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Enhanced Casimir effect for doped graphene
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We analyze the Casimir interaction of doped graphene. To this end we derive a simple expression for the finite-
temperature polarization tensor with a chemical potential. It is found that doping leads to a strong enhancement of
the Casimir force, reaching almost 60% in quite realistic situations. This result should be important for planning
and interpreting Casimir measurements, especially taking into account that the Casimir interaction of undoped
graphene is rather weak.
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I. INTRODUCTION

Graphene, which is a two-dimensional sheet of carbon
atoms, possesses many unusual properties and attracts a lot
of attention. Particular excitement among the theoreticians
is caused by the fact that the spectrum of quasiparticles in
graphene is described by the quasirelativistic Dirac model
with an effective propagation speed of about 300 times less
than the speed of light. This continuous model turned out to
be very successful in describing a broad range of effects [1],
for instance, the optical properties of graphene such as the
absorption of light [2] and the (giant) Faraday effect [3], to
mention a few.

In recent years, the Casimir effect for pristine graphene was
studied for both zero [4–6] and finite [7,8] temperatures. For
temperatures that are not too high (compared with the inverse
distance between the interaction sheets), the effect between
a graphene monolayer and an ideal metal is defined by the
fine-structure constant α � 1/137 and is roughly 2.5% of the
one between two ideal metal plates. Such small forces are at
the limit of the sensitivity of modern experimental techniques.
For high temperatures (or separations) the effect is hugely
reinforced [8], but measurements under such conditions are
a separate, quite challenging task, which is not completely
solved yet even for metals (see, e.g., [9]). It is not surprising
therefore that just a single experiment has been performed until
now [10]. That experiment revealed [11] a good agreement
with the theory [12]. Possibilities opened by doping, were not,
however, explored there.

Although it has been approached in some papers [13–17],
until now the Casimir interaction of doped graphene has not
been the principal subject of a study. The methods used in
the above-cited papers applied various approximations, with
the most important one being restriction to the longitudinal
component of the conductivity in the description of graphene
layers, as in [13–15] and [17]. This is equivalent to considering
the isotropic approximation of the graphene conductivity
despite the presence of spatial dispersion [16]. Moreover,
the results in Refs. [13] and [14] and Ref. [15] are mutually
contradictory as pointed out in the Conclusions in Ref. [14].
Therefore, after experimental confirmation of the approach to

*Corresponding author: ifialk@gmail.com

the Casimir energy of undoped graphene based on the full
polarization tensor [10,11], we find it important to extend this
approach to doped graphene as well. Though we agree with
some of the qualitative predictions in the previous publications
(like the enhancement of the Casimir interaction with doping
[14,16]), we disagree on many important details, like the
precise form of curves and the behavior at high doping.

In this article we consider the Casimir effect at finite
temperature, chemical potential, and mass and find a sub-
stantial enhancement of the effect in graphene-metal systems
which potentially permits us to avoid the above-mentioned
experimental difficulties. Our findings show that for relatively
highly (but still feasibly) doped graphene monolayers the
effect gets stronger by approximately 60%. In the (formal)
limit of an infinite chemical potential the Casimir interaction
becomes one-half that for the ideal metal. Our calculation
is based on a complete representation of the polarization
tensor of the fermionic quasiparticles in graphene at finite
temperature, chemical potential, and mass gap. The obtained
result is surprisingly simple and can be easily analytically
continued to the whole complex frequency plane, including,
importantly, real optical frequencies. It is based on the QED
formalism applied to graphene-like systems in [18] and [19]
and generalizes the results in [4,8] and [20] and those in [21],
which also allows continuation to the whole plane of complex
frequencies, to the case of the simultaneous presence of a
finite chemical potential, finite temperature, and nonzero mass
gap. We also describe a very precise approximation scheme
that considerably simplifies the computation of the Casimir
interaction with graphene.

II. MODEL

The theoretical description of the electronic properties of
graphene is based on the continuous Dirac model with a 2 + 1-
dimensional action. In the notation of [22] it reads

SD =
∫

d3x ψ̄(γ̃ l(i∂l − eAl) − m)ψ, (1)

where l = 0,1,2 and x = (x0,x1,x2). The gamma matri-
ces γ̃ l are rescaled: γ̃ 0 ≡ γ 0, γ̃ 1,2 ≡ vF γ 1,2, γ 2

0 = −(γ 1)2 =
−(γ 2)2 = 1. We use natural units � = c = kB = 1, and the
Fermi velocity is vF � (300)−1. Therefore we assume that
the graphene monolayer is placed at the (x1,x2) plane. The
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electromagnetic potential Aμ is normalized in such a way that
e2 ≡ 4πα = 4π

137 .
Reflecting the spin and valley degeneracy in graphene,

the gamma matrices, γ l , are 8×8, being the direct sum of
four 2×2 representations (with two copies of each of the two
inequivalent ones). The value of the mass-gap parameter m and
mechanisms of its generation are under discussion [18,19].

As shown in many previous works (see references in
[22]), the electronic properties of graphene in the formalism
of quantum-field theory can be described by the one-loop
polarization operator [33]. In Minkowski momentum space
it is given by

�mn(p) = ie2
∫

d3q

(2π )3
tr(Ŝ(q)γ̃ mŜ(q − p)γ̃ n), (2)

where p = (p0,p1,p2), q = (q0,q1,q2), and Ŝ is the causal
(Feynman) propagator of the quasiparticles in graphene:

Ŝ(q0,q‖) = − (q0 + μ)γ0 − vF q‖ − m

(q0 + μ + iεq0)2 − vF
2q2

‖ − m2
(3)

(ε > 0). Note that due to the quasirelativistic nature of
excitations in graphene, Ŝ also depends on the Fermi velocity
vF . Further notations are q‖ = (q1,q2), /q‖ = γ 1q1 + γ 2q2,
and μ is the chemical potential.

The temperature is introduced using the Matsubara formal-
ism. In the γ trace in (2), which can be calculated immediately
(see, e.g., Eq. (A20) in [20]), one has to substitute the integral
with a sum,

i

∫
dq0 → −2πT

∞∑
k=−∞

, q0 → 2πiT (k + 1/2), (4)

where k is an integer. The external frequency of the polarization
operator is bosonic, p0 → ip4 = 2πiT n, n = 0,1,2, . . ..

III. CALCULATION OF THE POLARIZATION OPERATOR
FOR FINITE TEMPERATURE, MASS GAP,

AND CHEMICAL POTENTIAL

All components of the polarization tensor can be expressed
via two scalar quantities (form factors), for instance, �tr ≡
�00 − �11 − �22 and �00 [8,23]. As in the QED/QCD cases
these quantities consist of the vacuum part and a part carrying
the dependence on T and μ,

�xx(p; μ,T ) = �(vac)
xx (p) + 	�xx(p; μ,T ), (5)

where xx stands for either “tr” or “00.” The vacuum part,
�(vac)

xx (p), corresponds to μ = T = 0. While such decompo-
sition is a well-known feature of the polarization tensor in
different theories (see, e.g., [24]), its realization in particular
cases and the derivation of simple transparent formulas may be
a challenging task. One transforms the sum over the Matsubara
frequencies, (4), into a contour integral consisting of three
parts; one gives the original integral over the continuous
(Euclidean) momenta q4 and the other two can be taken
explicitly by the Cauchy theorem. The remaining integral over
the in-plane momenta, q‖ = (q1,q2), can be further simplified
by performing angular integration. Recently this procedure
was applied to graphene at μ = 0, T �= 0 in [21] and T = 0,

μ �= 0 in [20]. Omitting the technicalities we arrive at

	�xx=8α

v2
F

∫ ∞

m

d


⎛
⎝1 + Re

Mxx√
Q2 − 4p2

‖(
2 − m2)

⎞
⎠�(
).

(6)

Here the distribution function, � ≡ (e(
+μ)/T + 1)−1 +
(e(
−μ)/T + 1)−1, carries the dependence on T and μ. Further
notations in (6) are

M00 = −p̃2 + 4ip4
 + 4
2,

Mtr = −(
2 − v2

F

)
(4m2 − p̃2) + 4

(
1 − v2

F

)
(p4
 + 
2 − m2),

Q = p̃2 − 2ip4
, p̃2 ≡ p2
4 + v2

F p2
‖, p‖ = |p‖|.

Note that 	�xx, (6), does not have UV singularities.
For the vacuum part, �(vac), one can directly use the well-

known expressions [4] valid for graphene,

�
(vac)
00 = α�p2

‖
p̃2

, �
(vac)
tr = α�(p2 + p̃2)

p̃2
, (7)

where � = 4[m + p̃2−4m2

2p̃
arctan ( p̃

2m
)]. Henceforth we set

m = 0 (gapless graphene) unless otherwise stated.
One of the advantages of the decomposition, (5), is the

absence of the summation over Matsubara frequencies, which
permits relatively easy derivation of the limiting cases. In
particular, in the limit of zero temperature (but not zero
chemical potential) we obtain

	�tr = 8α (8)
(

μ

v2
F

− p̃2 + p2

4p̃
Im(log[x +

√
x2 + 1] − p̃x

2

√
x2 + 1)

)
,

	�00 =8α

(
μ

v2
F

− p2
‖

4p̃
Im(x

√
x2 + 1 + log[x +

√
x2 + 1])

)
,

(9)

with x = 2iμ−p4

vF p‖
. The formulas above are the analog of the

(B2) [20] taken at Matsubara frequencies, and one can check
that in the appropriate limits they reproduce the results of
other authors [4,8,18–21]. Similarly to the results in [21], the
representation (5) with (6) directly permits continuation to
real frequencies and, thus, can be applied for investigation of
the optical properties, surface plasmons, and other effects in
graphene at a finite temperature and chemical potential.

IV. ENHANCEMENT OF THE CASIMIR EFFECT

The Casimir energy density (per unit area) for two parallel
interfaces separated by the distance a is given by the Lifshitz
formula [25] in terms of the reflection coefficients, r

(1)
TE,TM and

r
(2)
TE,TM, of the TE and TM electromagnetic modes on the two

interfaces,

E = kBT

∞∑
n=−∞

∫
d2p‖
8π2

∑
X=TE,TM

ln
(
1 − e−2p‖ar

(1)
X r

(2)
X

)
, (10)
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where p =
√

p2
4 + p2

‖ , and p4 = 2πnT are the Matsubara
frequencies [34]. The reflection coefficients are taken at
Euclidean momenta r = r(p4,p‖). They were derived in [8]
in terms of the polarization operator components �00,tr,

rTM = p�00

p�00 + 2p2
‖
, rTE = − p2�00 − p2

‖�tr

p2�00 − p2
‖(�tr + 2p)

(11)

(and rederived in numerous papers afterwards). For better
comparison with previous works we also give the reflection
coefficients in terms of the components of the anisotropic
graphene conductivity taken at Euclidian momenta,
σab(p4) = �ab(p4)

p4
, a,b = 1,2 (see [22] for more details),

rTM = pσTM

2p4 + pσTM
, rTE = − p4σTE

2p + p4σTE
, (12)

where

σTM = p2
1σ11 − p2

2σ22

p2
1 − p2

2

, σTE = p2
1σ22 − p2

2σ11

p2
1 − p2

2

.

This is to be compared with (8) in [16] (see also [26]), where
the corresponding quantities are called longitudinal (σTM) and
transversal (σTE) conductivities.

For the perfect conductor, r
(2)
TM = 1, r

(2)
TE = −1. Combining

(10) with (11) and using (5) and (6) for the polarization opera-
tor at finite temperature and chemical potential, we are able to
calculate the Casimir energy density, E , the Casimir pressure,
F = −∂E/∂a, and its gradient, G = ∂F/∂a ≡ −∂2E/∂a2,
between a doped graphene layer and an ideal metal plate.

It is instructive to consider the case of very large μ first.
In the formal limit μ → ∞, both �00 and �tr have identical
asymptotics,

�xx �
μ→∞

8α

v2
F

μ + · · · , (13)

which can be deduced from (6). Thus the electronic properties
of graphene would be expected to become closer to those
of an ideal metal. At a finite temperature, contributions of
higher Matsubara frequencies to the Casimir energy, (10), are
suppressed by the exponential factor e−2p‖a . Let us suppose
that a is large enough to neglect all terms with n �= 0 in (10).
For a zero Matsubara frequency, due to the specific structure
of the reflection coefficients, (11), only the contribution of the
TM mode to the Casimir interaction survives in the limit of
large μ. Thus, at μ → ∞, the Casimir interaction reaches a
value that is one-half the ideal metal–ideal metal one,

E =
μ→∞

1

2
Eid = −kBT ζ (3)

16πa2
. (14)

The same result was obtained for the high-temperature limit
[8]. Equation (14) gives a very rough idea of how far
the enhancement of the Casimir effect with μ might go.
Practically, it hardly makes sense to consider |μ| exceeding a
couple of electron volts in the framework of the Dirac model.

In [16], based on an isotropic approximation of the graphene
conductivity, the force for doped graphene layers was predicted
to grow without limits as

√
μ for μ → ∞ at T = 0. Although

in the derivation of (14) it was important to assume that T > 0

FIG. 1. Ratios of the Casimir energy density (solid lines), the
pressure (dashed lines), and its gradient (dotted lines) at μ = 0.1, 0.5,
and 0.8 eV (black, blue, and red lines, respectively) and at μ = 0,
between a perfect metal plate and doped graphene, as a function of
the distance a (in nm).

(which makes an immediate comparison impossible), we find
it quite unnatural that the Casimir interaction between some
materials may eventually become stronger than that between
two ideal metals. This indicates certain limitations of the
approximation used in [16].

Our numerical analysis shows that at distances of about
100–300 nm the Casimir effect between a perfect metal plate
and doped graphene is highly enhanced even for relatively
moderate values of the chemical potential. In Fig. 1 we
compare the behavior of the ratios of the energy, pressure,
and pressure gradient at given values of the chemical potential
to the corresponding values for pristine graphene, as functions
of the distance. For μ = 0.1 eV, the interaction force in the
case of doped graphene is only 3.5% higher than in the case
of pristine graphene. However, already for μ = 0.5 eV their
ratio has a maximum of 32% at approximately 70 nm, and
for μ = 0.8 eV the force between a doped graphene layer and
an ideal metal is almost 60% higher then that for a pristine
one. These simulations are performed at T = 300 K and
m = 0.

One further notes that the effect is more pronounced the
more derivatives of the energy we calculate. Thus, the ratio of
the energy density at μ = 0.8 eV to its pristine value is 1.52
at maximum, for the pressure F it is 1.54, and for the pressure
gradient G it reaches 1.56. Moreover, at larger distances
(400–1000 nm), the enhancement effect for the gradient
diminishes much more slowly than that for the energy, which
suggests a preference for gradient force experiments.
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Reaching values of the chemical potential of 0.8 eV and
higher might be a challenging task and would require the
preparation of special samples. Without special treatment, the
chemical potential in epitaxial graphene layers stays low up
to the level of 0.3–0.4 eV or less [27,28]. However, Fermi
energy shifts of the order of 0.8 eV are achievable in epitaxial
single-layer graphene due to molecular doping [29]. In certain
circumstances, doping may lead to considerable inhomo-
geneities in the charge distribution (see, e.g., [30]), which
may give rise to additional forces in Casimir experiments.
Due to the strong charge density dependence on the nature of
the acceptor/donor mechanism, these forces should be treated
individually for each particular experiment.

The distance dependence of the Casimir energy for doped
graphene will be altered compared to the pristine one as is usual
when an additional dimensionful parameter is introduced.
However, its detailed study is beyond the scope of the present
paper.

V. INFLUENCE OF THE MASS GAP

From the physical point of view, the larger the mass
parameter in (1), the lower should be the conductivity of
quasiparticles and, consequently, the smaller the Casimir
effect. This was shown explicitly in [4] for T = μ = 0. One
can also show that the influence of mass is negligible as far as
m 	 μ. In particular, in the formal limit, (13), any dependence
on the mass disappears. Our numerical simulation shows (see
Fig. 2) that for μ = 0.8 eV and m = 0.1 eV, doping gives an
up to 70% enhancement of the Casimir energy density (red
line; to be compared with the solid red line in Fig. 1). In Fig. 2
it is also shown that the influence of the mass gap on the value
of the energy for doped graphene (dotted blue line) is almost
negligible, while the energy for pristine graphene gets lower
by about 15% (solid blue line). Therefore, doping becomes
even more important for gapped graphene.

Notation used in Fig. 2 is self-explanatory. For example,
Em,0 denotes the Casimir energy density for a given value of
the mass gap, m = 0.1 eV, and μ = 0.

The large mass limit, m 
 T/2, was considered in [17],
where a strong enhancement of the Casimir force with the
chemical potential was reported. That paper used an isotropic

FIG. 2. Ratios of the Casimir energies between a perfect metal
plate and graphene, as a function of the distance a (in nm).
m = 0.1 eV, μ = 0.8 eV. See text for notation.

FIG. 3. Ratios of the Casimir energy to its approximation ac-
cording to [8], E/Eapp, for μ = 0, 0.5, and 0.8 eV (solid, dashed, and
dotted lines, respectively) between a perfect metal plate and doped
graphene, as a function of the distance a (in nm).

model for the conductivity of graphene. It would be interesting
to reconsider this case in the formalism based on the full
conductivity tensor.

VI. APPROXIMATING THE CASIMIR ENERGY

For a finite temperature, the numerical calculation of the
Casimir energy in a realistic setup requires summing a large
number of contributions to the sum over the Matsubara
frequencies. Following the ideas in [8] (which were later
developed in [31]), one might significantly facilitate this
calculation by considering the T = 0 approximation, (8) and
(9), for the polarization operator in all terms of the summation,
(10), except in the zeroth one. The comparison of exact results
for the Casimir energy E with such an approximation, Eapp, is
given in Fig. 3. As one can see, the error is less then 0.5% for
the pristine graphene and one order of magnitude lower for the
doped one. This confirms once again, at an even better level,
the asymptotic considerations reported in [8].

VII. SUMMARY

In this paper we have calculated the polarization oper-
ator for quasiparticles in graphene at nonzero temperature,
chemical potential, and mass gap applicable at all complex
frequencies without the need for any special procedure for
analytical continuation. This result can be used in a variety
of physical problems, including investigation of TE surface
plasmons in graphene [20], quantum reflection [32], Casimir
interaction, etc.

Based on these results and the Lifshitz formula, we
numerically simulated the Casimir interaction between a
doped graphene monolayer and an ideal metal. For high
but feasible doping we predict enhancement of the Casimir
effect compared to the case of pristine graphene by up to
54% for the Casimir force and by up to 56% for the force
gradient. High doping of graphene is shown to bring significant
enhancement of the values of the force gradient at a wide range
of separations, which should facilitate future experimental
measurements. At such levels of doping the influence of the
mass gap is not important. We saw also that even moderate
values of the chemical potential have a nonnegligible effect
on the Casimir force and thus should be taken into account in
realistic descriptions of experiments together with real material
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properties and a finite temperature and mass-gap parameter, if
present.

All calculations in the present paper were performed using
the fully retarded approach valid at all distances. It may be
interesting to study whether the nonretarded approach might
deliver a good approximation at some separations. With regard
to the graphene properties, we used the full tensor structure
of conductivity following from the polarization tensor, in
contrast to previous works [13–17]. Therefore, although we
agree qualitatively with the predictionsin, e.g., [16], we obtain
different numbers and a somewhat different shape of the
curves, especially at small separations.

Finally, we note that the considerations given in this paper
are concerned with the proper graphene properties and the

enhancement of the Casimir interaction is invoked by the
change in its conductivity. Thus, we can conclude that even
in experiments involving a real metal and/or graphene on a
substrate the enhancement effect must be present, though its
particular value may differ from the one presented here. The
good concordance between the force gradient measurements
[10] and the theoretical considerations presented in [11] shows
that the graphene samples used in [10] were rather pristine.
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