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Spectral and transport properties of electrons in confined phosphorene systems are investigated in a five hopping
parameter tight-binding model, using analytical and numerical techniques. The main emphasis is on the properties
of the topological edge states accommodated by the quasiflat band that characterizes the phosphorene energy
spectrum. We show, in the particular case of phosphorene, how the breaking of the bipartite lattice structure gives
rise to the electron-hole asymmetry of the energy spectrum. The properties of the topological edge states in the
zigzag nanoribbons are analyzed under different aspects: degeneracy, localization, extension in the Brillouin zone,
dispersion of the quasiflat band in magnetic field. The finite-size phosphorene plaquette exhibits a Hofstadter-type
spectrum made up of two unequal butterflies separated by a gap, where a quasiflat band composed of zigzag edge
states is located. The transport properties are investigated by simulating a four-lead Hall device (importantly,
all leads are attached on the same zigzag side), and using the Landauer-Büttiker formalism. We find out that
the chiral edge states due to the magnetic field yield quantum Hall plateaus, but the topological edge states in
the gap do not support the quantum Hall effect and prove a dissipative behavior. By calculating the complex
eigenenergies of the non-Hermitian effective Hamiltonian that describes the open system (plaquette+leads), we
prove the superradiance effect in the energy range of the quasiflat band, with consequences for the density of
states and electron transmission properties.
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I. INTRODUCTION

The very recent revival of the black phosphorus physics
comes from the technical possibility to obtain monolayers,
known as phosphorene, with specific topological properties.
Phosphorene is a quasi-two-dimensional (quasi-2D) structure
organized as a puckered hexagonal lattice, the top and side
views being shown in Figs. 1(a) and 1(b), respectively. One
may think that, due to the structural similarity, the electron
properties of phosphorene are resembling those of graphene.
However, in contradistinction to graphene, the phosphorene is
an anisotropic direct gap semiconductor, much more attractive
for electronic devices. Aside from the monolayered structure,
multilayers of black phosphorous are also studied, mainly in
order to control the band gap, in the perspective of a potential
application for field-effect transistors.

The phosphorene ribbon geometry (especially, with zigzag
edges) is also conceptually interesting since, instead of the
semimetallic spectrum of graphene, distinguished by a flat
band at E = 0, and extending between the points K and
K ′ in the Brillouin zone (BZ), the phosphorene shows well-
separated valence and conduction bands and a quasiflat band
in the middle of the gap, composed of edge states that exist at
any momentum k ∈ BZ.

In the tight-binding model, the phosphorene lattice is
described by five hopping integrals t1,t2, . . . ,t5 [1], which
induce the significant differences in the electron spectrum that
are noticed when compared to graphene. The model points out
also the anisotropy of the energy spectrum: both the top of
the valence band and the bottom of the conduction band look
quadratically as function of ky , but nearly linear as function
of kx (Dirac-type) (see Fig. 2), a situation which is described
in terms of hybrid Dirac spectrum [2,3]. The hopping integral
t4 plays a distinctive role as it connects sites of the same

kind on the hexagonal lattice, breaking the bipartitism of the
lattice, and, as a consequence, the electron-hole symmetry of
the energy spectrum is also broken [4]. As an additional effect
due to t4, we shall see in Sec. II that the edge states, organized
in a perfect flat band at t4 = 0, undergo dispersion in the case
of nonvanishing t4.

The properties of the macroscopically degenerate flat
(quasiflat) bands composed of edge states in confined systems
(ribbon or finite-size plaquette) attract much attention nowa-
days, and phosphorene presents a serious advantage coming
from the existence of a gap that protects the quasiflat band, such
that its properties can be evidenced in a cleaner way. The study
of the spectral and transport properties in the magnetic field,
and the response of the quasiflat band to the invasive contacts
of a Hall device, identified as a superradiant phenomenon, are
a topic of our paper.

Similar to graphene, the confined phosphorene exhibits two
types of edge states: (i) the chiral edge states generated by
a strong perpendicular magnetic field B, and supporting the
quantum Hall effect (QHE), and (ii) the edge states typical to
the zigzag boundaries in the hexagonal lattice, which exists
even in the absence of the magnetic field. The last ones, which
will be called topological edge states [5], are nonchiral and
remain like that even at B �= 0. Obviously, they do not show
QHE, but show longitudinal conductance, i.e., they have a
dissipative character.

The transport calculations assume the knowledge of the full
Hamiltonian of the open system consisting of the finite-size
system of interest (namely, the phosphorene plaquette) and the
semi-infinite leads. Technically speaking, one uses actually an
effective Hamiltonian obtained by formal elimination of the
degree of freedom of the leads, however, as the price to be
paid, the result is a non-Hermitian Hamiltonian with complex
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FIG. 1. (a) Schematic representation of phosphorene lattice with
two types of edges, zigzag (along the Ox direction) and armchair
(along the Oy direction); t1,t2,t3,t4,t5 are the hopping amplitudes that
connect the lattice sites; A (red) and B (blue) index the two types of
atoms, and the dashed blue lines represent the unit cell with a1 and
a2 as unit vectors. (b) The projection of the lattice on the yz plane.
The number of lattice sites is 7 × 4.

eigenvalues. The method of non-Hermitian Hamiltonian has
been used for the calculation of transport properties of
the quantum dots in the Landauer-Büttiker formalism (see
for instance [6]), but also in the localization-delocalization
problem in the one-dimensional (1D) non-Hermitian Anderson
model [7–9]. In these two different problems, the non-
Hermiticity arises from different sources, however, we do not
enter here such peculiar aspects.

In the phosphorene confined system, the complex eigen-
values of the effective Hamiltonian in the energy range of the
quasiflat band, corroborated by the calculation of the electron
transmission, density of states and local density of states make
evident a specific superradiant behavior of the topological
edge states. (We remind that the superradiance consists in
the segregation of eigenenergies and overlapping of some
resonances, the process being controlled by the lead-system
coupling [10].) For instance, the density of states of the
quasiflat band exhibits a miniband structure, each miniband
behaving as a 1D-conducting channel with the conductance
G = e2/h. These aspects are discussed in Sec. IV.

Some quantum transport aspects in phosphorene were very
recently revealed. The quantum Hall effect and spin splitting of

FIG. 2. The energy spectrum of the phosphorene lattice with
periodic boundary conditions. The anisotropy of the spectrum around
the � point can be observed: (a) the energy dispersion along the kx

axis shows the Dirac-type behavior, and (b) energy dispersion along
the ky axis shows the Schrödinger-type behavior.

the Landau levels (LL) were observed in Refs. [11,12], and also
Shubnikov–de Haas oscillations of the longitudinal resistance
were found in Ref. [13]. The transport anisotropy, reflecting
the structural one, was shown experimentally by measuring
the angle dependence of the drain current [14] or by the
nonlocal response [15]. The strain-induced modifications of
the phosphorene band structure were studied in Refs. [16,17].
The field-effect transistor is also the topic of [18,19].

The paper is organized as follows. Section II presents
the tight-binding Hamiltonian, Peierls phases in magnetic
field, and discusses the question of electron-hole symmetry
breaking. Section III is devoted to the study of the phosphorene
ribbon in the magnetic field, as an extension of Ezawa analysis
at B = 0. Section IV deals with the spectral and transport
properties of the phosphorene mesoscopic plaquette, showing
the specific features of the quantum Hall effect in the bands,
and the properties resulting from the superradiance effect in
the quasiflat band. The summary and conclusions can be found
in the last section.

II. TIGHT-BINDING MODEL AND ELECTRON-HOLE
SYMMETRY BREAKING IN PHOSPHORENE

Similar to graphene, the unit cell contains two atoms called
A and B, however, the phosphorene tight-binding Hamiltonian
is more complicated as it contains five hopping integrals
to nearest and next-nearest neighbors. In order to write the
Hamiltonian, we define the creation and annihilation operators
a
†
nm,anm,b

†
nm,bnm, where n and m are cell indexes along the Ox

and Oy axes, respectively. In the presence of a perpendicular
magnetic field, which will be described by the vector potential
�A = (−By,0,0), some of the hopping integrals acquire the

Peierls phase expressed by the circulation of the vector
potential along the trajectory connecting the two end points
:

φAB = 2π

�0

∫ B

A

�A d�l = −2πB

�0

∫ xB

xA

y(x)dx. (1)

Much attention should be paid to the calculation of the phases
since the angle β describing the deviation from the perfect
flat 2D lattice [see Fig. 1(b)] enter also the calculation. Since
the hopping integral t4 plays the special role mentioned in
the Introduction, we separate the terms proportional to this
parameter, and the spinless tight-binding Hamiltonian of the
phosphorene lattice under perpendicular magnetic field will be
written as follows:

H = H 0 + H 4,

H 0 =
∑
nm

Eaa
†
nmanm + Ebb

†
nmbnm

+ t1(eiφ1a
†
n+1m + e−iφ1a†

nm)bnm + t2a
†
nm+1bnm

+ t3
(
eiφ3a

†
nm+2 + e−iφ3a

†
n−1m+2)bnm (2)

+ t5a
†
n+1m−1bnm + H.c.,

H 4 =
∑
nm

t4(eiφ4B b
†
nm+1 + e−iφ4B b

†
n−1m+1)bnm

+ t4(eiφ4Aa
†
nm+1 + e−iφ4Aa

†
n−1m+1)anm + H.c.,
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where Ea and Eb are the atomic energies at the sites A and
B, respectively, and, according to [1], t1 = −1.220 eV, t2 =
3,665 eV, t3 = −0.205 eV, t4 = −0.105 eV, t5= − 0.055 eV.
Since the hopping parameters are given in electron volts, all
the quantities in the paper having the dimension of energy
will be measured in the same units.

In the chosen gauge of the vector potential, only three
hopping integrals acquire a Peierls phase in magnetic field,
namely, t1, t3, and t4. For instance, φ1(m) in Eq. (2) is the
Peierls phase corresponding to the hopping from the site B in
the cell (n,m) to the site A in the next cell (n + 1,m), and equals

φ1(m) = 2π
B
�0

∫ An+1,m

Bnm

y(x)dx

= −2π
�

�0

1

6

(
(m − 1)(1 + 2 sinβ) − 1

2

)
.

Similarly, the other phases in Eq. (2) are [20]

φ3(m) = −2π
�

�0

1

6

(
m(1 + 2 sin β) − 1

2

)
,

φ4A(m) = −2π
�

�0

1

6

(
m − 1

2

)
(1 + 2 sinβ),

φ4B(m) = −2π
�

�0

1

6

[(
m − 1

2

)
(1 + 2 sinβ) + 1

]
,

where �/�0 is the magnetic flux through the hexagonal
cell measured in quantum flux units, and β is the angle
shown in Fig. 1(b). One notices that the phases φ4A and φ4B

acquired by t4 along the A-A and B-B links, respectively, are
different.

The spectral properties of the Hamiltonian (2) can be stud-
ied under different boundary conditions describing different
geometries as the infinite sheet, the ribbon, or the finite plaque-
tte. The phosphorene infinite sheet can be simulated assuming
periodic boundary conditions along the both directions Ox and
Oy . Let us consider first the case B = 0, and use the Fourier
transform of the creation and annihilation operators:

anm =
∑

�k
a�ke

i�k· �Rnm,

bnm =
∑

�k
b�ke

i�k �·Rnm, (3)

�Rnm = n�a1 + m�a2,

which helps in writing the Hamiltonian as a 2 × 2 matrix in
the momentum space �k = (kx,ky):

H =
∑

�k
H 0

�k + H 4
�k

=
∑

�k
(a†

�k b
†
�k)

(
T 4(�k) T 0(�k)
T 0∗(�k) T 4(�k)

)(
a�k
b�k

)
, (4)

with

T 0(�k) = t1(1 + e−i �k·�a1 ) + t2e
−i �k·�a2

+ t3(e−i2 �k· �a2 + ei�k· �a1−i2�k· �a2 ) + t5e
−i�k· �a1+i�k· �a2 ,

T 4(�k) = 2t4[cos�k · �a2 + cos�k · ( �a1 − �a2)]. (5)

In approaching the question of spectrum symmetries, we
remind that the electron-hole symmetry of an energy spectrum
holds if there exists an operator P that anticommutes with the
Hamiltonian {H,P}+ = 0. Indeed, it is quite straightforward
to see that, if E is an eigenvalue, H�E = E�E , then the
energy −E belongs also to the spectrum, the corresponding
eigenfunction being �̃−E = P�E . For our specific problem
of phosphorene, let us consider the operator

P =
∑

�k
a
†
�ka�k − b

†
�kb�k. (6)

Obviously, this operator anticommutes with H 0, attesting
that the energy spectrum of H 0 is electron-hole symmetric
{E0

k ,−E0
k } ∈ Sp. However, P does not anticommute with the

total Hamiltonian H 0 + H 4, the result being proportional to t4.
One concludes that the phosphorene spectrum is electron-hole
symmetric if t4 = 0, i.e., when one forgets about the hopping to
the next-nearest neighbors, but it is not necessarily symmetric
otherwise.

The energy spectrum of the Hamiltonian (4) can be obtained
analytically from the characteristic equation

∣∣∣∣E − T 4(�k) T 0(�k)
T 0∗(�k) E − T 4(�k)

∣∣∣∣ = 0, (7)

resulting a two-band spectrum of semiconducting type, with
the eigenvalues

E±(�k) = T 4(�k) ± |T 0(�k)|. (8)

The above equation confirms that for t4 = 0, the spectrum
becomes symmetric E = ±|T 0(�k)|, with a direct gap at the �

point equal to � = 2|T 0(0)| = 2(2t1 + t2 + 2t3 + t5), which
is Ezawa’s result [5]. On the other hand, Eq. (8) proves that
a nonvanishing t4 shifts the whole spectrum with 4t4, such
that the electron-hole symmetry around E = 0 is lost. One
concludes that the spectral asymmetry in phosphorene is the
consequence of the hopping parameter t4, which connects sites
of the same type and violates in this way the bipartitism of the
lattice. The eigenvalues (8) are displayed in Fig. 2, where three
aspects have to be noticed: the presence of the gap, the strong
anisotropy, and the electron-hole asymmetry of the bands. As
explained in Ref. [2], the first two properties occur in the
hexagonal-type lattice as soon as t1 �= t2, even neglecting the
other hopping parameters in the Hamiltonian.

The Hofstadter spectrum generated by a perpendicular
magnetic field is also very specific, consisting of two unequal
butterflies separated by a gap. There is no agreement yet on
the field dependence of the Landau levels, as in Refs. [11,21]
the dependence is linear, while in Ref. [22] the dependence
is ∼B2/3. In Fig. 3, we show the numerically calculated
Hofstadter spectrum of a finite (mesoscopic) plaquette, which
exhibits a supplementary band in the middle accommodating
the edge states [23]. The narrow width of the band, and the
weak dependence on the magnetic field should be noticed.
This band is due essentially to the vanishing boundary condi-
tions describing the finite-size system, while the Hofstadter
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FIG. 3. The Hofstadter spectrum of the finite phosphorene lattice.
The quasiflat band which accommodates topological edge states can
be noticed in the gap. The number of lattice sites is 21 × 20, and the
magnetic flux is measured in flux quanta h/e.

spectrum in Ref. [11] lacks the central topological band,
being obtained in the absence of confinement. One has also
to observe that the spectrum in Fig. 3 misses the known
periodicity with the magnetic flux E(� + �0) = E(�), which
is met in the case of the two-dimensional electron gas (2DEG)
in perpendicular magnetic field. This comes from the presence
of three different Peierls phases in the Hamiltonian (2). The
case of the phosphorene finite plaquette will be discussed in
Sec. III.

The Hofstadter-type spectrum in Fig. 3 suggests new
physical properties of the edge states, and stimulates a more
extensive study of the phosphorene mesoscopic systems.
They are simulated in the tight-binding model by imposing
vanishing boundary conditions for the wave function all along
the perimeter (the case of the finite-size plaquette) or only
along two parallel zigzag edges (the ribbon case).

The phosphorene ribbon in the absence of the magnetic
field is discussed in Refs. [5,24,25], where it is shown that the
zigzag edges induce eigenvalues in the middle of the gap. The
band is perfectly flat (i.e., independent of the momentum k)
if t4 = 0, and get a slight dispersion otherwise. At a given k,
there are two quasidegenerate states which become perfectly
degenerate in the limit of wide ribbons (similar to the case of
graphene).

The next section is devoted to the spectral properties of
phosphorene ribbon in the presence of the magnetic field, in
which case some new aspects of interest can be proved even
analytically.

III. SPECTRAL PROPERTIES OF THE PHOSPHORENE
RIBBON IN MAGNETIC FIELD

Let us consider the Hamiltonian (2) and impose two
edges parallel to the zigzag chains at m = 1 and M , but
keeping periodic boundary conditions along the x direction.
The Fourier transform along the x direction gives rise to
the following Hamiltonian for the ribbon geometry (where

k stands for kx):

H =
∑

k

H 0(k) + H 4(k),

H 0(k) =
M∑

m=1

Eaa
†
kmakm + Ebb

†
kmbkm

+ t1(ei(φ1−k) + e−iφ1 )a†
kmbkm

+ t2

M−1∑
m=1

a
†
km+1bkm

+ t3

M−2∑
m=1

(eiφ3 + e−i(φ3−k))a†
km+2bkm

+ t5

M∑
m=1

e−ika
†
km−1bkm + H.c.,

H 4(k) = t4

M−1∑
m=1

(eiφ4B + e−i(φ4B−k))b†km+1bkm

+ (eiφ4A + e−i(φ4A−k))a†
km+1akm + H.c. (9)

In the case of vanishing magnetic field B = 0, the energy
spectrum of the above Hamiltonian is described by Ezawa [5].
The numerical calculation takes into account all the five
hopping integrals, but the analytical one considers t3 = t5 = 0,
while the parameter t4 is considered perturbatively. The
existence of a quasiflat band in the gap, whose dispersion
comes from t4, is proved [see Eq. (22) in Ref. [5]). We reobtain
this result, which is shown in Fig. 5 (left), in order to be
compared with the case of nonvanishing magnetic field in
Fig. 5 (right).

A. Quasiflat band in magnetic field

The aim of this section is to elucidate the effect of
the perpendicular magnetic field on the spectral properties
of the edge states in the ribbon geometry. The formation
of the quasiflat band in the middle of the gap and the interesting
degeneracy lifting due to the magnetic field are put forward
both numerically and analytically.

Let us consider the atomic energies Ea = Eb = 0, and the
hopping integrals t3 = t5 = 0 (as in Ref. [5]), but keep B �= 0.
Then, H 0(k) becomes

H 0(k) =
M∑

m=1

t1(ei(φ1−k) + e−iφ1 )a†
kmbkm

+
M−1∑
m=1

t2a
†
km+1bkm + H.c. (10)

For any momentum k, we look for the eigenfunctions of H 0(k)
as

|�0(k)〉 =
M∑

m=1

(
ξA
kma

†
km + ξB

kmb
†
km

)|0〉, (11)

and, from H 0|�0(k)〉 = E0(k)|�0(k)〉, the equations sat-
isfied by the coefficients ξ

A,B
km can be identified easily
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as

t1(eiφ1 + e−i(φ1−k))ξA
km + t2ξ

A
km+1 = E0(k)ξB

km,

t1(e−iφ1 + ei(φ1−k))ξB
km + t2ξ

B
km−1 = E0(k)ξA

km, (12)

with m = 1, . . . ,M , and the ribbon-type boundary conditions
ξB
k,0 = 0, ξA

k,M+1 = 0.
We approach the study of the edge states in a way similar

to the graphene case [26], i.e., assume the existence of a
perfectly flat band in the middle of the spectrum E0(k) = 0,
and examine the properties of ξA

km and ξB
km. With the notation

t1(m) = t1(e−iφ1 + ei(φ1−k)), Eqs. (12) provide

ξA
k,m = ξA

k,1(−t
∗
1/t2)m−1,

ξB
k,m = ξB

k,M (−t1/t2)M−m, (13)

where ξA
k,1 and ξB

k,M can be obtained from the normalization
condition. Since |t1/t2| < 1, it is obvious that ξA

k,m reaches its
maximum value at the edge m = 1 and the minimum at the
other edge m = M , while ξB

k,m behaves oppositely. This means

that |�0
A(k)〉 = ∑

m ξA
kma

†
km|0〉 describes an edge state local-

ized near the edge m = 1, while |�0
B(k)〉 = ∑

m ξB
kmb

†
km|0〉

is localized at the other edge m = M; the two functions
are obviously orthogonal. It is important to underline that,
for a finite width ribbon, {|�A〉,|�B〉} are only approximate
eigenfunctions of H 0 [corresponding to the approximate
eigenvalue E0(k) = 0]; this is evident from the fact that the
matrix element 〈�A|H 0(k)|�B〉 �= 0 at any finite M . Indeed,
using Eq. (13), a straightforward calculation yields

〈�A|H 0(k)|�B〉 = −t2(−t1/t2)Mξ ∗A
k1 ξB

kM, k ∈ (0,2π ]. (14)

The above result indicates that the actual eigenfunctions
describing the edge states in the finite ribbon consist of a
superposition of the functions |�A〉 and |�B〉, the eigenval-
ues being E0

±(k) = ±t2|t1/t2|M |ξA∗
k1 ξB

kM |. Taking again into
account the convergence condition |t1/t2| < 1 (which in the
case of phosphorene is ensured at any k), one notices that
the splitting δk = E0

+(k) − E0
−(k) vanishes exponentially in

the limit M → ∞. Only in this limit E0(k) = 0 becomes a
double-degenerate nondispersive (flat) band, similar to the
situation in graphene, but with the notable contradistinction
that, for phosphorene, this property is true for any momentum
k [27]. We checked also numerically the energy splitting δ as
function of the ribbon width, and the exponential decay with
increasing M is obvious in Fig. 4.

In what follows, we turn our attention to the contribution
to the spectrum coming from the Hamiltonian H 4(k) in the
presence of the magnetic field B. As already mentioned, the
case B = 0 was studied perturbatively in Ref. [5], where one
proves that t4 �= 0 generates the dispersion of the band, which
thus becomes quasiflat. In our calculation, we shall consider
a large M and neglect the splitting δ (which is anyhow much
smaller than the band dispersion). Then, the eigenvalues in the
presence of the hopping t4 and of the magnetic field B �= 0
will be given by the equation

∣∣∣∣E − 〈�A|H 4|�A〉 〈�A|H 4|�B〉
〈�B |H 4|�A〉 E − 〈�B |H 4|�B〉

∣∣∣∣ = 0. (15)

FIG. 4. The numerically calculated energy splitting, at the � point
k = 0 and vanishing magnetic field B = 0, as function of the ribbon
width M . The calculation takes into account all the five hopping
parameters in the Hamiltonian (9).

Since 〈�A|H 4|�B〉 = 0, the result reads as

E1(k) = 〈�A(k)|H 4|�A(k)〉 =
M∑

m=1

t4A(m)ξA∗
k,m+1ξ

A
k,m + c.c.,

E2(k) = 〈�B(k)|H 4|�B(k)〉 =
M∑

m=1

t4B(m)ξB∗
k,m+1ξ

B
k,m + c.c.,

(16)

with the notation t4A(m) = t4(eiφ4A(m) + e−i[φ4A(m)−k]), and a
similar one for t4B(m).

For zero magnetic flux, in the limit M → ∞, Eq. (16) yields
Ezawa’s result

E1(k) = E2(k) = −4
t4t1

t2
(1 + cosk), (17)

saying that the levels remain degenerate but depend on k,
such that they get a dispersion equal to 8t4t1/t2. However,
the interesting case occurs at � �= 0 when the degeneracy is
lifted. The exact summation in Eq. (16) is difficult, so we
approximate it by taking advantage of the strong localization
of the coefficients ξA

k1 and ξB
kM at the edges m = 1 and M ,

respectively. Using also Eq. (13) one obtains

E1(k,�) ∼= t4A(1,�)

(
− t1(1)

∗

t2

)∣∣ξA
k,1

∣∣2 + c.c.,

E2(k,�) ∼= t4B(M − 1,�)

(
− t1(M)

t2

)∣∣ξB
k,M

∣∣2 + c.c., (18)

with E1(k,�) �= E2(k,�), indicating the degeneracy lifting
due to the magnetic field.

Figure 5 compares the quasiflat spectrum in the absence
(left panel) and presence (right panel) of the magnetic field
applied on the ribbon. While the hopping t4 generates the
dispersion, the magnetic field gives rise to the degeneracy
lifting. The red lines represent the numerical result, which
considers all hopping parameters t1, . . . ,t5, while the black
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FIG. 5. The low-energy spectrum of the phosphorene zigzag nanoribbon. The degeneracy lifting of the quasiflat band induced by the
magnetic field can be noticed by comparing the two panels: in the left panel the magnetic flux is zero, while in the right panel � = 0.01�0.
The red lines represent the numerically calculated spectrum for the width M = 71, the black lines represent the analytical results (17) and (18).

lines represent the analytical formulas (17) and (18) [28]
calculated with t3 = t5 = 0. The fit being very good, one
concludes that the hopping parameters t3 and t5 have negligible
influence on the spectrum, at least in the energy range of the
quasiflat band.

IV. QUANTUM TRANSPORT AND SUPERRADIANCE IN
PHOSPHORENE MESOSCOPIC PLAQUETTE

In order to investigate the transport properties in strong
perpendicular magnetic field, we simulate the electronic Hall
device by attaching four leads to a finite phosphorene plaquette
(two leads for injecting/collecting the current, and two voltage
probes), all the leads being contacted on the same zigzag edge
of the plaquette. The choice of such a lead configuration is
essential since it is the only one that can read out the current
carried by the topological states located close to, and along, the
zigzag edge. The electron transmission coefficients between
different leads, the longitudinal and the transverse resistance,
will be calculated as function of a gate potential Vgate (at a given
Fermi energy in the leads) in the Landauer-Büttiker formalism
in terms of Green functions.

Depending on the position of the gate potential, different
types of states become active in the transport process. Figure 3
shows the Hofstadter-type spectrum of the phosphorene
plaquette composed of two unequal butterflies, corresponding
to the conductance and valence bands. As usual, the Landau
levels accommodate bulk states, while the gaps that separate
consecutive LL are filled with chiral edge states, induced by the
quantizing magnetic field, and running all around the plaquette
perimeter. One may observe in Fig. 3 that the chirality dE/d�

of the edge states is opposite in the two bands, a fact that
causes the different sign of the quantum Hall effect in the
corresponding energy ranges.

One has to remark the presence in the semiconducting gap
of a narrow, practically dispersionless band that accommodates
also edge states, but of topological origin. They lie along the
zigzag edges only, exist also at B = 0, being the analogous of

the edge states in the zigzag ribbon discussed in the previous
section. It is important to underline that they do not get closed
even if the magnetic field is applied, looking as in Fig. 6.
Figure 6 shows the superposition of two quasidegenerate edge
states located near the two (left and right) zigzag boundaries.
Any perturbation (as a small staggering EA �= EB , impurity
disorder, or coupling to leads) lifts the superposition, and the
wave functions become localized either on the left or right
edge.

Two other striking features of the topological edge states on
the plaquette will be proved here: (i) the dissipative character,
and (ii) the splitting of the density of states, and the formation
of minibands if the finite system is opened by attaching con-
tacts; this behavior can be interpreted as a superradiance effect.

A. Effective Hamiltonian and transport formalism

In order to calculate the transport quantities (namely, the
longitudinal and transverse resistance), one needs to attach
four leads to the finite-size plaquette. Then, the Hamiltonian
of the entire system reads as

H = HS + HL + τHLS, (19)

FIG. 6. |�|2 for a pair of quasidegenerate edge states of a finite-
size plaquette in perpendicular magnetic field. The number of lattice
sites is 21 × 20, and the magnetic flux is � = 0.1�0.
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where the first term is the Hamiltonian (2) of the phosphorene
plaquette, the second term represents all the four semi-infinite
leads (also in the tight-binding description), and the last one de-
scribes the coupling between the plaquette and the leads. The
longitudinal and Hall resistances will be calculated as function
of a gate potential Vgate applied on the plaquette, similar to
the experimental measurement, where Vgate is simulated by a
diagonal term in the Hamiltonian HS .

A powerful tool to deal with such an open system is the
formalism of the effective Hamiltonian, which is obtained by
removing the degree of freedom of the leads, with the price of
losing the Hermiticity:

HS
eff = HS + τ 2

tL
e−ik

∑
α

|α〉〈α|, (20)

where tL is the hopping parameter of the tight-binding model
for the leads, k parametrizes the energy in the leads, E =
2tLcosk, and {|α〉} are those localized states that correspond
to the sites on the plaquette where the leads are stuck to
the sample [29]. The difference between Hamiltonians (19)
and (20) is just formal, and they are completely equivalent.
The deduction of the effective Hamiltonian can be found, for
instance, in Ref. [6].

After constructing the matrix of the effective Hamiltonian
in the representation of the localized functions {|nm〉}, one
may calculate immediately the Green function G(E) = (E −
HS

eff)
−1, which enters the Landauer-Büttiker formula for the

transmission coefficients:

Tαβ = 4τ 4|Gαβ |2ImgL
α ImgL

β , α �= β (21)

where α and β (α,β = 1, . . . ,4) are lead indexes, and ImgL
α

represents the density of states in the lead α. The transmission
coefficients Tαβ being known, the conductance matrix gαβ ,
which connects all the currents Iα passing through the system
to the corresponding voltages Vβ , Iα = ∑

β gαβVβ , can be
obtained as gαβ = (e2/h)Tαβ for α �= β, while the diagonal
conductance gαα results from the current conservation rule∑

α gαβ = 0. Finally, the Landauer-Büttiker formalism pro-
vides the following expressions for the quantities of interest
(longitudinal and Hall resistance), which are to be calculated
numerically:

RL = R14,23 = (g24g31 − g21g34)/|D|,
RH = (R13,24 − R24,13)/2 (22)

= (g23g41 − g21g43 − g32g14 + g12g34)/2|D|,
where D is any 3 × 3 subdeterminant of the conductance
matrix. It is to observe that, even using the configuration “in
line” of the terminals as in Fig. 7, the Hall resistance RH can
be measured if the current enters the device at the contact
No. 1 and leaves the device at the contact No. 3, while the
voltage drop is measured between the contacts No. 2 and No.
4. The longitudinal resistance RL can also be defined by the
proper choice of the in-out contacts. This was proved by van
der Pauw [30] and used also to study the effect of an external
bias on the quantum Hall effect [31]. Since the experimental
curves show the conductance instead of the resistance, we
shall do the same, and show in Fig. 8 the Hall and longitudinal

1 2 43

zig−zag edge

FIG. 7. The sketch of a four-lead Hall device. All leads are
connected to the same zigzag edge.

conductances calculated as GH = RH/(R2
H + R2

L) and GL =
RL/(R2

H + R2
L).

B. Quantum Hall effect in phosphorene

In what concerns the Hall conductance in the quantum
regime, there are significant new aspects in comparison with
the graphene. First, one has to notice the large plateau GH = 0
that corresponds to the central gap. Next, one notices the
lack of the valley degeneracy in the low-energy range, such
that the quantum Hall plateaus are the conventional (spinless)
plateaus n = ±1,±2, . . . in units e2/h, the same as for the two-
dimensional electron gas (2DEG) subject to a perpendicular
magnetic field. As a specific feature, one may notice in Fig. 8
that the lengths of the plateaus in the positive and negative
regions are slightly different, as a manifestation of the spectral
asymmetry discussed in Sec. II.

The quantum plateaus are supported obviously by the chiral
edge states existing in the Hofstadter spectrum of the finite-size
plaquette, however, one should not forget that the central gap
contains also topological edge states bunched in the quasiflat
band. The value GH = 0 everywhere in the gap confirms that
these edge states are nonchiral, and do not support the QHE.
Recall that, in terms of transmission coefficients, the chirality
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FIG. 8. Numerically calculated Hall (red line) and longitudinal
(black line) conductances in the quantum Hall regime as a function
of the gate potential Vgate, for a slightly disordered sample. The
longitudinal conductance shows a series of peaks in the range of the
quasiflat band. The number of lattice sites is 107 × 40, the magnetic
flux is φ/φ0 = 0.1, and the Fermi energy in the leads is EF = 0.
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means Tα,α+1 = integer, while Tα,α+1 = 0 (for any lead α and
given direction of the magnetic field). On the other hand, in
the spectral range occupied by the quasiflat band, we find the
symmetry Tα,α+1 = Tα,α+1, which denotes the lack of chirality.
This property was observed numerically using Eq. (21), and
occurs no matter the presence or absence of the magnetic field.

The longitudinal conductance GL exhibits the nondissipa-
tive behavior in the range of the quantum plateaus, as it should,
but striking nontrivial properties are proved in the range
[−0.3,0] covered by the quasiflat band, where the longitudinal
conductance is nonvanishing and shows a sequence of peaks.
While the dissipative character of the nonchiral edges states
was also met in the context of the zero-energy Landau level
in graphene [32], we think that the peaked structure of the
longitudinal conductance is specific to phosphorene.

It is already known that that the flat bands are sensitive to
disorder due to their degeneracy [33,34], and one may expect
that the GL peaks are also affected by the disorder existing
in the system, which is unavoidable experimentally. Indeed,
the unitary limit GL = 1e2/h is reached only in the clean
systems [this case is shown in Fig. 9(a)], but any small amount
of disorder allows for the backscattering and slightly lowers
the values of the peaks below the unitary limit. This is the
case in Fig. 8, where small Anderson (diagonal) disorder was
introduced in the numerical calculation.

In what follows, we shall pay closer attention to properties
of the nonchiral edge states in the quasiflat band.

C. Spectral and transport properties of the quasiflat
band in open system

It is obvious that the second term of the effective Hamil-
tonian (20) produces shifts of the real eigenvalues of HS , but
adds also an imaginary part, meaning the level broadening due
to the coupling to the leads. As long as the coupling τ is very
small (i.e., we are in the resonant tunneling regime, which
was studied for the nanoribbon system in Ref. [35]), all the
eigenvalues of HS should be practically recovered. However,
with increasing coupling, the level broadening � increases too,
and the merging of neighboring levels occurs. Consequently,
the shape of the density of states changes significantly. When
� ∼ � (� = mean interlevel distance) one enters the regime
known as superradiative [36]. As we already mentioned, the
superradiance phenomenon consists in the overlapping and
segregation of eigenenergies occurring in open systems under
the control of the coupling between the finite system and the
infinite reservoir. One may expect that the energy spectrum is
not everywhere equally sensitive to this effect, and one may
speculate that the energy range occupied by the states located
near edges (where the leads are attached) is mostly affected.

We assume that the superradiance is the mechanism that
gives rise to the miniband structure of the quasiflat band shown
in Fig. 9(a), where the density of states (DOS = − 1

π
TrG)

exhibits 11 peaks. The confirmation comes from the calcula-
tion of the complex eigenvalues of the effective Hamiltonian
(20). In Fig. 9(b), we show the real and imaginary parts of
the eigenvalues in the energy range of the quasiflat band, and
find the presence of 11 energies with large imaginary part,
which perfectly correspond to the positions of the minibands
in the density of states. One has to observe in Fig. 9(b) also
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FIG. 9. (a) The peaked structure of the transmission coefficient
T12 (red line) and the density of states (black line) of the phosphorene
plaquette in the energy range of the quasiflat band for a clean system.
Note that not all the DOS peaks are transmitting, and also that the
unitary limit of the transmission is reached. (b) ImE vs ReE for the
eigenvalues of the effective Hamiltonian (20) corresponding to the
quasiflat band. Note that the eigenvalues with ImE �= 0 correspond
to the miniband structure in panel (a). The number of lattice sites is
107 × 40, the magnetic flux is � = 0.1�0, the Fermi energy in the
leads is EF = 0, and τ = 2 eV.

the multitude of eigenstates with vanishing imaginary part
(ImE = 0). They correspond to the edge states localized along
the edge opposite to that one where the leads are connected. In
other words, the process of overlapping and segregation affects
only those edge states that are in the immediate vicinity of the
leads, the other ones remaining unchanged.

As a next step, we draw the attention to the fact, visible
in Fig. 9(a), that not all DOS peaks support the electron
transmission. This apparently surprising result has a simple
explanation in terms of the charge distribution on the plaquette,
described by the local density of states. The local density of
states, calculated at each site i on the plaquette as the imaginary
part of the Green function LDOSi(E) = − 1

π
ImGii(E), shows

that, in the case of the conducting minibands, the states
are located between the contacts, but, for the nonconducting
ones, the states are positioned outside the contacts. The two
situations are displayed in Fig. 10. The same figure tells
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FIG. 10. The local density of states (LDOS) in the presence of the leads: (a) the density of states is localized in-between the leads and
contributes to transmission [corresponding to the peak at Vgate = −0.0978 eV in Fig. 9(a)], and (b) the density of states is localized outside the
leads and corresponds to the nontransmitting DOS peak at Vgate = −0.10735 eV in Fig. 9(a). The parameters are the same as in Fig. 9.

furthermore that the states accommodated by the minibands
do not get closed around the whole perimeter of the plaquette,
even at such strong magnetic fields that generate chiral edge
states in the bands.

In what concerns the transport properties, aside from the
lack of chirality mentioned above, we find that the transmission
exhibits a peaked structure and reaches the unitary limit
Tαα+1 = Tα+1α = 1 in the middle of the conducting minibands.
This behavior of the transmission coefficients is proved by
numerical investigation using Eq. (21), and it is shown in
Fig. 9(a). (Of course, the unitary limit, telling that each
miniband behaves as a perfect one-dimensional channel,
is reached only for disorder-free systems.) All the other
transmission coefficients vanish, so that the whole 4 × 4
conductance matrix reads as

g = e2

h

⎛
⎜⎝

−1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1

⎞
⎟⎠, (23)

and allows for the calculation of the Hall (RH ) and longitudinal
(RL) resistances. Indeed, by the use of Eq. (22), one obtains
the results already known from the numerical calculation. For
the Hall resistance one gets RH = 0, which is the outcome of
the lack of chirality, however, a nontrivial result is obtained for
the longitudinal response, for which the above matrix yields
RL = 1h/e2, indicating a dissipative character of the electron
transport in minibands. It is to underline that this distinctive
property of the quasiflat band occurs even in the presence of
a strong magnetic field, which, otherwise, is able to generate
in the other bands the specific QHE behavior, i.e., quantized
nonzero values of RH , and nondissipative RL.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied spectral and transport
properties of phosphorene, paying special attention to confined
systems (zigzag ribbon and mesoscopic plaquette) subject to a
magnetic field, with main focus on the topological edge states
organized in the quasiflat band. Our results are the following:

We approach analytically the question of electron-hole
symmetry breaking, and demonstrate the role played in this
respect by the hopping integral t4, the only parameter in the
tight-binding model that violates the bipartitism of the lattice.

The Hofstadter-type spectrum of the phosphorene plaquette
misses the usual periodicity E(�) = E(� + �0) because

three different Peierls phases (depending also on the quasi-2D
lattice angle β) are assigned to different hopping terms.
The Hofstadter spectrum comprises edge states of chiral and
topological origin. The chiral states fill the gaps between the
Landau levels and extend all around the perimeter. The other
ones extend along the zigzag edges only, and remain like
that even in strong magnetic field. The topological states are
bunched in a quasiflat band located in the middle of the gap.

For the zigzag ribbon, since |t1/t2| < 1, we prove that
the topological edge states occur at any momentum k in the
Brillouin zone, contrary to the graphene case. We analytically
show that the degeneracy of a pair of edge states, located at
opposite edges of the ribbon, occurs only in the limit of the
infinite wide ribbon (M → ∞), and we prove also that the
degeneracy is lifted by the magnetic field.

The quantum transport in the mesoscopic plaquette is
treated numerically. The Hall device may use different lead
configuration, however, the configuration “all leads on the
same edge” (Fig. 7) is the one that evidences better the
features of the edge states. We suggest such a configuration
for an eventual experimental study of the topological edge
states. Specific to phosphorene, the Hall conductance shows
a zero plateau in the gap, indicating the nonchiral behavior
of the quasiflat band, but a nonzero longitudinal conductance,
indicating the dissipative character. The multiple-peak aspect
of GL reflects the miniband structure of the density of states
in the presence of the leads.

For the energy range occupied by the quasiflat band, we cal-
culate the transmission coefficient between consecutive leads,
the DOS of the plaquette when connected to the leads, and the
complex eigenenergies of the non-Hermitian effective Hamil-
tonian. The ensemble of these quantities (shown in Fig. 9),
which are controlled by the dot-lead coupling parameter τ ,
certify the manifestation of the superradiance phenomenon in
phosphorene. We underline that not all the minibands in the
DOS are conducting [Fig. 9(a)], the issue being explained by
Fig. 10. We mention the features of the electron transmission,
which aside from the lack of chirality, exhibits unitary peaks
in the case of the clean system, proving a one-channel-type
transport.

In what concerns the disorder effects, it is clear that the
different quantum states respond differently to disorder. While
the chiral states are robust, one expects the topological edge
states be sensitive due to their quasidegeneracy. We think
that the localization, level-spacing analysis, and the electron
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transmission are topics of interest, which are, however, beyond
the aim of this paper.

In conclusion, phosphorene is a “beyond” graphene mate-
rial which, aside from potential applications as a semiconduc-
tor, shows several interesting conceptual properties, mainly
concerning the topological edge states accommodated in the
quasiflat band.
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