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Scattering matrix invariants of Floquet topological insulators
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Similar to static systems, periodically driven systems can host a variety of topologically nontrivial phases.
Unlike the case of static Hamiltonians, the topological indices of bulk Floquet bands may fail to describe the
presence and robustness of edge states, prompting the search for new invariants. We develop a unified description
of topological phases and their invariants in driven systems by using scattering theory. We show that scattering
matrix invariants correctly describe the topological phase, even when all bulk Floquet bands are trivial. Addition-
ally, we use scattering theory to introduce and analyze new periodically driven phases, such as weak topological
Floquet insulators, for which invariants were previously unknown. We highlight some of their similarities with
static systems, including robustness to disorder, as well as some of the features unique to driven systems, showing
that the weak phase may be destroyed by breaking translational symmetry not in space, but in time.
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I. INTRODUCTION

Topologically nontrivial phases are characterized by the
simultaneous presence of an insulating bulk and robust,
conducting edge states [1,2]. The boundaries are protected
against localization by the system’s bulk properties, namely
its symmetries and the presence of a mobility gap. This link
is termed bulk-boundary correspondence, and it enables us
to define topological invariants, Z- or Z2-valued quantities
computed from the bulk system, which determine the presence
and number of protected gapless modes at the boundary.

The number and nature of topological invariants have been
studied extensively for static Hamiltonians. For noninteracting
systems, there exist classifications of symmetry-protected
topological insulators and superconductors [3–11]. Their
boundary states can be protected not only by the three funda-
mental symmetries of the system—i.e., time-reversal, particle-
hole, and chiral symmetry—but also by the symmetries of the
underlying lattice. The latter are known as weak topological
insulators in the case of translation symmetry or topological
crystalline insulators for point-group symmetries (reflection,
rotation, etc.), and they can exist in both two and three space
dimensions [12–18]. Recent experiments have shown evidence
for the existence and robustness of both [19–22].

Beyond static Hamiltonians, the topological phases of
periodically driven systems have recently become the focus of
a wide range of research [23–25]. Part of the appeal of so-called
Floquet topological insulators is the possibility to change a
system’s properties by altering the driving field [26,27]. While
the physical properties of time-independent systems are mostly
fixed during the fabrication process, a Floquet system can in
principle host a variety of topological phases as a function
of an external, time-periodic perturbation. Examples include
phases hosting Floquet Majorana fermions [28–31], as well as
robust chiral [32–36], helical [26,37], or counterpropagating
edge modes [38–42]. Possible extensions of these ideas to
interacting systems have also been actively discussed [43,44].

In spite of this intense activity, the topological nature
of periodically driven systems is much less understood as
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compared to their time-independent counterparts. Unlike wave
functions of static systems, Floquet states are obtained from
the unitary time-evolution operator over one driving period,
the so-called Floquet operator, F . Each of its eigenstates
accumulates a phase factor during one period T of the time
evolution, as F |ψ〉 = exp(−iεT /�)|ψ〉, with ε referred to as
quasienergy. While the Floquet states and their associated
quasienergies are in many ways analogous to the eigenstates
and energies of static systems, the periodic nature of the driving
means that ε is only defined modulo 2π�/T . The periodicity
of the resulting Brillouin zone (BZ) in quasienergy can lead
to situations in which the original topological invariants fail
to correctly capture the system’s behavior at an edge. Indeed,
in Ref. [33] it was shown that robust chiral edge states can
form in a system in which all bulk bands are trivial, since the
Floquet operator in the bulk equals the unit matrix, F = 1.

Several works have made progress toward a full classifica-
tion of Floquet topological insulators [45,46]. In some cases,
novel invariants have been formulated, which take into account
the system’s driven nature. For strong two-dimensional (2D)
Floquet topological insulators, invariants have been found,
both in the presence and absence of time-reversal symme-
try [33,37]. Weak topological effects, however, have remained
largely unexplored. Among the few examples to date, 2D
chiral-symmetric systems hosting anomalous counterpropa-
gating edge modes have been reported in Refs. [38–40,42]. In
these works, the existence and robustness to disorder of edge
modes was identified, but the topological index responsible for
their presence has remained unknown up to now.

To accurately predict the possible nontrivial phases, the
properties of Floquet topological insulators—both weak and
strong—need to be treated within a unified framework. Toward
that end, rather than focusing on their difference with respect
to static systems, we take advantage of their similarities
instead. In both types of phases, topological properties
manifest themselves at the (quasi-)Fermi-level, in the form of
robust conducting edge modes, which exhibit similar forms
of spectral flow. As such, their nontrivial phases can be
characterized in a unified manner by using scattering theory.

Previous works have considered the quantum transport
properties of Floquet systems [47–50]. The scattering problem
is typically defined in terms of a driven sample connected to
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multiple metallic electrodes, and the scattering matrix relates
the amplitudes of asymptotic scattering states in the metallic
leads. In contrast, our main focus is not studying transport
properties but establishing a topological classification of
Floquet systems in terms of the scattering matrix. Toward
that end, rather than attaching metallic electrodes, we impose
absorbing boundary conditions on a given sample to define
a simplified, yet fictitious, scattering problem [51]. As we
will show, the resulting scattering matrix enables us to fully
determine the topological properties of periodically driven
systems.

The Fermi level scattering matrix has been used to
formulate both strong and weak topological invariants for
time-independent Hamiltonians [52,53] as well as 1D quantum
walks [54], having the advantage of being naturally tailored
to the study of disordered systems. In this work, we extend
this approach to periodically driven systems, showing dif-
ferent examples of its application. Specifically, we formulate
topological invariants for the models of Refs. [38,42], based
on the constraints imposed on the scattering matrix by the
symmetries of the system. Furthermore, we show that the
original scattering matrix invariants developed to characterize
strong and weak static topological insulators can be readily
applied to driven systems, even in cases in which all bulk
Floquet bands are trivial. This unified approach mitigates the
need for new topological indices, enabling the study of a wide
class of both static and driven phases using the same invariant
expressions. As an example, we turn to the model studied in
Ref. [45] and reveal a richer topological structure consisting
of both strong and weak phases. We showcase some features
of weak phases that are unique to periodically driven systems,
such as the possibility of gapping out the edge modes by
breaking translation symmetry in time.

The rest of our work is organized as follows. In Sec. II, we
study the chiral-symmetric Floquet system of Refs. [38,42].
We determine the scattering matrix invariant and, based on its
structure, predict the localization behavior of edge states in
the presence of disorder. We find nontrivial phases of a Z2 (as
opposed to Z) nature, and we conclude that the edge states are
not robust to disorder that does not preserve chiral symmetry,
contrary to previous reports. We confirm this expectation
by performing numerical simulations. In Sec. III, we turn
to the particle-hole symmetric Floquet topological insulator
of Ref. [45], which hosts both strong and weak topological
phases. We find that the original, strong, and weak scattering
matrix invariants accurately describe the edge-state robustness,
even though all bulk bands are trivial. We conclude in Sec. IV.

II. CHIRAL SYMMETRIC DRIVEN SYSTEM

To date, there have been few studies on weak topological
effects in periodically driven systems. References [38,42]
have observed this behavior in 2D systems possessing chiral
symmetry. In this section, we turn to one such model, the
kicked quantum Hall system, and we use scattering theory to
determine its topological invariant.

The model describes spinless fermions on a square lattice
(lattice constant a = 1), where the position of each site is given
by the vector r = nxx̂ + nyŷ, with nx,y integers and x̂,ŷ unit
vectors pointing in the x and y directions, respectively.

The tight-binding Hamiltonian

HKQH = Jx

2

∑
nx,ny

|nx + 1,ny〉〈nx,ny |

+ Jy

2
einxα|nx,ny + 1〉〈nx,ny | + H.c. (1)

is expressed in terms of states |nx,ny〉 on lattice sites indexed
by (nx,ny). Here, Jx,y are the nearest-neighbor hopping
amplitudes in the x and y directions. The system is placed
in a uniform magnetic field, with α modeling the flux threaded
in each plaquette.

In the static case, Eq. (1) is the well-studied Hofstadter
model [55], showing a fractal pattern of gapped, Chern-
insulating phases. As in Refs. [38,42], we take Jx,y to be
periodic functions of time, with Jx(t) = Jx and Jy(t) =
Jy

∑
m δ(t − m),m ∈ Z. In other words, the hopping in the x

direction is kept constant, while the coupling in the y direction
is turned on periodically with a period T = 1, but only at
discrete times t = m.

When the system is infinite in one or more directions,
or alternatively in the presence of periodic boundary condi-
tions (PBCs), momentum becomes a good quantum number,
enabling us to express Eq. (1) in reciprocal space. The
time-dependent momentum-space Hamiltonian becomes

HKQH = Jx cos(kx) + Jy cos(ky − nxα)
∑
m

δ(t − m), (2)

where nx labels sites in the magnetic unit cell.
As long as there are no on-site potentials, the model

shows chiral symmetry, expressed as a staggered gauge
transformation. The chiral symmetry operator changes the sign
of the wave function on one of the two sublattices,

� : |nx,ny〉 → (−1)nx+ny |nx,ny〉. (3)

It is a unitary operator, �†� = �2 = 1. In real space it
anticommutes with the Hamiltonian, �HKQH� = −HKQH,
while in reciprocal space it amounts to a π shift in momentum,

�HKQH(kx,ky)� = HKQH(kx + π,ky + π )

= −HKQH(kx,ky). (4)

We set � = 1 and define the Floquet operator as propagating
states from t = 0.5 to 1.5:

FKQH = exp

(
−i

∫ 1.5

0.5
HKQH(t) dt

)
. (5)

In this so-called symmetric time frame [56,57], Eq. (5) can be
written as

FKQH = e−i Jx
2 cos(kx )e−iJy cos(ky−nxα)e−i Jx

2 cos(kx ). (6)

Due to the chiral symmetry of the periodically modulated
Hamiltonian (2), the Floquet operator (6) also shows chiral
symmetry, expressed as

�F = exp(inxπ ) exp(inyπ ). (7)

While on the Hamiltonian level chiral symmetry amounts to
changing the sign of the eigenvalues, in Floquet language it
reverses the direction of the time evolution,

�FFKQH�F = F†
KQH. (8)
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FIG. 1. Band structure of the Floquet operator (6) in an infinite strip geometry (infinite in y,L = 21 sites in the x direction). Parameters
are α = 2π/3, Jx = 2π/3, and Jy = π,2π,3π in the left, middle, and right panels, respectively. Red (dark gray) indicates states localized on
the left boundary and blue (light gray) indicates states on the right. From left to right, the bulk gap at ε = π shows zero, one, or two pairs of
counterpropagating edge modes, separated by a momentum difference �ky = π (horizontal arrows).

We set α = 2π/3, such that the system has three bulk
Floquet bands. In the following, we consider Eq. (6) either
in a strip geometry (infinite in y, finite in x) or discretized
on a square lattice of L × W sites. All numerical results are
obtained for tight-binding models defined using the KWANT

code [58,59].
Typical band structures obtained by diagonalizing the

Floquet operator FKQH|ψ〉 = exp(−iε)|ψ〉 in an infinite strip
geometry are shown in Fig. 1. As a function of the parameters
Jx,y , the model exhibits a variety of topological phases. The
top and bottom quasienergy gaps of Fig. 1 (ε = π/2 and
ε = 3π/2) show one or more edge modes with a nonzero net
chirality, a feature reminiscent of the quantum Hall effect. The
boundary modes occur on all edges, irrespective of orientation,
and they have been understood [42] in terms of the Floquet
winding number of Ref. [33].

We focus on edge modes in the gap at ε = π , which
have no net chirality but come in counterpropagating pairs.
Each pair is separated by a momentum difference of π .
Furthermore, unlike boundary states in the top and bottom
gaps, the counterpropagating modes depend on the orientation
of the edge, similar to weak topological insulators. For the
values of Jx,y used in the left panel of Fig. 1, there are no
gapless edge states on boundaries parallel to either the x or y

direction. In the middle panel both types of boundary show one
pair of edge modes, while in the right panel there are two pairs
on the edge parallel to y, and none along x. There is to date no
known topological invariant responsible for the presence and
robustness of these edge states.

The presence of counterpropagating modes has been pre-
viously identified as being a consequence of chiral symmetry.
Indeed, in a strip geometry the relation (8) becomes

�FFKQH(ky)�F = F†
KQH(ky − π ), (9)

such that for each state at energy ε and momentum ky there
must be a state at −ε and ky − π . Therefore, edge modes at
ε = ±π necessarily come in pairs. In the following, we will
determine the nature of this topological phase as well as the
explicit form of its topological invariant.

In the absence of disorder, momentum is a good quantum
number and a single pair of edge states is protected, since the
states must be separated by a momentum difference �ky = π .

Figure 1 also shows a situation in which there are two pairs
of counterpropagating modes at ε = π , raising the question
of whether this is a distinct phase or whether different pairs
of edge modes can annihilate and gap out if they overlap.
The answer will determine whether the phase is of a Z type,
with any number of protected edge modes, or of a Z2 type,
where only an odd number of pairs is protected. We test this
hypothesis in a controllable fashion by considering two copies
of Eq. (1), coupled in such a way as to preserve the chiral
symmetry (3) of the combined system (see Fig. 2). Each of the
two subsystems has one pair of edge modes, but one of them
is shifted in momentum relative to the other, ky → ky + δ.
This enables us to effectively slide one pair of edges in the
quasi-BZ by changing the value of δ. In a strip geometry, the
Hamiltonian of the combined system has the form

H2×KQH =
∑
nx

⎛⎝Jx

2

∑
j=1,2

|nx,j + 1〉〈nx,j |

+ Jy

2
einxα+iky |nx,1〉〈nx,1|

+ Jy

2
einxα+i(ky+δ)|nx,2〉〈nx,2|

+ Jc

2

∑
j �=j ′

eiky |nx,j 〉〈nx,j ′ | + H.c.

⎞⎠, (10)

FIG. 2. Side view of the Hamiltonian (10), consisting of two
copies of (1) labeled by j = 1,2 (top and bottom layers). One of the
three unit cells shown is marked by a box. The coupling within the top
and bottom layers is marked with orange and red lines, respectively,
while that between the layers is shown in blue. Notice that chiral
symmetry is preserved, as there is no coupling between layers in the
same unit cell.
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FIG. 3. Band structures of the model (10) in the same geometry as Fig. 1. We set α = Jx = 2π/3, Jy = 2π , and Jc = 0.6. In the left,
middle, and right panels, δ = 0.7π , 0.85π , and 0.98π , respectively. Sliding one pair of edge modes on top of the other (horizontal arrows)
causes them to annihilate and opens gaps in the spectrum. This indicates they are protected by a Z2 invariant.

where the index j (′) = 1,2 labels the two copies, and Jc is the
time-independent coupling between them. In Fig. 3, we show
that as the two pairs of edge modes are made to overlap,
gaps open in the spectrum. Therefore, there are only two
topologically distinct edge mode configurations, one pair of
counterpropagating modes versus no edge modes, indicating
that the nontrivial phase is protected by a Z2 as opposed to a
Z invariant.

To construct this invariant as well as test the conducting
properties of the edge, we turn to the scattering matrix
formalism. For a static Hamiltonian discretized on a finite
lattice, transport properties are usually obtained by connecting
one or more infinite, translationally invariant leads to the
system. This enables us to compute the scattering matrix,
which in the two-lead case reads

S =
(

r t

t ′ r ′

)
, (11)

in terms of the reflection and transmission amplitudes of lead
modes, r (′) and t (′).

For periodically driven systems, the scattering matrix
associated with a Floquet operator can be computed in a
slightly different fashion [60–62]. On a square lattice of L × W

sites, the Floquet operator (6) is an LW × LW matrix. Rather
than attaching infinite leads, we introduce absorbing terminals
at the two sides of the system, nx = 1 and nx = L. Defining a
2W × LW projector onto these terminals,

P =
{

1 if nx ∈ {1,L},
0 otherwise,

(12)

we can express the quasienergy-dependent Floquet scattering
matrix through the formula

S(ε) = P
[
1 − eiεF(1 − P T P )

]−1
eiεFP T , (13)

where the superscript T denotes transposition. The expres-
sion (13) can be understood by expanding the inverse matrix
in a geometric series, in which each subsequent term describes
time evolution over an additional period. Time evolution stops
after the state reaches the absorbing terminals, P , and contin-
ues otherwise, 1 − P T P [51]. The absorbing terminals only act
stroboscopically, at the beginning and end of each time period,
such that Eq. (13) describes a simplified, fictitious scattering

problem. Nevertheless, the unitarity of the Floquet operator F
implies that the scattering matrix is also unitary, S(ε)S†(ε) = 1,
which can be verified though a direct calculation.

In this setup, the Floquet scattering matrix takes the form
of Eq. (11), enabling us to compute the transmission from
one side of the system to the other, G = Tr t†t . At ε = π , the
presence of one pair of counterpropagating edge states leads
to a quantized transmission G = 2, since there is one right-
and one left-mover on each edge.

First we identify the constraints imposed by the chiral
symmetry on S. Toward that end, we consider a system with
an odd number of sites in the y direction (W odd), and we
apply twisted boundary conditions, as |nx,W 〉 = eiφ|nx,0〉.
The Floquet operator, and therefore also the scattering matrix,
now become functions of the twist angle φ, which plays the
same role as momentum in the chiral symmetry constraint of
Eq. (9). Plugging this constraint into the Floquet scattering
matrix definition (13) leads to a relation

�SS(ε,φ)�S = S†(−ε,φ − π ), (14)

where �S is a 2W × 2W matrix defined by �S = P�FP T .
In other words, �S changes the sign of one sublattice in the
absorbing terminals at nx = 1,L.

The relation (14) is reminiscent of that found for chiral
symmetric static systems [53], where at zero energy there
exists a basis in which the scattering matrix is Hermitian. For
the periodically driven system studied here, the π momentum
shift induced on the Floquet level carries over in the scattering
matrix description. Therefore, we introduce the chiral basis
S̃ = �SS, in which the reflection subblock obeys r̃(φ) =
r̃†(φ − π ) at ε = π . This enables us to formulate a topological
invariant by noting that for this quasienergy,

det r̃(φ) = det∗̃r(φ − π ). (15)

By Eq. (15), the complex phase of the determinant of r̃

must change sign as the twist angle φ is advanced by π . Since
the complex phase must be a continuous function of φ, only
two scenarios are possible. In the interval φ ∈ [0,π ] (half of
the effective BZ), either the phase of det r̃ crosses 0 an odd
number of times, or it crosses π an odd number of times, as
shown in Fig. 4.

The odd number of 0-crossings or π -crossings in half of the
BZ is a Z2 topological invariant, and it cannot change as long
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FIG. 4. Two possible ways in which the phase of det r̃ can evolve
as the twist angle is advanced from φ = 0 to φ = π . The solid and
dashed lines indicate topologically different scenarios, since they
cannot be deformed into each other as long as the bulk mobility
gap remains open (det r̃ �= 0). The presence of protected π -crossings
signals a topologically nontrivial phase in our choice of gauge.

as there is a mobility gap in the bulk: det r̃ �= 0. While the two
scenarios are topologically different, which of them occurs
is a matter of definition. To preserve the form of the chiral
symmetry requirement (9), we have used an odd number of
sites in the y direction, making r̃ a matrix with odd dimensions.
Therefore, depending on which of the two sublattices changes
sign under the application of �S , the determinant of r̃ will also
change sign, turning 0-crossings into π -crossings, and vice
versa. For definiteness, we chose a gauge in which the chiral
basis has det �S = −1, and we identify π -crossings with a
topologically nontrivial phase. Choosing the other sign would
imply interchanging the labels of Fig. 4.

By numerically computing the reflection matrix as a
function of twist angle, we have checked that this Z2 invariant
correctly describes the topological phases of the model.
Furthermore, the relation (15) still holds when disorder is
added to the system, provided the latter does not break chiral
symmetry. We therefore expect the edge state transmission to
be robust upon the inclusion of random hopping strengths Jx,y .
On the other hand, the system should fully localize if we add
random on-site potentials, which violate the chiral symmetry
requirement of Eqs. (8) and (15).

We confirm this numerically by including disorder in
one of two ways. For random bond disorder, we substitute
Jx,y → Jx,y(1 + δJ ), with δJ drawn independently for each
bond from the uniform distribution [−U,U ], with U the
strength of disorder. In the case of on-site disorder, we
introduce a random, time-independent chemical potential
term to the Hamiltonian (1), δμ|nx,ny〉〈nx,ny |, where δμ is
drawn independently for each lattice site from the same,
uniform distribution. The transmission scaling results of Fig. 5
confirm our expectations. Bond disorder leads to an algebraic
decay of the edge transmission, G ∼ 1/

√
L, characteristic of

two-dimensional statistical topological insulators [63]. The
edge remains delocalized, being pinned to a one-dimensional
critical point [18,64–67], and the phase of det r̃ still shows
protected π -crossings. In contrast, we find that on-site disorder
leads to an exponential suppression of edge transmission,
G ∼ exp(−cL), c = const, signaling localization.

Before concluding this section, we analyze the top and
bottom energy gaps appearing in Fig. 1. Away from ε = 0,π ,

FIG. 5. Log-log plot of the edge transmission of model (6) at
ε = π as a function of system length L for bond (red) and on-site
(blue) disorder, with W = 40, α = Jx = 2π/3, and Jy = 2π . For
on-site disorder we have used a disorder strength U = 1.8, while
for bond disorder it was set to U = 0.45. In each case, 600–800
independent disorder realizations were averaged over. The solid and
dashed lines show the expected algebraic and exponential decay of
transmission, respectively.

the system does not obey chiral symmetry, and there is an
imbalance in the number of left and right movers on an
edge. Since these edge states manifest in the absence of any
symmetries, the scattering matrix invariant originally devel-
oped to describe the Chern number of static systems [53,68]
correctly captures the net chirality of the edge states. By
applying twisted boundary conditions as before, we write the
topological invariant as the winding number of det r ,

CSM = 1

2πi

∫ 2π

0
dφ

d

dφ
log det r(φ). (16)

For the parameters in the left and right panels of Fig. 1, we
find that the top gap has a scattering matrix Chern number
CSM = +1, while the bottom one has CSM = −1. By repeating
the calculation for the parameters of the middle panel, we
find CSM = −2 and CSM = +2 for the top and bottom gaps,
respectively.

As we have shown, scattering theory enables us to fully
characterize the topological phases of the model (6). The
counterpropagating modes appearing in the gap at ε = π

can be understood in terms of an invariant readily obtained
by means of a symmetry analysis. Chiral modes present in
other gaps are accounted for by the invariant (16), originally
developed in the context of static Chern insulators. In the
following section, we will further explore the connection
between the scattering matrix invariants of static systems and
the nontrivial phases of Floquet topological insulators.

III. PARTICLE-HOLE SYMMETRIC DRIVEN SYSTEM

One of the advantages of scattering theory in the study of
periodically driven topological phases is that it allows for the
study of both time-independent and Floquet topological insu-
lators within the same unified framework. In this section, we
use the scattering matrix formalism to reveal and characterize
the rich structure of a model consisting of both strong and
weak topological phases. As we will show, scattering matrix
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FIG. 6. Setup and driving protocol of Hamiltonian (18). We
consider an L × W hexagonal lattice (sublattices A and B), with
Bravais vectors ax and ay . When Ju = 0, only one of the hopping
amplitudes Jx,y,z (blue, green, and red, respectively) is turned on at
any given time. For Js = π/2, particles at any site in the bulk return
to their original position after two driving periods, while those on the
edges form chiral propagating modes, as shown by the arrows.

invariants of Floquet systems can take the same form as in
their static counterparts, even when bulk Floquet bands fail to
capture the nontrivial character of a phase.

We consider an example of particle-hole symmetric driven
system, introduced in Ref. [45]. It describes spinless fermions
on a hexagonal lattice in the presence of nearest-neighbor
hopping. The unit cell consists of two sites belonging to the
two sublattices, A and B, and the Bravais vectors of the lattice
ax and ay are defined as in Fig. 6.

Setting the lattice constant to 1, the momentum-space tight-
binding Hamiltonian has the form

H =
∑

k

(c†A,kc
†
B,k)H

(
cA,k

cB,k

)
, (17)

with

H = [Jx cos(ky − kx) + Jy cos(ky) + Jz]σx

− [Jx sin(ky − kx) + Jy sin(ky)]σy. (18)

Here, c†A/B,k,cA/B,k are fermionic creation and annihilation
operators on the A and B sublattices, and Jx,y,z are independent
hopping amplitudes describing three different types of bonds,
as shown in Fig. 6. The Pauli matrices σi appearing in H
parametrize the sublattice degree of freedom.

In the absence of driving, the Hamiltonian (18) belongs
to class BDI in the Altland-Zirnbauer classification [69]. It is
characterized by time-reversal, particle-hole, as well as chiral
symmetries, all of which square to +1. The corresponding
operators are T = K, P = σzK, and C = σz, with K complex
conjugation, such that

H(k) =H∗(−k),

σzH(k)σz = − H∗(−k),

σzH(k)σz = − H(k).

(19)

We choose a driving protocol that involves the cyclic
modulations of the hopping amplitudes Ji [45]. Each of the
three hoppings contains a uniform term Ju that is independent

of time τ , as well as a term Js that is periodically varied in a
stroboscopic manner. The three-step driving protocol reads as
follows:

(i) Jx = Js + Ju,Jy,z = Ju for nT < τ � nT + T/3,
(ii) Jy = Js + Ju,Jz,x = Ju for nT + T/3 < τ � nT +

2T/3, and
(iii) Jz = Js + Ju,Jx,y = Ju for nT + 2T/3 < τ � nT +

T , with T the driving period.
In the following, we set T = 3 and � = 1 expressing the

Floquet operator as the product

F = exp(−iH3) exp(−iH2) exp(−iH1), (20)

where Hi are the Hamiltonians during the three steps of the
driving protocol shown above. Even though at every instance
of time the Hamiltonian (18) is time-reversal symmetric,
the sequence in which the x-, y-, and z-type hoppings are
modulated implies that the Floquet operator (20) has broken
time-reversal symmetry.

In the simplest case, we set Ju = 0, such that during each
of the three steps of the driving protocol only one of the Jx,y,z

hoppings is nonzero. When additionally Js = π/2, a particle
is transferred with unit probability between neighboring sites.
Therefore, particles in the bulk fully encircle one hexagonal
plaquette in two driving periods, leading to the formation of
dispersionless (flat) bulk bands. In the presence of a boundary,
the same driving protocol leads to the formation of a chiral
propagating mode on the edge of the lattice, as shown in Fig. 6.
We recover the dispersionless bulk bands as well as the chiral
edge modes in the quasienergy band structure of the system
[see Fig. 7(a)].

The emergence of the flat bulk bands attracts significant
attention in its own right, in the context of possible realizations
of exotic many-body phases in such systems [70–73]. In the
case of a nontrivial topology of the flat band, reflected in the
nonzero band Chern number, chiral edge states can emerge at
the boundary of a finite system as a result of bulk-boundary
correspondence.

FIG. 7. Band structures of the model (18) at Js = π/2 in a strip
geometry (infinite along ax,W = 20). In panel (a), Ju = 0 and there
are two flat bulk bands at quasienergies ε = ±π/2 as well as one
chiral edge mode present at all quasienergies. In panel (b) we set
Ju = 0.25, such that there is one chiral mode at ε = π and a pair of
counterpropagating modes at ε = 0. The strong and weak invariants
at ε = π read (CSM,νx,π ,νy,π ) = (−1,1,1) in both panels. At ε = 0,
the system in panel (a) is in a (−1,−1,−1) phase, while panel (b) has
(0,−1,−1). The color scale denotes the eigenstate intensity on the
first and last 10% of lattice sites.
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Interestingly, here for Ju = 0 and Js = π/2 the bulk Flo-
quet operator, F = i[cos(kx)σx + sin(kx)σy], is independent
of ky , meaning that both of the flat bands have zero Chern
number, and all the bulk states are trivially localized. The
topological protection of the edge states can nevertheless
be deduced from the topological invariant formulated in
Ref. [33], which takes into account the full time evolution
of the Hamiltonian (18) throughout the driving cycle.

In the following, we show that in addition to reproducing
this invariant, scattering theory can also reveal a much richer
topological structure. Toward that end, we consider finite sys-
tems of size L × W (see Fig. 6), where L denotes the number
of vertical bonds in the ax direction and W is the number
of zigzag chains in the ay direction. The scattering matrix
associated with the Floquet operator is obtained by introducing
absorbing terminals on the first and last zigzag chain.

We repeat the analysis of Sec. II, finding that the presence
of a chiral edge mode leads to a quantized transmission
G = 1. As before, we apply twisted boundary conditions
(twist angle φ) in the ax direction, and we express the strong
topological invariant as the winding number of det r; see
Eq. (16). Remarkably, the scattering matrix invariant originally
developed to compute the Chern number of static systems
correctly describes this phase, even though all bulk bands are
trivial. We find that the scattering matrix Chern number equals
CSM = −1 for all quasienergies ε in the bulk gaps of Fig. 7(a).

Beyond the topological classification in terms of the strong
invariant, the Hamiltonian (18) shows a richer structure due
to the presence of particle-hole symmetry. The cyclic nature
of the driving protocol leads to a Floquet operator (20),
which breaks time-reversal symmetry but shows particle-hole
symmetry (PHS) of the form

F(k) = σzF∗(−k)σz. (21)

As such, for every eigenstate at quasienergy ε and mo-
mentum k there must be a state at −ε and −k. A chiral
edge mode present at ε = 0,±π must therefore exist at points
where k = −k. This is the case for the band structure shown
in Fig. 7(a), where the edge state crosses kx = 0 for ε = π and
kx = π for ε = 0. The two edge-mode configurations at ε = 0
and ε = π cannot be continuously deformed into each other
without breaking particle-hole symmetry or closing the bulk
gap, signaling that the two phases are topologically distinct.

In other words, the parity of edge modes at momenta
kx = 0,π appearing in Fig. 7(a) is topologically protected.
In a static topological superconductor, this protection would
be expressed in terms of a weak invariant [17,18,74,75].
Motivated by this fact, we analyze the gapped phases of
the model (20) in terms of the scattering matrix invariants
developed to classify weak topological superconductors.

To identify how the invariant emerges, we analyze the
symmetries constraining the scattering matrix. Plugging the
particle-hole symmetry constraint (21) into the scattering
matrix expression (13) leads to a relation

S(ε) = σzS
∗(−ε)σz, (22)

where σz acts on the sublattice degree of freedom in the
absorbing terminals. As a consequence of Eq. (22), at the
particle-hole symmetric quasienergies ε = 0,π there exists a
basis in which the scattering matrix, and therefore also its

reflection subblock, is real. We choose the basis r̃ = UrU †,
with U = diag(1,i,1,i, . . . ,1,i) such that r̃ = r̃∗, and we
introduce Z2 weak-scattering matrix invariants counting the
parity of edge modes at kx = 0 and π ,

νx,0 = sgn det r̃(φ = 0),

νx,π = sgn det r̃(φ = π ).
(23)

Here, φ = 0,π corresponds to applying periodic or antiperi-
odic boundary conditions in the ax direction, respectively. The
weak invariants in the ay direction, νy,0/π , can be defined
in a similar manner by introducing absorbing terminals at
ax = 1,L and using (anti)periodic boundary conditions along
ay [76].

The topological numbers of Eqs. (16) and (23) have features
similar to those defined for static systems. The strong Z index
counts the net number of chiral modes, whereas the weak Z2

invariants determine the parity of modes crossing at momen-
tum 0 or π . As such, the weak invariants are constrained by
the parity of the strong index CSM as νi,0νi,π = (−1)CSM , with
i = x,y [77]. Characterizing a topological phase, therefore,
requires specifying CSM, νx,π , as well as νy,π , since their
values can change independently [11]. In accordance with the
terminology used in static weak topological superconductors,
we label a phase where an odd number of edge modes cross
momentum π as nontrivial [17,78].

For Ju = 0 and Js = π/2 we find that in both directions
i = x,y we have νi,0 = −1 and νi,π = 1 at ε = π , while their
signs are reversed at ε = 0. Therefore, the ε = 0 phase of
Fig. 7(a) is nontrivial in both a strong and a weak sense. Even
though the strong invariant CSM = −1 remains unchanged,
weak indices can distinguish between the two phases, such
that an interface between the phase at ε = 0 and ε = π would
host a pair of counterpropagating edge modes [11]. A purely
weak phase is obtained in Fig. 7(b), where turning on a small
uniform hopping, Ju = 0.25, changes the strong invariant to
CSM = 0 while keeping νi,π = −1 at ε = 0.

As in time-independent topological superconductors, the
weak invariants introduced above are protected by the com-
bination of PHS and translational symmetry of the system.
Breaking the latter, for instance by introducing a staggered
modulation of hopping amplitudes, would fold the quasi-BZ
of Fig. 7 in momentum, converting the nontrivial weak
invariants at ε = 0 into trivial ones. Nevertheless, we find
that weak invariants are robust to disorder as long as the latter
preserves translational symmetry on average, and the ε = 0
phase in Fig. 7(b) can be thought of as the periodically driven
analog of a statistical topological insulator once disorder is
introduced [63]. In this phase, we verify that adding a random
component to Ju, drawn independently for each bond from
a uniform distribution, leads to an algebraically decaying
edge transmission G ∼ 1/

√
L. The counterpropagating edge

states avoid localization due to a combination of particle-hole
symmetry and average translational symmetry, effectively
forming a Floquet Kitaev edge [18].

There are, however, important differences between the
topological classification of time-independent superconduc-
tors and that of the model (20). First, in periodically driven
systems there are two PHS quasienergies at which the weak
invariants can be defined, namely ε = 0 and π , allowing for a
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richer topological structure. Even though the weak invariants at
ε = 0,π are protected by the same set of symmetries, namely
PHS and translation along either ax or ay , they can vary
independently of each other. This is to be contrasted with the
topological classification of static systems [3,4,11] in which
different invariants always require different sets of protecting
symmetries.

Another feature unique to weak topological Floquet sys-
tems can be traced back to the periodicity of quasienergy.
In static systems, a weak phase may be destroyed by
a dimerization-induced breaking of translational symmetry,
leading to a doubling of the unit cell and a folding of the
BZ in momentum. In periodically driven systems, there is an
extra direction in which the BZ can be folded, i.e., that of
quasienergy. Such a breaking of time-translation symmetry
can be achieved by introducing a half-frequency component
in the driving protocol, effectively doubling the driving
period. This leads to a new phase at ε = 0, with invariants
(CSM,νx,π ,νy,π ) obtained by the composition of indices in the
original (prefolding) ε = 0 and ε = π phases. While in our
example the folded phase is obtained simply by the Z addition
of the strong index and the Z2 addition of the weak ones, more
complex composition rules may apply in a generic setting [77].

We show an example of time folding in Fig. 8, obtained us-
ing inequivalent hopping amplitudes Jx,y,z in Eq. (18). Setting
Js = π/2 and the uniform components to Ju,x = −0.05 and
Ju,y = Ju,z = 0.5, we obtain phases with indices (0,−1,−1)
at ε = 0 and (0,−1,1) at ε = π . The folding is implemented
by repeating the three-step driving protocol described above

FIG. 8. Band structure of the model (18) in an infinite strip
geometry with boundaries along the ax (top, W = 30) and ay

(bottom, L = 30) directions. We use Js = π/2 and inequivalent
uniform components of the hopping amplitudes, Ju,x = −0.05,Ju,y =
Ju,z = 0.5. In the right panels, the BZ is folded in quasienergy
by changing the stroboscopic part of Jx to Js,x = π/2 + 0.6 on
every second period. The invariants of the prefolding phases (left
panels), (CSM,νx,π ,νy,π ) = (0,−1,−1) at ε = 0 and (0,−1,1) at
ε = π , combine to form a new gapped phase with (0,1,−1) at ε = 0.
The color scale denotes the eigenstate intensity on the first and last
10% of the lattice sites.

twice, and altering the stroboscopic component of Jx during
every second period, as Js,x = Js + δJs , with δJs = 0.6. This
leads to a new gapped phase at ε = 0, with invariants (0,1,−1),
obtained by the composition of the original ones.

IV. CONCLUSION

In many static systems, topological properties are fixed
during the fabrication process. Part of the active interest in
Floquet systems comes from the possibility to tune these
properties by altering the driving protocol. Nevertheless, the
topological classification of periodically driven systems has
remained largely unexplored.

We have shown that topological phases of periodically
driven systems can be analyzed in a unified framework by
using scattering theory. In some cases, both static and Floquet
systems may be characterized by the same scattering matrix
invariants due to the similar transport properties of their edge
modes. This has enabled us to reveal a richer topological
structure in a previously studied model (Sec. III). We wrote
down expressions for both strong and weak topological
invariants, showing that they correctly describe the nontrivial
phases even when all bulk bands are trivial.

When driven systems show weak phases for which no time-
independent counterpart is known, as in Sec. II, scattering
theory can be readily used to formulate novel invariants, based
on the constraints imposed on the scattering matrix by the
symmetries of the system. Since scattering matrix invariants
are naturally tailored to the study of disordered systems, we
were able to use their expressions to deduce the conditions
under which the weak phase survives disorder.

Finally, we have shown that breaking translational symme-
try in time can be used to alter the topological invariants of
a phase. This novel feature is unique to Floquet topological
insulators and allows a greater level of control in the design
and manipulation of topological phases. Using the model
of Sec. III, we have demonstrated this idea and altered the
topological invariants of a weak phase by doubling the driving
period.

We emphasize that, even though we have focused on two
specific models, our scattering matrix approach to Floquet
systems is completely general. For instance, it can also
be applied to time reversal invariant Floquet topological
insulators or higher-dimensional systems, as was the case for
the scattering matrix invariants of static systems [53]. Our
method is numerical in nature and requires systems large
enough to avoid finite-size effects and show a well-defined
bulk mobility gap. However, given a system size, Floquet
scattering matrix invariants are more efficient to compute than
those based on wave functions. No knowledge of Floquet
eigenstates or time integration is required, and the biggest
computational cost comes from inverting the time-evolution
operator in Eq. (13).

We hope our work will pave the way toward a full classi-
fication of topological phases in periodically driven systems,
which would parallel that of time-independent Hamiltonians.
Additionally, our work will prove useful in determining
the robustness to disorder of nontrivial phases, an essential
ingredient for their experimental realization.
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[47] M. Moskalets and M. Büttiker, Phys. Rev. B 66, 205320

(2002).
[48] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys.

Rev. B 84, 235108 (2011).
[49] L. E. F. Foa Torres, P. M. Perez-Piskunow, C. A. Balseiro, and

G. Usaj, Phys. Rev. Lett. 113, 266801 (2014).

075405-9

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1038/nphys2513
http://dx.doi.org/10.1038/nphys2513
http://dx.doi.org/10.1038/nphys2513
http://dx.doi.org/10.1038/nphys2513
http://dx.doi.org/10.1103/PhysRevB.88.085110
http://dx.doi.org/10.1103/PhysRevB.88.085110
http://dx.doi.org/10.1103/PhysRevB.88.085110
http://dx.doi.org/10.1103/PhysRevB.88.085110
http://dx.doi.org/10.1103/PhysRevB.88.075142
http://dx.doi.org/10.1103/PhysRevB.88.075142
http://dx.doi.org/10.1103/PhysRevB.88.075142
http://dx.doi.org/10.1103/PhysRevB.88.075142
http://dx.doi.org/10.1103/PhysRevLett.111.056403
http://dx.doi.org/10.1103/PhysRevLett.111.056403
http://dx.doi.org/10.1103/PhysRevLett.111.056403
http://dx.doi.org/10.1103/PhysRevLett.111.056403
http://dx.doi.org/10.1103/PhysRevB.89.224503
http://dx.doi.org/10.1103/PhysRevB.89.224503
http://dx.doi.org/10.1103/PhysRevB.89.224503
http://dx.doi.org/10.1103/PhysRevB.89.224503
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1088/1367-2630/17/4/043014
http://dx.doi.org/10.1088/1367-2630/17/4/043014
http://dx.doi.org/10.1088/1367-2630/17/4/043014
http://dx.doi.org/10.1088/1367-2630/17/4/043014
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.106.106802
http://dx.doi.org/10.1103/PhysRevLett.106.106802
http://dx.doi.org/10.1103/PhysRevLett.106.106802
http://dx.doi.org/10.1103/PhysRevLett.106.106802
http://dx.doi.org/10.1038/ncomms1969
http://dx.doi.org/10.1038/ncomms1969
http://dx.doi.org/10.1038/ncomms1969
http://dx.doi.org/10.1038/ncomms1969
http://dx.doi.org/10.1103/PhysRevB.89.104523
http://dx.doi.org/10.1103/PhysRevB.89.104523
http://dx.doi.org/10.1103/PhysRevB.89.104523
http://dx.doi.org/10.1103/PhysRevB.89.104523
http://dx.doi.org/10.1088/1367-2630/16/6/063049
http://dx.doi.org/10.1088/1367-2630/16/6/063049
http://dx.doi.org/10.1088/1367-2630/16/6/063049
http://dx.doi.org/10.1088/1367-2630/16/6/063049
http://dx.doi.org/10.1038/nphys2442
http://dx.doi.org/10.1038/nphys2442
http://dx.doi.org/10.1038/nphys2442
http://dx.doi.org/10.1038/nphys2442
http://dx.doi.org/10.1038/nmat3449
http://dx.doi.org/10.1038/nmat3449
http://dx.doi.org/10.1038/nmat3449
http://dx.doi.org/10.1038/nmat3449
http://dx.doi.org/10.1038/ncomms2191
http://dx.doi.org/10.1038/ncomms2191
http://dx.doi.org/10.1038/ncomms2191
http://dx.doi.org/10.1038/ncomms2191
http://dx.doi.org/10.1038/nphys3264
http://dx.doi.org/10.1038/nphys3264
http://dx.doi.org/10.1038/nphys3264
http://dx.doi.org/10.1038/nphys3264
http://dx.doi.org/10.1002/pssr.201206451
http://dx.doi.org/10.1002/pssr.201206451
http://dx.doi.org/10.1002/pssr.201206451
http://dx.doi.org/10.1002/pssr.201206451
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1126/science.1239834
http://dx.doi.org/10.1126/science.1239834
http://dx.doi.org/10.1126/science.1239834
http://dx.doi.org/10.1126/science.1239834
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.111.136402
http://dx.doi.org/10.1103/PhysRevLett.111.136402
http://dx.doi.org/10.1103/PhysRevLett.111.136402
http://dx.doi.org/10.1103/PhysRevLett.111.136402
http://dx.doi.org/10.1103/PhysRevB.87.115420
http://dx.doi.org/10.1103/PhysRevB.87.115420
http://dx.doi.org/10.1103/PhysRevB.87.115420
http://dx.doi.org/10.1103/PhysRevB.87.115420
http://dx.doi.org/10.1103/PhysRevB.88.155133
http://dx.doi.org/10.1103/PhysRevB.88.155133
http://dx.doi.org/10.1103/PhysRevB.88.155133
http://dx.doi.org/10.1103/PhysRevB.88.155133
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevB.90.115423
http://dx.doi.org/10.1103/PhysRevB.90.115423
http://dx.doi.org/10.1103/PhysRevB.90.115423
http://dx.doi.org/10.1103/PhysRevB.90.115423
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevLett.114.106806
http://dx.doi.org/10.1103/PhysRevLett.114.106806
http://dx.doi.org/10.1103/PhysRevLett.114.106806
http://dx.doi.org/10.1103/PhysRevLett.114.106806
http://dx.doi.org/10.1103/PhysRevLett.112.026805
http://dx.doi.org/10.1103/PhysRevLett.112.026805
http://dx.doi.org/10.1103/PhysRevLett.112.026805
http://dx.doi.org/10.1103/PhysRevLett.112.026805
http://dx.doi.org/10.1140/epjb/e2014-50465-9
http://dx.doi.org/10.1140/epjb/e2014-50465-9
http://dx.doi.org/10.1140/epjb/e2014-50465-9
http://dx.doi.org/10.1140/epjb/e2014-50465-9
http://dx.doi.org/10.1103/PhysRevB.90.205108
http://dx.doi.org/10.1103/PhysRevB.90.205108
http://dx.doi.org/10.1103/PhysRevB.90.205108
http://dx.doi.org/10.1103/PhysRevB.90.205108
http://dx.doi.org/10.1016/j.ssc.2014.10.024
http://dx.doi.org/10.1016/j.ssc.2014.10.024
http://dx.doi.org/10.1016/j.ssc.2014.10.024
http://dx.doi.org/10.1016/j.ssc.2014.10.024
http://dx.doi.org/10.1103/PhysRevB.90.195419
http://dx.doi.org/10.1103/PhysRevB.90.195419
http://dx.doi.org/10.1103/PhysRevB.90.195419
http://dx.doi.org/10.1103/PhysRevB.90.195419
http://dx.doi.org/10.1103/PhysRevLett.112.156801
http://dx.doi.org/10.1103/PhysRevLett.112.156801
http://dx.doi.org/10.1103/PhysRevLett.112.156801
http://dx.doi.org/10.1103/PhysRevLett.112.156801
http://dx.doi.org/10.1103/PhysRevLett.115.256803
http://dx.doi.org/10.1103/PhysRevLett.115.256803
http://dx.doi.org/10.1103/PhysRevLett.115.256803
http://dx.doi.org/10.1103/PhysRevLett.115.256803
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1088/1367-2630/17/12/125014
http://dx.doi.org/10.1088/1367-2630/17/12/125014
http://dx.doi.org/10.1088/1367-2630/17/12/125014
http://dx.doi.org/10.1088/1367-2630/17/12/125014
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevLett.113.266801
http://dx.doi.org/10.1103/PhysRevLett.113.266801
http://dx.doi.org/10.1103/PhysRevLett.113.266801
http://dx.doi.org/10.1103/PhysRevLett.113.266801


I. C. FULGA AND M. MAKSYMENKO PHYSICAL REVIEW B 93, 075405 (2016)

[50] P. M. Perez-Piskunow, G. Usaj, C. A. Balseiro, and L. E. F. Foa
Torres, Phys. Rev. B 89, 121401 (2014).

[51] A. Tajic, Ph.D. thesis, Leiden University, 2005.
[52] I. C. Fulga, F. Hassler, A. R. Akhmerov, and C. W. J. Beenakker,

Phys. Rev. B 83, 155429 (2011).
[53] I. C. Fulga, F. Hassler, and A. R. Akhmerov, Phys. Rev. B 85,

165409 (2012).
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