO EFFECT VERSUS ANTIFERROMAGNETIC
COUPLING AND A SWAP PROCESS BETWEEN THE

BONDING AND ANTIBONDING RESONANCES

In the foregoing discussion, we have omitted the interdot
exchange interactions, but as pointed out, e.g., by Aono
and Eto [8], even small antiferromagnetic exchange can
significantly change behavior of conductance and compete
with Kondo effect. In the tunnel coupled systems, the
dominant contribution to the exchange is superexchange,
which in the limit of strong Coulomb interaction takes the
value of 4t2/U . However, there are other possible linking
paths, depending on the system, which can introduce another
exchange mechanisms. For metallic link, for instance, RKKY
exchange is of importance, in which case the exchange could
in principle be either ferromagnetic or antiferromagnetic. We
restrict to antiferromagnetic coupling, but for the sake of
generality we treat in the following the exchange coupling
J as effective independent parameter. It is known, that two
opposing quantum many-body effects: Kondo screening and
magnetic ordering lead for an array of dots or impurities with
p-h symmetry (t = 0) to a quantum critical transition [79] or
to a crossover in the case when this symmetry is broken [9].
The antiferromagnetic interaction we discuss is taken here in
the form (6) and we treat it in the mean-field approximations
introducing a valence bond (VB) operator [8,9] with the
corresponding expectation value χ = −(J /2)

∑
σ 〈f +

2σ f1σ 〉.
This approximation together with SBMFA approach renders
the whole PDQD Hamilton into a quadratic form in fermion
operators and the MFA procedure is performed with an
additional minimizing parameter χ . Let us first concentrate
on the limit U → ∞ and discuss the case t = 0. The gate
voltage evolution of conductance and VB order parameter
is presented in Fig. 15(a). Upon making Ed more negative,
i.e., decreasing Kondo temperature and thus increasing the
ratio J /TK at fixed J , the transmission peaks split and
narrow [Fig. 15(b)]. For still deeper dot energies or smaller
hybridization to the leads peaks abruptly transform at the
critical value (J /TK )c ≈ 2.5 into Dirac δ functions split by 2J
indicating the formation of magnetic states (χ = ±J /2), for
stronger hybridization this transition smoothes and magnetic
states emerge before the Kondo state with unitary conductance
is reached. When polarized electrodes are attached to the dots
the spin degeneracy is removed, transmission in the inter-
mediate range (χ < J /2) exhibits the multi peak structure
(not presented), conductance becomes spin dependent and up
and down spin channels differently contribute to valence-bond
correlator. When χ reaches the limit J /2 conductance is
totally suppressed [Fig. 15(c)], for still deeper dot energies
VB order is destroyed and finite spin dependent conductance
is recovered. For t �= 0, bonding and antibonding entangled
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FIG. 15. PDQD with antiferromagnetic interdot exchange, U →
∞. (a) Conductance (blue long-dashed and dotted lines) and
expectation value of VB operator (black solid and dashed lines) for
J = 3 × 10−5, � = 0.09 (blue long dashed and black solid lines) and
J = 3 × 10−5, � = 0.09 (blue dotted and black dashed lines). (b)
Transmission for J = 0.07 plotted for several values of dot energy:
Ed = −1.3 (dashed black line), −1.36 (dotted blue), −1.4 (solid
blue), −1.45 (dashed magenta), and −1.48 (solid red). Inset shows
the gate voltage dependence of VB parameter. (c) Spin-resolved
conductances:G↑ (red broken line)G↓ (dotted blue) and VB parameter
(solid black) for the case of polarized electrodes (P = 0.1). Inset
presents VB parameter as a function of polarization of electrodes (red
point corresponds to P = 0.1). (d) Illustration of SWAP operations:
VB parameter χ as a function of interdot tunneling and in the
inset the corresponding plots of conductance. Curves are plotted for
Ed = −1.48 (dotted magenta), −1.46 (dashed black), −1.45 (solid
gray), −1.38 (dashed blue), and −1.35 (dotted green).

Kondo resonance are formed and the degeneracy is removed. In
the coexistence region of MV and magnetic states [unsaturated
value of χ , see inset of Fig. 15(b)] VB correlator can reverse
sign at a critical value of interdot tunneling, the relative
position of bonding and antibonding energies are switched,
or equivalently the triplet and singlet states interchange
[Fig. 15(d)]. The same effect can be achieved fixing t and
changing dot energies. A switch from negative to positive
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FIG. 16. Conductance of PDQD with interdot exchange for U =
3 and � = 0.09 and VB parameter in the insets (a) t = 0 and several
values of J . (b) Conductance for J = 0.09, t = 0.006 (broken blue
line), t = 0.07 (solid black) and for J = 0.25, t = 0.07 (dotted red).
Inset shows gate dependence of VB parameter for t = 0.07 and J =
0.09 (dashed blue line) and J = 0.25 (dotted red).

value of χ means that bonding resonance swaps position from
below to above the Fermi level. This effect manifests also in
the jumps of conductance [inset of Fig. 15(d)]. Figure 16(a)
presents the competition of Kondo correlations and magnetic
order for finite U . Magnetic correlations are observed in the
region where in the absence of interdot exchange (J = 0)
Kondo correlations are the strongest i.e. around Ed = −U/2
(N = 1). A complete singlet formation is hardly to achieve in
this case (χ < J /2) and the limiting value of χ = J /2 is only
reached for very large values of J or U . The swaps between
entangled bonding and antibonding Kondo resonances for
finite U are presented in Fig. 16(b), where we show the gate
voltage dependencies of VB parameter (inset) and conductance
for fixed interdot tunneling. The conductance peaks appear
precisely at the points when χ changes sign.

VIII. CONCLUDING REMARKS

In this paper, we compared transport properties of pairs
of strongly correlated quantum dots of SU(2) and SU(4)
symmetries in parallel geometry. The former case occurs for

spin or orbital degeneracy and the latter when both these
degeneracies occur simultaneously. Much less attention has
been paid in literature to SU(4) systems and they are of interest
not only for the cognitive purposes but also for applications
since the relevant temperature scale of many body effects can
be much higher than for spin Kondo effect. The existence
of spin-orbital Kondo effect of SU(4) symmetry with respect
to rotation in spin-pseudospin space crucially relies on the
coupling of each of the dots to separate channels labeled by
spin and pseudospin. The symmetry is preserved if spin and
pseudospin are conserved in tunneling. Magnetic field, orbital
mismatch, spin flips, orbital mixing, spin-orbital coupling,
as well as channel asymmetry reduce spin-orbital symmetry.
For sufficiently weak perturbations, however, (perturbations of
energy scale �E � kBTK ), as confirmed by renormalization
group calculations [29,62,66,67], the SU(4) Fermi liquid
description is still a good approximation and low symmetry
SU(2) fixed point governs the physics only at extremely
low energies. This explains why in many realistic systems,
where exact fulfillment of all symmetry requirements is
hardly expected, Kondo SU(4)-like behavior is observed at
experimentally accessible temperatures. For weakly coupled
dots Kondo effect with unitary limit of conductance occurs
in the range of single occupations of the dots for SU(2)
symmetry, for SU(4) this resonance is formed both for even
and odd dot occupancies. In the latter case, SU(4) Kondo peaks
are shifted away from the Fermi level and are characterized
by relatively high Kondo temperatures. For half-filling, six
states are engaged in cotunneling processes and the resulting
resonance locates similarly to single level dots close to EF and
the total conductance is doubly enhanced in this case. Different
types of couplings between the dots lower the symmetries and
modify correlations and interference conditions. We examined
the impact of interdot tunneling, interdot interaction, exchange
coupling, mixing of electrode channels and the effects of
polarization and singularities of the electronic structure of
electrodes. To study the correlations, we used the slave-boson
mean-field approximation at finite U . Different regimes were
analyzed in a wide range of parameter space. A crossover
from a separate Kondo state on each of the dots (atomic-like)
at half-fillings to coherent bonding-antibonding superposition
of many-body Kondo states of the dots (molecular-like) has
been observed with the increase of interdot tunneling. For
strong tunneling the bonding orbitals around half-filling are
almost fully occupied and antibonding empty, Kondo effect
is suppressed in this case, but the unitary conductance is
observed outside this range manifesting the single electron or
single hole molecular Kondo effects. Depending on whether
repulsive or attractive interaction occurs between the dots the
ranges of Kondo states extend or narrow and in the case
of attractive interaction transitions into mixed valence state
sharpen. For electrodes with divergent singularities, in the
density of states and, consequently, singular hybridizations
as occurs for instance for carbon nanotubes discussed by
us, dramatic changes of Kondo physics and interference
condition are observed when Fermi level enters van Hove
singularity. This reflects in the dips of conductance, in close
vicinity of VHs the many-body resonances take the mixed
valence character. For dots coupled by exchange, we have
discussed a competition between Kondo correlations and
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magnetic ordering showing that in the regions of unsaturated
magnetic order it is possible to swap between the bonding and
antibonding many-body resonances. The principal motivation
of the present work was to discuss how the interplay of
many-body correlation effects and interference might be ex-
ploited in spintronics and to highlight the potential of parallel
quantum dots in this field. The wide tunability of PDQDs
bodes well for future applications. For illustration, we have
presented two examples: DQD spin filter device and spin valve,

both gate controllable and we have shown how polarization
of conductance can be transferred between tunnel coupled
subsystems.
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