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Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain
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Strain engineering is one of the most promising and effective routes toward continuously tuning the electronic
and optic properties of materials, while thermal properties are generally believed to be insensitive to mechanical
strain. In this paper, the strain-dependent thermal conductivity of monolayer silicene under uniform biaxial tension
is computed by solving the phonon Boltzmann transport equation with interatomic force constants extracted from
first-principles calculations. Unlike the commonly believed understanding that thermal conductivity only slightly
decreases with increased tensile strain for bulk materials, it is found that the thermal conductivity of silicene can
increase dramatically with strain. Depending on the size, the maximum thermal conductivity of strained silicene
can be a few times higher than that of the unstrained case. Such an unusual strain dependence is mainly attributed
to the dramatic enhancement in the acoustic phonon lifetime. Such enhancement plausibly originates from the
flattening of the buckling of the silicene structure upon stretching, which is unique for silicene as compared with
other common two-dimensional materials. Our findings offer perspectives on modulating the thermal properties
of low-dimensional structures for applications such as thermoelectrics, thermal circuits, and nanoelectronics.
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I. INTRODUCTION

Two-dimensional (2D) materials have been extensively
studied in the past decade because of their novel physical
and chemical properties [1–3] and potential applications [4,5].
For example, it has been found that graphene has extremely
high thermal conductivity [6], which has great potential
in applications including electronic cooling and composite
materials. Silicene is the silicon counterpart of graphene and
another typical 2D material with a honeycomb lattice structure.
Compared to graphene, silicene is more compatible with
silicon-based semiconductor technology and therefore has
greater potential in nanoelectronic applications. Silicene has
also been found to have opened a tunable band gap when
a transverse electric field is applied [7–9]. Monolayer sil-
icene has been successfully fabricated on substrates such
as Ag(110) [10], Ir(111) [11], and Ag(111) [12] surfaces.
Recently, Tao et al. have demonstrated silicene transistors
operating at room temperature [5]. Although the performance
is still moderate and the lifetime of this transistor is only a
few minutes, it has attracted significant research interest in
silicene-based devices [13–15].

On the other hand, the intrinsic physical properties of
silicene, such as lattice thermal conductivity, have been an
active area of research. Although the thermal conductivity
of silicene has not been measured in experiments due to
the difficulty of synthesizing freestanding silicene, several
numerical simulations have predicted the thermal conductivity
of silicene and the results at 300 K range from 5 to
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69 W/mK [16–21]. Most of the numerical simulations are
based on classical molecular dynamics and the discrepancy of
results mainly arises from the different interatomic interaction
potentials used. Notably, first-principles-based lattice dynam-
ics predicted that the thermal conductivity of silicene is in the
range of 20–30 W/mK [21], which should be more reliable.
In our previous first-principles calculations [20], the thermal
conductivity of 9.4 W/mK at 300 K was not refined due to the
small cutoff used for the anharmonic force constant calculation
and not imposing the sum rule [22]. Our new calculation results
are consistent with the one by Gu and Yang [21]. Despite recent
efforts to describe the properties of unstrained silicene, in real
applications, nanoscale devices usually contain residual strain
after fabrication [23]. It is thus important to investigate possible
strain effects on the properties of silicene. It was found that a
mechanical tensile strain less than 5% could tune the electronic
structure of silicene [24] and larger tensile strain (7.5%) could
induce a semimetal-metal transition [25]. On the other hand,
using first-principles it has been demonstrated that the silicene
structure remains buckled even when 12.5% tensile strain is
applied [25,26].

In comparison to the structural and electronic properties, the
strain effect on the lattice thermal conductivity of silicene is
less investigated. Pei et al. [18] and Hu et al. [19] investigated
the effect of uniaxial strain on the thermal conductivity based
on the classical nonequilibrium molecular dynamics method.
Pei et al. studied tensile strain up to 12% and concluded that
the thermal conductivity first increases slightly (around 10%
increment) and then decreases with an increased amount of
tensile strain. Hu et al. found that the thermal conductivity of
silicene sheet and silicene nanoribbon experiences monotonic
increase by a factor of 2 with tensile strain up to 18%.
The modified embedded-atom method (MEAM) [27] and
original Tersoff potential [28] were used in their simulations,
respectively. However, both potentials are developed for bulk
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silicon, so directly applying those potentials to the new 2D
silicene structure is questionable. For example, the Tersoff
potential cannot even reproduce the buckled structure of
silicene and the MEAM potential seems to overestimate
the buckling distance. It is well known that the interatomic
potential directly determines the quality of classical molecular
dynamics simulation. Therefore, in order to precisely predict
the strain effect on the lattice thermal conductivity of silicene
and identify the underlying mechanism, it is necessary to
calculate the lattice thermal conductivity of silicene under
different strains using a more accurate method.

In this paper, the strain-dependent thermal conductivity of
monolayer silicene is calculated based on the single-mode
relaxation time approximation (RTA) and iterative solution of
the Boltzmann transport equation (BTE), where the harmonic
and anharmonic interatomic force constants (IFCs) are de-
termined using first-principles calculations. The contributions
of different modes under different strains are analyzed. The
governing mechanisms are analyzed and compared with other
materials.

II. METHODS AND SIMULATION DETAILS

From the solution of the BTE, the lattice thermal conduc-
tivity in the x direction is obtained as [29]

kxx
l = 1

kBT 2�N

∑
λ

f0(f0 + 1)(�ωλ)2vx,λFx,λ, (1)

where kB , T , �, and N are Boltzmann constant, temperature,
the volume of the unit cell, and the number of q points in the
first Brillouin zone, respectively. The sum goes over phonon
mode λ that consists of both wave vector q and phonon branch
ν. f0 is the equilibrium Bose-Einstein distribution function. �

is the reduced Planck constant. ωλ is the phonon frequency,
and vx,λ is the phonon group velocity in the x direction. The
last term Fx,λ is expressed in Ref. [29] as

Fx,λ = τλ(vx,λ + �λ), (2)

where τλ is the phonon RTA lifetime. �λ is a correction term
that eliminates the inaccuracy of RTA by iteratively solving
BTE. When �λ is equal to zero, the RTA result for thermal
conductivity is obtained. Equation (1) can be rearranged with
the expression for volumetric phonon specific heat [30] cph

and the RTA result for thermal conductivity becomes

kxx
l = 1

N

∑
λ

cph,λv
2
x,λτλ. (3)

The thermal conductivity accumulation function is defined as
the contribution to thermal conductivity by phonons with mean
free path less than �0, which is expressed as

kacc(�0) = 1

N

vx,λτλ<�0∑
λ

cph,λv
2
x,λτλ. (4)

When the phonon-phonon scattering, isotope scattering, and
boundary scattering are considered, the RTA lifetime τλ can
be computed according to the Matthiessen rule [31]:

1

τλ

= 1

τ
ph

λ

+ 1

τ iso
λ

+ 1

τ b
λ

. (5)

The phonon-phonon lifetime for a three-phonon scattering
process is computed as the inversion of the intrinsic scattering
rate [29]:

τ
ph

λ = 1

	λ

= N

(∑
λ′λ′′

	+
λλ′λ′′ + 1

2

∑
λ′λ′′

	−
λλ′λ′′

)−1

, (6)

where λ′ and λ′′ denote the second and third phonon mode that
scatter with phonon mode λ. 	+

λλ′λ′′ and 	−
λλ′λ′′ are the intrinsic

three-phonon scattering rates for absorption processes λ +
λ′ → λ′′ and emission processes λ → λ′ + λ′′, respectively.
The boundary scattering is the only term that depends on the
direction of the phonon group velocity explicitly, which can
be expressed as [32]

τ b
λ = Lx

2|vx,λ| , (7)

where Lx is the distance between the two boundaries in x

direction. For more details about the method we refer the
reader to Refs. [29–32]. Both RTA and iterative method are
used to predict thermal conductivity in our calculation.

First-principles calculations were carried out using the
VASP package [33]. In all our calculations, we used the
projector augmented-wave method [34] and the Perdew-
Burke-Ernzerhof (PBE) exchange and correlation [35]. A large
energy cutoff of 400 eV was chosen. A vacuum spacing of
15 Å was used to prevent interactions between layers. The
electronic stopping criterion was 10−8 eV. The hexagonal
symmetry was enforced during the geometry optimization. A
hexagonal primitive unit cell was first generated and optimized
with a 30 × 30 × 1 k mesh for electronic integration, and
then a 5 × 5 × 1 supercell was built and re-optimized with
a 6 × 6 × 1 k mesh until the modulus of the force acting on
each atom was less than 1.6 × 10−5 eV/Å. For unstrained
silicene, the external pressure in the xy plane was −0.02 kB
after supercell optimization. The supercell was then used to
compute the harmonic IFCs required for the phonon dispersion
calculation. We used the Phonopy package [36] to compute
and diagonalize the dynamical matrix and obtain the phonon
dispersion curve. The anharmonic IFCs were extracted using
the code from ShengBTE package [29] called THIRDORDER.PY.
For this calculation, up to the fourth-nearest neighbors were
considered. THIRDORDER.PY also applies the sum rules to the
anharmonic IFCs. Finally, we use the ShengBTE package
to compute the thermal conductivity in the x direction with
the harmonic and anharmonic IFCs. Up to a 201 × 201 × 1
q mesh, which samples the first Brillouin zone, was tested
for our phonon-scattering calculation. A thickness of 4.2
Å, which is twice the van der Waals radius of the silicon
atom, were considered. Isotope scattering with the natural
isotopic distribution of silicon was considered when solving
the BTE, as implemented in ShengBTE. We also tested all the
unstrained and strained cases without isotope scattering and
the results were quite similar. Boundary scattering was taken
into consideration in the x direction. We added the boundary
scattering term by modifying the original ShengBTE code.
For the strained structures we proceeded in the same way.
They were however optimized with a fixed strained lattice
constant. Strained structures were generated by stretching the
lattice constant a and the width in the x direction Lx by a
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FIG. 1. Bond length and buckling distance as a function of strain.
Inset: Primitive unit cell structures for unstrained and 10% strained
silicene.

certain percentage ε = (aε − a0)/a0 = (Lε
x − L0

x)/L0
x , where

the superscript ε denotes the applied strain in strained silicene
and 0 denotes unstrained silicene.

III. RESULTS AND DISCUSSION

A. Structure

The optimized lattice constant of unstrained silicene is
3.87 Å. Figure 1 shows the Si-Si bond length and buckling
distance of silicene as a function of strain. The buckling
distance first decreases significantly with increasing strain
from 0% to 4%, and then decreases slowly from 4% to 6%,
and finally stays almost unchanged from 6% to 10%. The
small fluctuation from 6% to 10% strain can be attributed
to numerical uncertainty. On the other hand, the Si-Si bond
length keeps increasing when strain becomes larger. This
result is similar to previous first-principles calculations [25].
It is known that π bonding is weaker in silicene than that in
graphene because of the longer bond distance. The sp2 bonding
will be dehybridized into sp3-like bonding [37,38], so silicene
cannot have a complete planar structure as graphene, even with
large strain. We also perceive that the ratio of buckling distance
to bond length (nearest-neighbor distance) keeps decreasing
with larger strain, which means that the structure becomes
more planar under larger strain. The structures of unstrained
silicene and silicene under 10% strain are shown in the inset of
Fig. 1. It can be clearly seen that strain will reduce the buckling
distance and result in longer atomic bond length.

B. Dispersion

Figure 2 shows the phonon dispersion curve in high-
symmetry directions. The phonon dispersion curve plays a
crucial role in computing the correct thermal conductivity [39].
Our result for the phonon dispersion curve for unstrained sil-
icene is similar to other first-principles calculations [7,38,40].
Since silicene has a small buckling, its structure does not have
reflectional symmetry [41] across the xy plane. As a result,
the vibrational pattern of flexural acoustic mode is not purely
out-of-plane, as demonstrated in our previous work [42].
Hereafter we denote this flexural acoustic phonon branch as

FIG. 2. Phonon dispersion curves of unstrained silicene and
strained silicene under 4% and 10% tensile strain.

the FA branch to avoid confusion with the purely out-of-plane
acoustic (ZA) branch in graphene. Gu and Yang suggested that
due to the buckling, the FA branch is not quadratic near the
zone center (q → 0). Instead, it has a linear component and
therefore a well-defined group velocity [21]. In this work we do
see a nonzero group velocity (Fig. 2) for the flexural mode of
unstrained silicene near zone center. Considering the limitation
on accuracy of first-principles calculation, it is also possible
that such a linear behavior is due to the small residue strain
in our system [43]. Some argue that the linear or quadratic
nature of the flexural mode could qualitatively change the
thermal conductivity of 2D materials [43]. Since this is not
a major purpose of this work, we later report the result for
finite size or finite q mesh, to avoid the argument on this
issue. In addition, in the range of 3–6 THz, the longitudinal
acoustic (LA) branch and flexural optical (FO) branch have
an avoided crossing [44]. This is because the LA and FO
modes have the same symmetry, which is again originated
from the buckling [45]. This is different from graphene where
the out-of-plane optical (ZO) and LA branch cross at about
25 THz (∼834 cm−1) [46].

Comparing with the dispersion of unstrained silicene,
the dispersion curves of optical phonon modes overall shift
downward when the applied tensile strain increases. This
shift is mainly due to the reduction of the material stiffness
under tensile strain, which is similar to other bulk and
low-dimensional materials [47,48]. It is interesting to note
that the frequency gap at the avoided crossing is reduced
when the tensile strain increases. We believe this can be
attributed to the fact that the structure of strained silicene is
becoming more planar when a larger strain is applied, as we
discussed earlier.

In order to quantify the acoustic phonon group velocity
near the zone center, we calculated the group velocities at
the 	 point for three acoustic modes. The group velocity of
the FA branch increases monotonically from 1075.7 m/s for
the unstrained case to 3287.0 m/s for 10% strain. This is
related to the increased stiffness in the out-of-plane direction
when we apply tensile strain in the in-plane directions. The
group velocity of the LA branch decreases monotonically from
9548.3 m/s for the unstrained case to 7184.6 m/s for 10%
strain, which is due to the increase in the Si-Si bond length
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and the weakened Si-Si interatomic interaction in the in-plane
directions. For the transverse acoustic (TA) branch, the group
velocity first increases from 5629.7 m/s for the unstrained
case to 5804.4 m/s for 4% strain, and then slightly decreases
to 5235.7 m/s for 10% strain. It should be noted that the
strain dependence of the zone center phonon group velocity of
silicene is quite different from that of bulk silicon, in which the
group velocity only changes slightly under ±3% strain [49].
The strain dependence is quite similar to graphene, where the
slope of the ZA branch increases with strain and the LA branch
decreases with strain [50].

C. Thermal conductivity

To ensure the accuracy of our thermal conductivity cal-
culation, convergence tests were first performed with respect
to the nearest-neighbor cutoff and then the density of the q

mesh. The details and results are presented in the Appendix.
We show that for the calculation of anharmonic IFCs, cutoff
at fourth-nearest neighbor is enough to achieve converged
thermal conductivity values. Regarding the convergence with
respect to the q mesh, from our simulation it seems that
for infinite size (without boundary scattering), the thermal
conductivity tends to diverge with denser q mesh, while for
finite size the thermal conductivity will converge. The possible
divergence of thermal conductivity for 2D materials has raised
a lot of debate recently. For example, in Ref. [21] it was claimed
that the thermal conductivity of silicene would diverge with
the sample size. Similar conclusions have been drawn in some
other literature for graphene [43]. On the other hand, Fugallo
et al. [50] argue that the thermal conductivity of graphene will
converge when the simulated sampling size goes up to 1 mm.
In their work, exact phonon BTE is solved and first-principles
calculations are employed to extract harmonic and anharmonic
IFCs. Barbarino et al. [51] also reach the same conclusion with
approach-to-equilibrium molecular dynamics simulations for
a graphene sample of 0.1 mm in size. Since the major purpose
of our work is to discuss the strain effect, we do not intend
to argue about this issue. We therefore report the results for
a finite q mesh (101 × 101 × 1 and 201 × 201 × 1) and/or
finite sample size (0.3, 3, and 30 μm). By using a finite q

mesh, we actually exclude those extremely long wavelength
acoustic phonon modes, which are believed to be responsible
for the possible divergence of the thermal conductivity [43].
For finite sample size, the boundary scattering imposes a limit
on the phonon mean free path (MFP) to avoid divergence. The
results reported below for finite sample sizes are the thermal
conductivity values obtained by linearly extrapolating the q

mesh to infinity (see the Appendix for more details).
The thermal conductivity values of silicene at 300 K under

different tensile strains are computed with both RTA and
the iterative method, as shown in Fig. 3. The results of
infinite (here “infinite” refers to the case without boundary
scattering but has a finite q mesh, similarly for the subsequent
discussions) unstrained silicene for the 201 × 201 × 1 q mesh
are 33.8 and 36.2 W/mK for RTA and the iterative method,
respectively. We note that RTA and the iterative method give
similar values of thermal conductivity and similar trends in
the strain dependence. For infinite size, both methods predict
that thermal conductivity first increases significantly and then

FIG. 3. Thermal conductivity of infinite (101 × 101 × 1 and
201 × 201 × 1 q mesh) and finite-size (0.3, 3, and 30 μm) silicene as
a function of strain computed with RTA and iterative method. Note
that since RTA and iterative method give similar thermal conductivity
values for different cases, we only show the iterative results for the
201 × 201 × 1 infinite and the 0.3 μm size cases.

decreases slightly. For different q mesh the strain dependence
is also similar. The highest thermal conductivity value (for
201 × 201 × 1, RTA, 242.5 W/mK) appears at 4% strain and
is about 7 times that of the unstrained case. Such a significant
increase is quite anomalous. Usually the thermal conductivity
of bulk materials, such as silicon [49], diamond [52], and
argon [53] would only slightly decrease under tensile strain.
For graphene, a similar method predicted that the thermal
conductivity only slightly increases with 4% strain [50,54]. In
some other empirical molecular dynamics based calculations,
it was even found that the thermal conductivity of graphene
decreases with tensile strain [47]. With all the strains we
considered, the maximum thermal conductivity occurs at 4%
strain, which is the turning point where buckling distance of
silicene does not decrease significantly with strain any more.
This implies that the thermal conductivity of silicene has a
strong correlation with the buckling distance. In the literature
it is also suggested that at 7.5% strain silicene becomes
metallic [25], where electrons may also contribute to the total
thermal conductivity. In our calculation, we considered the
contribution of phonons to the thermal conductivity only.

For the three finite-size cases the thermal conductivity of
unstrained silicene is in the range of 15 to 30 W/mK, as
listed in Table I. These results agree well with the prediction
by Gu et al. [21] in which the thermal conductivity of
unstrained silicene is predicted to be around 23 W/mK for

TABLE I. Thermal conductivity of unstrained silicene and the
tunability.

RTA Iterative method

Size k0
l (W/mK) Tunability k0

l (W/mK) Tunability

0.3 μm 15.2 4.4 17.3 4.3
3 μm 20.1 5.7 22.4 5.8
30 μm 26.9 5.6 29.3 5.8

075404-4



LARGE TUNABILITY OF LATTICE THERMAL . . . PHYSICAL REVIEW B 93, 075404 (2016)

FIG. 4. Normalized thermal conductivity accumulation function
with respect to phonon mean free path for 0%, 4%, and 10% strain.

3 μm size. For all the sample sizes we considered, the thermal
conductivity increases dramatically with strain, although the
highest thermal conductivity appears at different strain values.
The tunability within 10% strain (defined as the ratio of
the largest thermal conductivity of strained silicene and the
unstrained one) is smaller than the infinite case, but is still
quite large. For the 0.3 μm case, the tunability is about 4.3 and
is the smallest, as shown in Table I.

To understand the size dependence on the tunability, we
further plot the normalized thermal conductivity accumulation
function kacc(�0)/kxx

l for the 0%, 4%, and 10% strained
silicene (using 101 × 101 × 1 q mesh), as shown in Fig. 4.
It can be seen that although for the infinite case 4% strain
gives the largest thermal conductivity, a significant amount
is contributed by phonons with relatively long MFP. In
contrast, for the 10% strained case, the thermal conductivity
is contributed by relatively shorter MFP phonons. Since the
sample size limits the maximum MFP, finite size actually has a
more significant effect on the thermal conductivity of 4% strain
than 10% strain. This explains why the strain dependence is
different for different sample sizes.

As can be seen from the discussions above, the major
anomalous behavior is the significant increase of thermal
conductivity with tensile strain, which is seen in both finite-size
and infinite cases. The strain dependence of the finite samples
arises from the combination of the unusual strain dependence
of infinite samples (with finite q mesh) and the effect of
boundary scattering. Actually the most important issue is to
understand the strain dependence of infinite samples. As such,
we choose the RTA result with infinite size in the subsequent
discussions to explore the mechanism for this anomalous
behavior of silicene. Also, we consider the 101 × 101 × 1
q mesh, to preserve the essential physics but also reduce the
number of data points in the subsequent figures.

D. Contribution from different branches

To understand the anomalous strain dependence of thermal
conductivity, we first decompose the thermal conductivity
contributions into different phonon modes, and the results
are also plotted in Fig. 5. Different phonon modes are sorted
by their frequencies. The lowest branch is taken as the

FIG. 5. The branch contribution of optical phonons, TA/LA
phonons, and FA phonons to the total thermal conductivity computed
with RTA.

FA branch while the highest three branches are taken as
optical branches. The other two branches are then TA or
LA branch. This is a simple and commonly used method to
sort different phonon modes in the entire Brillouin zone. We
have carefully checked the symmetry of eigenvectors and find
this algorithm is reliable for almost all the phonons except
at a few high-symmetry points. It is evident that the acoustic
branches give the dominant contribution over the full strain
range, while contribution from optical phonons is in the range
of 4%–22%. The percentage of optical phonon contribution is
similar to silicon nanowires [55]. Figure 5 also shows that LA
and TA modes contribute more than half of the total thermal
conductivity and govern the trend of strain dependence of
thermal conductivity. Especially when the strain is smaller than
4%, TA and LA modes contribute more than 65% of the total
thermal conductivity. This is quite different from graphene, for
which it is believed that the pure out-of-plane ZA mode has a
major contribution to the total thermal conductivity [2,41,56].
The thermal conductivity contributed by the FA mode first
increases with strain up to 6% and then slightly decreases. At
zero strain, the contribution from the FA mode is only about
5% while at 6% strain the contribution from the FA mode
increases up to around 45%.

E. Heat capacity, group velocity, and lifetime

From Eq. (3) we know that thermal conductivity is related
to volumetric phonon specific heat (heat capacity) cph, group
velocity vx , and phonon lifetime τ . In order to find out
the dominant factor for the anomalous strain dependence of
thermal conductivity, we substitute each of the three terms
for unstrained silicene with the value of strained silicene.
For example, when heat capacity is replaced, the thermal
conductivity is calculated as

k
xx,ε
l = 1

N

∑
λ

cε
ph,λ

(
v0

x,λ

)2
τ 0
λ . (8)

The results for three cases are plotted in Fig. 6. We see
that the calculated thermal conductivity changes significantly
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FIG. 6. Thermal conductivity as a function of strain computed
with RTA and cross-calculated thermal conductivity with cph, vx , or
τ replaced with strained values.

when lifetime is replaced with the value of strained silicene.
At 4% strain, the highest value is about 7 times that of
unstained case. This shows that the unusual strain dependence
of thermal conductivity is mainly due to the change in phonon
lifetime. From 0% to 6% strain the thermal conductivity with
lifetime replaced changes dramatically, indicating that lifetime
is the dominant factor in this range of strain. From 6% to
10% strain the thermal conductivity with lifetime replaced
changes about 17.8%, while the thermal conductivity with
group velocity or heat capacity replaced changes −12.7% and
−5.7% respectively. In this range of strain, these changes are
on the same order of magnitude. The three competing factors
balance in this range, so the change in the thermal conductivity
is small.

F. Lifetime

To further quantify the lifetime variation under different
strains, we plotted the frequency-dependent phonon lifetime
in Fig. 7. Since acoustic phonons are the dominant heat carriers
in the thermal transport in silicene, we only show the lifetimes
for acoustic phonons. In addition, those negligible phonon
modes whose aggregate contribution to thermal conductivity
is less than 0.1% are excluded to reduce the number of data
points. From Fig. 7 it can be seen that, except for a few phonon
modes, the acoustic phonon lifetimes of strained silicene are
consistently significantly larger than that of unstrained case.
The top panel in Fig. 7 indicates that the overall FA phonon
lifetimes keep increasing for strain from 0% to 6% but decrease
a little for strain from 6% to 10%. The major heat carriers
whose aggregate contribution to overall thermal conductivity
is more than 50% are those low-frequency acoustic phonons
with frequencies under 2.8 THz. The bottom panel shows
that the lifetime of TA/LA phonons with frequencies lower
than 2.8 THz would overall increase when silicene is strained
from 0% to 4%, and then decrease afterwards. The transition
from increased to slightly decreased lifetime occurs in the
range of 4%–6% strain for all the important acoustic phonon
modes, which is consistent with the strain-dependent thermal
conductivity. It should be noted that such a significant change
in phonon lifetime with tensile strain is quite unusual. In

FIG. 7. Top panel: Lifetime of FA phonons as a function of
frequency for 0%, 2%, 4%, 6%, and 10% strain. Bottom panel:
Lifetime of LA/TA phonons as a function of frequency for 0%, 2%,
4%, 6%, and 10% strain.

Ref. [49], the strain-dependent phonon lifetime for solid argon
and silicon was calculated using a similar approach. The
phonon lifetimes of both materials show quite small strain
dependence (changes are within 300%). Here for silicene, the
phonon lifetime of the majority of low-frequency FA phonons
increases by two to three orders of magnitude with strain and
the variation of TA/LA lifetime is also one to two orders of
magnitude.

G. Weighted phase space and scattering channel

To understand such a dramatic change of acoustic phonon
lifetime, we also calculated the phase space defined in
Ref. [57] and the “weighted phase space” defined in Ref. [58]
(results not shown). The weighted phase space is an ex-
pression of frequency-containing factors that quantifies the
phonon scattering probability for a particular dispersion
curve. The weighted phase space was used to successfully
explain the ultralow thermal conductivity of filled skutterudite
YbFe4Sb12 [58]. However, unlike YbFe4Sb12 whose low
thermal conductivity is mainly attributed to the allowed
phase space for scattering, the variation of weighted phase
space of silicene under different strains cannot fully explain
the large variation of phonon lifetime. We also calculated
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FIG. 8. Scattering rates of acoustic phonons from 	 to M: FA phonons for (a) unstrained silicene, (b) 4% strained silicene, (c) 10% strained
silicene. TA phonons for (d) unstrained silicene, (e) 4% strained silicene, (f) 10% strained silicene. LA phonons for (g) unstrained silicene,
(h) 4% strained silicene, (i) 10% strained silicene. (Please note the difference in the scales for scattering rates in the panels.)

thermal conductivity using the harmonic IFCs of 4% strain
and anharmonic IFCs with 0% strain; the result is only about
twice the unstrained thermal conductivity. Together with the
calculation result of weighted phase space, we find that the
variation of neither harmonic nor anharmonic IFCs alone can
fully account for the variation of phonon lifetime.

We further investigate the different scattering channels to
quantify the importance of different phonon modes in the
scattering processes. Figure 8 shows the scattering rates of
acoustic phonons along the 	 to M direction, and only major
scattering channels that have a large contribution to overall
scattering rate are included. Scattering rates for emission
processes are multiplied by 1/2 to avoid counting the same
process twice. Note that along the 	 to M direction the FA,
TA, and LA branches can be easily separated, so the scattering
channels for the three branches are plotted separately in Fig. 8.

Figures 8(a)–8(c) show the scattering rates of different
scattering channels of FA phonons for unstrained (0%), 4%,
and 10% strained silicene, respectively. Note that the legends
are the same for these three panels while the scales for the y

axis are not the same. It can be seen that the total scattering
rates of FA phonons decrease orders of magnitude from 0% to
4% but decrease only a little from 4% to 10%. In unstrained
silicene, dominant scattering channels are those among FA
modes (i.e., FA+FA → FA and FA → FA+FA processes).

However for strained silicene, either 4% or 10%, the dominant
scattering channels become FA+FA → TA/LA, FA+FA →
O, and FA+TA/LA → O, where O indicates optical phonons.
The scattering among FA phonons is significantly reduced.
Our data also show that the scattering rates of FA+TA/LA →
O processes decrease from 0% to 4% strain. We attribute
the decrease of scattering rates for processes involving odd
number of FA phonons to the change of buckling distance.
For graphene, because of the reflectional symmetry of the
structure, the phonon scattering process involving an odd
number of ZA phonons is not allowed, leading to a very small
scattering rate of the ZA mode [41]. Our observation of the
FA mode is in line with the discussion on graphene: when
strain is larger, the silicene structure becomes more planar, so
the scattering rates of processes involving an odd number of
FA modes (especially the scattering process involving 3 FA
modes) decrease.

As we noted before, the dramatic change of thermal conduc-
tivity from 0% to 4% is mainly due to the in-plane modes (TA
and LA). Therefore, we need to further check the scattering
channel of TA and LA modes. Figures 8(d)–8(f) plot the
scattering rates of TA phonons for 0%, 4%, and 10% strained
silicene, respectively. Similarly to the trend of FA phonons, the
total scattering rates reduce significantly from 0% to 4% strain.
From 4% to 10% strain, scattering rates still decrease slightly
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in the high-frequency region but increase in the low-frequency
region. For unstrained silicene, dominant scattering chan-
nels are TA+FA → TA/LA and TA → FA+FA. For silicene
under 4% tensile strain, dominant scattering channels are
TA+O → O, TA+TA/LA → O, and TA → FA+FA. For sil-
icene under 10% strain, dominant scattering channels become
TA+TA/LA → O and TA+FA → TA/LA. The variation of
scattering rates for different scattering channels for TA phonon
modes are the most complicated. The scattering rates of the
common dominant process TA → FA+FA become smaller
with larger strain. For the TA+TA/LA → O process, the
scattering rates increase. For TA+O → O, the scattering rates
first become larger from 0% to 4%, and then become smaller
from 4% to 10%. For TA+FA → TA/LA, the trend is opposite
to the previous one: scattering rates first become smaller
then become larger. Overall, we find that with larger strain
the scattering with the FA phonon becomes weaker while
the scattering with the optical phonon becomes stronger.
These competing mechanisms result in the change of the total
scattering rates.

Figures 8(g)–8(i) at the bottom are the scattering rates
of LA phonons for 0%, 4%, and 10% strained silicene,
respectively. The total scattering rates of LA phonons decrease
monotonically from 0% to 4% and then to 10% strain, but
we also note that the total scattering rates of LA phonons
do not change as much as FA and TA modes. For different
strains LA+TA/LA → O is the dominant scattering channel
for all the three cases, presumably due to the relatively higher
frequency of LA modes. At the low-frequency region of the
unstrained case, LA → FA+FA is dominant, but at larger
strain this channel is becoming less important.

From the analysis of the scattering channel, we have a
few observations. First, the scattering among FA modes is
significantly reduced with larger tensile strain, which is due to
the reduced buckling distance and more planar structure. This
could explain the significant enhancement of phonon lifetime
for FA modes as seen in Fig. 7. We should note that this is
not the major reason for the enhanced thermal conductivity
from 0% to 4% strain, because FA modes have relatively small
contributions to thermal conductivity in this range. Second,
the scattering rates of TA modes decrease significantly from
0% to 4% strain, mainly due to the reduced scattering with FA
modes. This is the major factor why the thermal conductivity
of silicene increases in this range. Third, the LA phonon
scattering rates do not change significantly under different
strains and thus are not responsible much to the large tunability
of thermal conductivity. Lastly, we should note that the above
analysis is based on the 	 to M region of the Brillouin zone.
To distinguish TA and LA phonons is not always possible for
any q point, so it is not safe to conclude that the enhanced
thermal conductivity is mainly due to TA modes. We rather
believe that the enhanced thermal conductivity is mainly due
to the enhanced lifetime of both LA and TA modes because
they scatter less with FA modes when strain is applied.

IV. SUMMARY

In conclusion, we performed first-principles calculations
to predict the lattice thermal conductivity of silicene under
strain. Phonon BTE is solved both in the RTA scheme and

iteratively in our prediction. Both methods yield similar trends
in the change of thermal conductivity with respect to tensile
strain. It is shown that within 10% tensile strain the thermal
conductivity of silicene can increase dramatically. Such a
dramatic change is quite unusual for solid materials, and
could be used as a thermal switch together with thermal
diodes to build thermal circuits. This trend is mainly due
to the strain-dependent phonon lifetime, which is related to
the variations of both harmonic and anharmonic IFCs under
strain. FA phonon lifetimes increase significantly under tensile
strain because the structure becomes more planar. This leads
to a large increase of their contribution to overall thermal
conductivity, but is not the major reason for the significant
change of overall thermal conductivity within 4% strain. The
significant enhancement of thermal conductivity from 0% to
4% strain is mainly due to the reduced scattering of TA and
LA phonons with FA phonons. Our result suggests that other
2D materials with intrinsic buckling may have similar strain
dependence of thermal conductivity, which is left for further
investigation.
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APPENDIX: CONVERGENCE TESTS

In order to ensure that the thermal conductivity is well
converged, we first justify our results with respect to the num-
ber of nearest neighbors included in computing anharmonic
IFCs. Figure 9 shows the thermal conductivity of infinite
(without boundary scattering) unstrained silicene calculated

FIG. 9. Thermal conductivity of unstrained silicene vs nearest
neighbors computed with RTA and iterative method.
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with a 101×101×1 q mesh. It can be seen that when more
neighboring atoms are included, the thermal conductivity
first decreases and then converges. With the fourth-nearest
neighbors included, the results are 25.5 and 27.9 W/mK for
RTA and the iterative method respectively. Including up to
the third-nearest neighbors only slightly changes the results
(less than 10%) for both RTA and the iterative method. We
notice that in our previous first-principles calculation [20], the
thermal conductivity of 9.4 W/mK is much smaller. This is
attributed to two reasons: (i) We only included the first-nearest
neighbors to compute the anharmonic IFCs. (ii) We did not
impose the sum rule [22,29] to anharmonic IFCs. As we have
mentioned, up to fourth-nearest neighbors are included with
a 5 × 5 × 1 supercell in this work and converged results are
achieved. When computing anharmonic IFCs, the following
sum rule is enforced in the THIRDORDER.PY package by adding
a small compensation to independent nonzero terms [29]:

∑
k

�
αβγ

ijk = 0, (A1)

where � is the anharmonic IFC, and i,j, and k are the atom
indices. α, β, and γ denote the x, y, or z direction. The sum of
the square of the compensation terms is minimized to ensure
that the other symmetries are still satisfied [29].

In addition, a convergence test was performed with respect
to q-mesh density. Figure 10(a) shows the thermal conductivity
of infinite unstrained silicene and finite-size (3 μm and 30 μm)
unstrained silicene with different q-mesh density. Figure 10(b)
shows the thermal conductivity of infinite 4% strained silicene
and finite-size (3 μm and 30 μm) 4% strained silicene with
different q-mesh density. The solid lines are the results of RTA
and the dashed lines are those of the iterative method. All the
results are obtained with an N1 × N1 × 1 q mesh (N1 = 51,
101, 151, and 201). Both RTA and the iterative method show
possibly diverged thermal conductivity for infinite size. For
finite-size unstrained and 4% strained silicene, the results
with Lx = 3 μm and 30 μm are shown. Both methods
show converged results and we extrapolate them to infinite
q-mesh density with a linear relationship fitted between k

FIG. 10. Thermal conductivity of unstrained silicene for different
q mesh and different sizes computed with RTA and iterative method.

and 1/N1. The convergence study for unstrained silicene
reaches essentially the same conclusion as the work by Gu and
Yang [21]. Similar convergence tests were performed for all the
strained cases and we consistently found a possibly diverged
thermal conductivity for the infinite case and converged results
for finite sizes. Due to the limited space we did not shown all
the results here.
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