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Emergence of integer quantum Hall effect from chaos
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We present an analytic microscopic theory showing that in a large class of spin- 1
2 quasiperiodic quantum

kicked rotors, a dynamical analog of the integer quantum Hall effect (IQHE) emerges from an intrinsic chaotic
structure. Specifically, the inverse of the Planck’s quantum (he) and the rotor’s energy growth rate mimic the
“filling fraction” and the “longitudinal conductivity” in conventional IQHE, respectively, and a hidden quantum
number is found to mimic the “quantized Hall conductivity.” We show that for an infinite discrete set of
critical values of he, the long-time energy growth rate is universal and of order of unity (“metallic” phase), but
otherwise vanishes (“insulating” phase). Moreover, the rotor insulating phases are topological, each of which is
characterized by a hidden quantum number. This number exhibits universal behavior for small he, i.e., it jumps
by unity whenever he decreases, passing through each critical value. This intriguing phenomenon is not triggered
by the likes of Landau band filling, well known to be the mechanism for conventional IQHE, and far beyond the
canonical Thouless-Kohmoto-Nightingale-Nijs paradigm for quantum Hall transitions. Instead, this dynamical
phenomenon is of strong chaos origin; it does not occur when the dynamics is (partially) regular. More precisely,
we find that a topological object, similar to the topological theta angle in quantum chromodynamics, emerges
from strongly chaotic motion at microscopic scales, and its renormalization gives the hidden quantum number.
Our analytic results are confirmed by numerical simulations. Our findings indicate that rich topological quantum
phenomena can emerge from chaos and might point to a new direction of study in the interdisciplinary area
straddling chaotic dynamics and condensed matter physics. This work is a substantial extension of a short paper
published earlier by two of us [Y. Chen and C. Tian, Phys. Rev. Lett. 113, 216802 (2014)].
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I. INTRODUCTION

Chaos is ubiquitous in Nature. In quantum chaotic systems,
a wealth of phenomena arise from the interplay between
chaotic motion and quantum interference [1,2]. A dimen-
sionless parameter governing this interplay is the so-called
Planck’s quantum he, which is the ratio of Planck’s constant
� to the system’s characteristic action (see Refs. [3–8] and
references therein). A “standard model” in studies of such
interplay is the quantum kicked rotor (QKR) [4,9–13], a
particle moving on a ring under the influence of a sequential
driving force (“kicking”). This kicking, making the particle
rapidly lose the memory about its angular position, leads to
strong chaos. The realization of QKR in atom optics in the
mid-1990s [14] has boosted interests in the study of quantum
chaos [15–21], opening a route to experimental studies of the
interplay between chaos and interference [22–25]. In partic-
ular, realization of the time modulation of the angular profile
of kicking potential [19] affords opportunities to explore this
interplay in higher dimensions. Indeed, (d − 1) modulated
phase parameters introduce a virtual (d − 1)-dimensional
space. When the modulation frequencies are incommensu-
rate with each other as well as the kicking frequency, the
system, so-called quasiperiodic QKR, effectively simulates a
d-dimensional disordered system [19,21,26]. In this work, we
focus on the case of d = 2.

For QKR, the Planck’s quantum he = τ�/I , where I is
the particle’s moment of inertia and τ the kicking period [4].
The system’s behavior turns out to be extremely sensitive to the
number-theoretic properties of this parameter [4,7,11,13,21].
That is, depending on whether the value of he/(4π ) is irrational

or rational, qualitatively different quantum phenomena occur.
(i) For (generic) irrational values of he/(4π ), the rotor’s energy
growth is bounded for periodic QKR, i.e., when the driving
force is strictly periodic. This is the celebrated dynamical
localization [9], an analog of Anderson localization in quasi-
one-dimensional (quasi-1D) disordered systems [12,13]. For
quasiperiodic QKR, richer phenomena arise. Notably, the
system can exhibit a transition from bounded to unbounded
growth as the kicking strength increases. This is an analog
of Anderson transition [19,21]. (ii) For rational he/(4π ), the
energy of a periodic QKR grows quadratically at long times,
for quasiperiodic QKR increasing the kicking strength results
in a transition from quadratic to linear growth, simulating a
supermetal-metal quantum phase transition [21].

The Planck’s quantum-driven phenomena in QKR have
been well documented (see Refs. [4,7,13,21,27–29] and
references therein). The abundance of these phenomena
notwithstanding, they can all be attributed to the translation
symmetry or its breaking in angular momentum space. Indeed,
when he/(4π ) is irrational, the system, or more precisely, the
one-step evolution operator governing the quantum dynamics
within a single time period, does not exhibit translational
invariance. As a result, the QKR behaves as a genuine
disordered system. As opposed to this, when he/(4π ) is
rational, the system possesses the translation symmetry and
therefore behaves as a perfect crystal.

Most theoretical and experimental studies of QKR pay no
attention to the spin degree of freedom of the rotating particle.
The subject of the impact of spin on the dynamics of QKR
was pioneered by Scharf [30] and subsequently studied in
several works [31–33]. The proposal of using spinful QKR to
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simulate a topological quantum phenomenon in paramagnetic
semiconductors [34] was made in Ref. [33]. These works,
however, do not address the sensitivity of system’s behavior to
he, which, as mentioned above, is of fundamental importance
to quantum chaos. It was not until very recently that this task
was undertaken by two of us [35]. It is found that the spin
affects profoundly the interplay, controlled by he, between
chaos and quantum interference.

In this work, we substantially extend this earlier investiga-
tion [35]. We present an analytic microscopic theory for a large
class of spinful quasiperiodic QKR. In essence, these systems
differ from spinless quasiperiodic QKR [19,21] in that the
particle has spin and the kicking potential couples the particle’s
angular and spin degrees of freedom, i.e., upon kicking the
particle undergoes an abrupt change in the angular momentum
and a flip of spin simultaneously. Based on the microscopic
theory developed, we show analytically a striking dynamical
phenomenon driven by the Planck’s quantum, which bears a
close resemblance to the integer quantum Hall effect (IQHE)
[36] in condensed matter physics. (We make a clear distinction
between IQHE and the quantum anomalous Hall effect [37].
In this work, we are concerned in the former only.) This
phenomenon, dubbed “the Planck’s quantum-driven integer
quantum Hall effect (Planck-IQHE),” is found to be rooted in
strong chaos brought about by the coupling between angular
and spin degrees of freedom. Our analytic predictions are
confirmed by numerical simulations.

At first glance, there is no reason to expect any relationship
between dynamical phenomena in simple chaotic systems,
such as QKR, and IQHE. Indeed, the IQHE was originally
found in electronic systems, such as the metal-oxide field effect
transistor (MOSFET), which are totally different from QKR.
It arises from the integer filling of the Landau bands [38].
The formation of these bands requires an external magnetic
field, while the integer filling of these bands is a profound
consequence of the Pauli principle for many-electron systems.
These two essential ingredients, however, are both absent
for the present QKR systems. In particular, because of the
single-particle nature of QKR, the concept of “integer filling”
is meaningless. Besides, the QKR is a chaotic system. The
basic characteristic of chaos, namely, the extreme sensitivity
of system’s behavior to disturbances, is seemingly opposite to
that of IQHE, namely, the robustness of the Hall conductivity
quantization.

Contrary to the intuitive reasonings above, we report
here that in a large class of spin- 1

2 quasiperiodic QKR the
Planck-IQHE (cf. Fig. 1) occurs. Specifically, we find that the
inverse Planck’s quantum h−1

e mimics the filling fraction in
conventional IQHE. We also find that the asymptotic growth
rate of (rescaled) energy E(t), i.e., limt→∞ E(t)

t
, mimics the

longitudinal or diagonal conductivity in conventional IQHE.
For almost all values of he, the “longitudinal conductivity”
limt→∞ E(t)

t
= 0, and the system simulates an insulator.

Surprisingly, there is an infinite discrete set of critical values
of he, for which the longitudinal conductivity limt→∞ E(t)

t

has a universal value σ ∗ = O(1). Correspondingly, the system
simulates a quantum metal. The insulating phases, however,
are conceptually different from conventional rotor insulators
[4,9–14]. That is, we find that each of them is characterized
by a hidden quantum number, denoted as σ ∗

H, which is of

FIG. 1. Schematic representation of Planck-IQHE for small he

in spin- 1
2 quasiperiodic QKR. Red line: for an infinite discrete set

of critical values of he the rotor’s energy increases linearly at long
times, i.e., limt→∞

E(t)
t

= σ ∗ = O(1), which is a characteristic of
metals; for other values the rotor’s energy saturates at long times, i.e.,
limt→∞

E(t)
t

= 0, which is a characteristic of insulators. Blue line:
the insulator is characterized by a hidden quantum number σ ∗

H; this
number jumps by unity whenever h−1

e increases passing through a
critical value. (The sharp transitions are smeared at finite times.)

topological nature. For small he, this number jumps by unity
whenever he decreases, passing through a critical value.
As such, σ ∗

H mimics the “quantized Hall conductivity” in
conventional IQHE and its jump at the critical he value
simulates a “plateau transition.”

The Planck-IQHE is totally beyond the common wisdom
of the translation symmetry-based mechanism for various
he-driven phenomena in QKR. Rather, as we will show
below, it is of strong chaos origin. To be specific, the rotor’s
energy E(t) can be exactly expressed in terms of a functional
integral. The corresponding field configuration induces a
mapping from the phase space, whose coordinates are the
position and velocity characterizing the coherent propagation
of quantum amplitudes, onto a certain target space, and
carries complete information about the propagation. When the
coherent propagation is strongly chaotic at short (microscopic)
scales, the phase space corresponding to the propagation at
large scales is reduced effectively. The ensuing mappings fall
into different homotopic classes, which form a group �Z. This
is the topological structure hidden behind discriminating the
insulating phases by the quantum number σ ∗

H (see Fig. 1).
More precisely, we show that the exact functional integral

formalism is reduced to a Pruisken-type effective field theory
(see Refs. [38,39] for reviews) at large scales. The key feature
of this field theory is that in the effective action a topological
theta term emerges from strong chaos at short scales. We
emphasize that this term is not added by hand. The theta term
has many far-reaching consequences. Most importantly, the
coefficient of this term, the bare (unrenormalized) topological
theta angle, is strongly renormalized at large scales and
quantized. The quantization value is essentially the plateau
value σ ∗

H (up to an irrelevant factor 2π ). The insulating
phases, distinct from each other by this value, are thus
topological in origin, and so is the metal-insulator transition
accompanying a plateau transition. A manifestation of the
topological nature of this metal-insulator transition is the
universality of the critical growth rate σ ∗. Therefore, this
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transition is conceptually different from the metal-insulator
transition in spinless quasiperiodic QKR [19,21,26].

We emphasize that the emergence of a theta term does
not necessarily lead to the Planck-IQHE. An additional key
ingredient is the coupling between the rotor’s angular and
spin degrees of freedom. We find that this coupling plays
certain roles of the magnetic translation in conventional IQHE
[40,41], but physical reasons for this similarity remain unclear.
Specifically, combined with the mathematical structure of
1
2 -spin, i.e.,

σ iσ j + σ jσ i = 2δij , [σ i,σ j ] = 2iεijkσ k, (1)

with σ i, i = 1,2,3, being the Pauli matrices and εijk the totally
antisymmetric tensor, this coupling gives

unrenormalized theta angle = Fijktr(σ iσ jσ k). (2)

Here, the coefficient Fijk depends on the coupling. The Ein-
stein summation convention is implied throughout. Detailed
analysis shows that Eq. (2) bears a close resemblance to a
classical Hall conductivity in electronic systems, both formally
and physically. In particular, when h−1

e is sufficiently large, this
unrenormalized angle linearly increases with h−1

e , and thereby
simulates a classical Hall conductivity in strong magnetic field
[38], thanks to the analogy between h−1

e and the filling fraction.
It is the renormalization of this linear scaling law that gives
the stairlike pattern in Fig. 1.

We are not aware of any reports on a topological theta angle
in chaotic systems. It is this angle that leads to many remark-
able results shown here. A similar topological theta angle was
originally proposed in studies of quantum chromodynamics
[42–45]. In a series of works [46–49], Pruisken and co-workers
brought this concept to the condensed matter field in treating
the discovery of Klitzing and co-workers and established the
profound relation between the renormalization of theta angle
and quantized Hall conductivity. However, unlike the situation
in conventional IQHE, whether the theta angle here can be
directly measured by certain “transport” experiments (real or
numerical) remains unclear to us at present.

The remainder of the paper is organized as follows. In the
next section we describe in details the model and summarize
the main results. In addition, we discuss qualitatively the
topological nature of these results and, in particular, sketch
how the topological structure emerges from strongly chaotic
motion at microscopic scales. In Sec. III, we develop an
analytic microscopic theory for the spin- 1

2 quasiperiodic QKR,
for which the potential profile is modulated in time and the
modulation frequency is incommensurate with the kicking
frequency. In Sec. IV, we introduce two transport parameters
and use the developed microscopic theory to calculate their
perturbative and nonperturbative instanton contributions. The
explicit results enable us to construct a two-parameter scaling
theory and further analytically predict the Planck-IQHE, which
is the subject of Sec. V. In Sec. VI, we confirm numerically the
predicted Planck-IQHE. In Sec. VII, we show analytically that
the Planck-IQHE disappears when the modulating frequency
is commensurate with the kicking frequency and confirm
this prediction numerically. The corresponding microscopic
mechanism is discussed. Conclusions are made in Sec. VIII.

For the convenience of readers, we present many technical
details in Appendixes A–L.

II. MAIN PHYSICAL RESULTS AND DISCUSSIONS

In this section we summarize the main physical results.
Moreover, because a transparent picture for these results is
currently absent, we discuss physical implications covered
by the analytic microscopic theory. In particular, because our
finding of Planck-IQHE is beyond the canonical Thouless-
Kohmoto-Nightingale-Nijs (TKNN) paradigm for general
quantum Hall systems [40,50], we will sketch, leaving the
complete microscopic theory in later sections, how the topo-
logical structure emerges from the intrinsic strong chaoticity
of dynamics of spin- 1

2 quasiperiodic QKR and further leads
to the Planck-IQHE. In doing so, we suggest that the readers
who are not interested in technical details could skip the next
two sections and move to Sec. V directly.

A. Description of the model

In this work, we consider a spin- 1
2 particle moving on

a ring (Fig. 2) whose angular position is denoted as θ1.
When the external potential is switched off, the particle has a
conserved angular momentum, i.e., moves on the ring with
a constant angular speed (Fig. 2, left column). This is a
completely integrable motion, corresponding to a Hamiltonian
H0(−i�∂θ1 ), which is a function of the angular momentum
−i�∂θ1 . Here, H0 needs not to be quadratic and takes a
very general form, whose details determine how the angular

t=0
t=1

-

- t=1+

t=2 t=2+

t=3+t=3-

t=2+

t=1+

+

FIG. 2. A spin- 1
2 particle moving on a ring (yellow dashed lines)

subjected to a train of pulsed external potential (kicking) switched
on at integer times t = s = 0,1,2, . . . (red wavy lines), with the
time rescaled by the kicking period. The potential depends on both
the angular position and the spin of the particle, and its profile is
modulated in time with a single modulation frequency ω̃. Between
two successive potential pulses, i.e., s+ � t � (s + 1)−, both the
angular momentum and the spin polarization of the particle are
conserved (left column, with the arrow of the dashed line representing
the direction of rotation); upon kicking, i.e., at time t = (s + 1)+, the
particle undergoes an abrupt change in the angular momentum and
a flip of spin simultaneously (right column). The superscripts “±”
stand for the time right before (after) kicking.
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TABLE I. Symmetry properties of Vi .

V1(θ1,θ2) V2(θ1,θ2) V3(θ1,θ2)

θ1 Odd Even Even
θ2 Even Odd Even

speed is related to the angular momentum. Importantly, this
Hamiltonian does not recognize the particle’s spin degree of
freedom. As such, the spin polarization is also conserved
between two successive kickings. At the instant of t = sτ (s =
0,1,2, . . . ), when the external potential is switched on, the
particle undergoes an abrupt change in the angular momentum
and, simultaneously, a spin flip (Fig. 2, right column). The
angular (θ1) profile of the potential, denoted as V (θ1,θ2 + ω̃t),
is modulated in time with a modulation frequency ω̃, where θ2

is an arbitrarily prescribed phase parameter.
The potential is a function of two angular variables, with a

general form

V (θ1,θ2) ≡ Vi(θ1,θ2)σ i, (3)

where none of the coefficients Vi identically vanish. The parity
properties of Vi with respect to the transformation θ1,2 →
−θ1,2 are listed in Table I. Note that for Eq. (3) the second
variable includes the time modulation. Vi(θ1,θ2) is periodic in
both variables, i.e.,

Vi(θ1 + 2π,θ2) = Vi(θ1,θ2 + 2π ) = Vi(θ1,θ2). (4)

The motion of the moving particle is described by a two-
component spinor ψ̃t . With the rotor’s angular momentum and
� rescaled by I/τ and the time by τ , the quantum dynamics is
described by

ihe∂t ψ̃t = Ĥ (t)ψ̃t ,
(5)

Ĥ (t) = H0(−ihe∂θ1 ) + V (θ1,θ2 + ω̃t)
∑

s

δ(t − s).

This is a 1D motion. The rotor’s energy is defined as

E(t) ≡ − 1
2

〈〈ψ̃t |∂2
θ1
|ψ̃t 〉
〉
θ2
, (6)

with 〈. . .〉θ2 being the average over the prescribed phase θ2.
For simplicity, we assume that the initial state is uniform
in θ1 throughout. For (non)vanishing limt→∞ E(t)

t
, the rotor

exhibits (un)bounded motion in angular momentum space
and simulates an insulator (a metal) in disordered electronic
systems. Note that, exactly speaking, the definition (6) has the
meaning of rotor’s rotation energy only for quadratic H0; in
general, it has the meaning of angular momentum variance
instead. Here, we follow the convention in most studies of
QKR to term E(t) as energy.

B. Topology structure from strong chaos

1. Equivalent time-periodic quantum system

We notice that for Ĥ (t) in Eq. (5), for each unit time
interval the increment in the external parameter (θ2 + ω̃t) is
the same, i.e., the modulation frequency ω̃. Therefore, one
may expect that Eq. (5) could be traded for a two-dimensional
(2D) strictly periodic system by interpreting the parameter as

a “virtual” dynamical variable. This indeed can be achieved
by performing the transformation [21,26]

Ĥ → eω̃t∂θ2 Ĥ e−ω̃t∂θ2 , ψ̃t → e−ω̃t∂θ2 ψ̃t ≡ ψt (7)

for Eq. (5), which gives

ihe∂tψt = (H0(hen̂1) + heω̃n̂2 + V (�)
∑

s

δ(t − s))ψt . (8)

Here, � ≡ (θ1,θ2) is canonically conjugate to angular mo-
menta N̂ ≡ (n̂1,n̂2) and θ2 now is a virtual dynamical variable.
Equation (8) describes a generalized QKR. It is very important
that this equivalent system is strictly time periodic and 2D. For
integer times Eq. (8) is reduced to autonomous stroboscopic
dynamics

ψt = Û tψ0,
(9)

Û ≡ e− i
he

[H0(hen̂1)+heω̃n̂2]e− i
he

V (�),

governed by the Floquet operator Û . The initial state ψ0 corre-
sponding to this 2D dynamics is uniform in � representation.
For this 2D equivalent, the (effective) time-reversal symmetry
is broken. That is, Eq. (8) is not invariant under the operation
iσ 2K ′, where K ′ is the combination of complex conjugation
and the operation: t → −t, � → −�, N̂ → N̂ .

Starting from the 2D dynamics described by Eq. (9) we can
express the rotor’s energy as

E(t) = 1

2

∫
dω

2π
e−iωt

∑
NN ′

∑
s±,s ′±

δN ′0δs+s−

× n2
1Kω(Ns+s−,N ′s ′

+s ′
−)ψ0s ′+ψ∗

0s ′−
. (10)

The function Kω may be considered as the correlation between
the bilinear |N ′s ′

+〉〈N ′s ′
−| and |Ns+〉〈Ns−|. Physically, it

describes the interference between the advanced and the
retarded quantum amplitudes for the motion in the angular
momentum (N ) space [Fig. 3(a)]. This interference governs
the localization physics of this 2D quantum system. The exact
definition of Kω is not important for present discussions and
will be given later [see Eq. (19)].

2. Emergence of topology structure at irrational ω̃/(2π )

It turns out that Kω can be exactly expressed in terms
of a functional integral. For discussions in this section it is
sufficient to give its symbolic expression

Kω ∼
∫

D(Z,Z̃)e−S[Z,Z̃](. . .), (11)

and refer to Eq. (23) for its complete form. In this expres-
sion, ZN1,N2 ,Z̃N1,N2 depend on two angular momenta N1,2

and take supermatrix value. Physically, ZN1,N2 (or Z̃N1,N2 )
is the representative of the coherent propagation of the
advanced and the retarded quantum amplitudes. Specifically,
passing to the Wigner representation ZN1,N2 → Z(N,�) ≡∑

�N e−i�N�ZN1,N2 with �N ≡ N1 − N2, N ≡ (N1 + N2)/2
is the “center-of-mass” coordinate and � [more precisely,
(sin θ1, sin θ2)] the “velocity” of the coherent propagation.
Moreover, the action S[Z,Z̃] carries the complete information
of this propagation. From the Wigner representation, we see
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FIG. 3. (a) A quasiperiodic QKR with one modulation frequency
is equivalent to a 2D strictly periodic QKR. The latter corresponds
to a quantum motion in the N ≡ (n1,n2) space under the influence
of a periodic driving force. n1 is the genuine angular momentum and
n2 virtual, canonically conjugate to the modulation parameter. The
properties of localization in the N space are governed by interference
between the advanced (solid line) and the retarded (dashed line)
quantum amplitudes. (b) When the coherent propagation of the
advanced and the retarded quantum amplitudes is chaotic in both
n1 and n2 directions, mappings from the N space (with its boundary
identified as the same point) to the supersymmetry σ -model space
of unitary symmetry � H 2 × S2 arise. These mappings are classified
by the homotopy group Z.

that the velocity relaxation is encoded by the components of
Z which are off diagonal in angular momentum space.

Thanks to its supermatrix structure, Z(N,�) induces a
mapping from the “phase space” comprised of coordinates
(N,�) to a target space, the so-called supersymmetry σ -model
space of unitary symmetry. Loosely speaking, the latter space
may be identified as a product of two-hyperboloid H 2 and
a two-sphere S2. This structure is intrinsic to the broken
time-reversal symmetry. Detailed discussions of this structure
will be made in Sec. III B 4.

When the system exhibits strong chaos so that the memory
on the velocity is quickly lost, the components ZN,N ′ with
N �= N ′ are massive. In other words, the propagation modes
represented by these components damp rapidly in time. Since
we are interested in dynamics taking place at much longer
times, these components are effectively suppressed from the
functional integral (11). The ensuing Wigner representation
Z(N ) = ZN,N , thus has no � dependence. In this way, a given
field configuration Z(N ) entails a mapping from the 2D N

space (with its boundary identified as the same point) onto
the target space H 2 × S2 [Fig. 3(b)]. All such mappings are
classified by a nontrivial homotopy group

π2(H 2 × S2) = π2(H 2) × π2(S2) = π2(S2) = Z. (12)

Note that H 2 has no topological consequences due to its
noncompact nature.

This nontrivial homotopy group (12) lays down a math-
ematical foundation for searching topologically insulating
phases in simple spin- 1

2 quasiperiodic QKR with one modu-
lation frequency and possible topological transitions between
them. However, we emphasize that this topological structure
is not sufficient for the occurrence of Planck-IQHE. As we
will see shortly, an additional key factor responsible for the
Planck-IQHE is a universal scaling law, which is rooted in
the coupling between the rotor’s spin and angular degrees of
freedom, but insensitive to the details of the coupling.

We have seen that to establish the topological structure (12)
the 2D dynamics is required to be strongly chaotic. That is,
� is a fast variable while N a slow variable. To achieve this,
ω̃/(2π ) is required to be a (generic) irrational number so that
a quasiperiodic QKR results [51].

3. Absence of topology structure at rational ω̃/(2π )

For rational ω̃/(2π ), the system (more precisely, the Floquet
operator Û ) is translationally invariant in the n2 direction.
Associated with this translation symmetry the 2D coherent
propagation is ballistic in the n2 direction at long times, while
memory on the velocity component in the n1 direction is
quickly lost. The ballistic motion in the n2 direction implies
partial restoration of regular dynamics. In this case, the
topological structure shown above is washed out. Indeed,
the 2D system is decomposed into a family of decoupled
(quasi-)1D subsystems, each of which is governed by a good
quantum number, namely, the Bloch momentum. The ensuing
Z-field configurations entail mappings from the n1 space into
the same target space, i.e., H 2 × S2, as that for irrational
ω̃/(2π ). These mappings are all topologically trivial since the
corresponding homotopy group is

π1(H 2 × S2) = π1(H 2) × π1(S2) = 0. (13)

Because of this, a result of the restoration of dynamics regu-
larity, no topologically insulating phases arise, and therefore
the Planck-IQHE does not occur.

C. Summary of main physical results

1. Irrational ω̃/(2π )

In this case, we find that the action S[Z,Z̃] in Eq. (11) is
reduced to a 2D effective action [cf. Eq. (65)] at large scales.
Most importantly, this effective action includes a term which is
purely topological in nature [see the second term in Eq. (65)].
This is the very topological theta term that does not show
up in all previous effective field theories for various QKR
systems [13,21]. In addition, the effective action is governed
by two (unrenormalized) parameters σ (he) and σH(he). For suf-
ficiently small he, they exhibit universal scaling behavior, i.e.,

σ ∼ h−2
e (14)

and

σH ∼ h−1
e . (15)

These two scaling laws are independent of the details of the
coupling between the angular and spin degrees of freedom,
i.e., Vi(�). The parameter 2πσH gives the (unrenormalized)
topological theta angle, while σ is found to be the energy
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TABLE II. Properties of various quantum phases.

Fixed point of RG flow Stability of RG flow

Phase σ̃H σ̃ σ̃H direction σ̃ direction Energy profile Classification

Insulating σ ∗
H ∈ Z 0 Stable Stable E

t→∞−→ const Z

Metallic σ ∗
H + 1

2 σ ∗ Unstable Stable E
t→∞−→ σ ∗t −

growth rate at short times. If we interpret h−1
e as the

filling fraction, Eq. (15) corresponds to the classical Hall
conductivity in conventional Hall systems with a strong
magnetic field [38]. As shown in the following, the h−1

e filling
fraction analogy persists even at long times.

At long times the scaling laws (14) and (15) break down.
Instead, σ and σH are strongly renormalized. In this work,
we explicitly show that their renormalized values, respectively
denoted as σ̃ (λ̃) and σ̃H(λ̃) with λ̃ being the scaling parameter,
follow Gell-Mann–Low equations

dσ̃

d ln λ̃
= − 1

8π2σ̃
− 32π

e
σ̃ 2e−4πσ̃ cos(2πσ̃H) (16)

and

dσ̃H

d ln λ̃
= −64π

e
σ̃ 2e−4πσ̃ sin(2πσ̃H), (17)

in the weak coupling regime. This renormalization group (RG)
flow leads to profound results, which we summarize in the
following. The results also capture the system’s behavior in the
strong coupling regime, even quantitatively. They are robust
against the modification of H0 and Vi .

First of all, the fixed points of this RG flow give the
realizable quantum phases in the considered quasiperiodic
QKR. The main properties of these phases are summarized
in Table II. The insulating phases correspond to the plateau
regimes in Fig. 1. They have a vanishing energy growth rate
at t → ∞. Namely, E(t) saturates at t → ∞. These phases
are distinguished by the plateau value σ ∗

H. The formation
of plateaus is a result of the renormalization of topological
theta angle. As such, the insulating phases are endowed with
topological nature and, therefore, are conceptually different
from usual rotor insulators [4,9–12,14,19,21,26]. The metallic
phase corresponds to the peak in Fig. 1. It appears only at
the plateau transition, i.e., is a critical phase. At this critical
phase, E(t) grows linearly at long times, with a small growth
rate σ ∗ = O(1). Strikingly, this growth rate is universal,
independent of system’s details such as specific forms of H0,
Vi , and quantum critical points. This suggests that this rotor
metal is of quantum nature.

Next, combined with the universal scaling law (15), the
RG flow gives rise to the Planck-IQHE. Indeed, following
from Eq. (15) the unrenormalized parameter σH(he) increases
unboundedly with h−1

e . As a result, there is an infinite discrete
set of critical he values, namely quantum critical points, at
which σH(he) is a half-integer

σH(he) = n + 1
2 , n ∈ Z (18)

i.e., the zero of the right-hand side of Eq. (17). When
he decreases, the system successively passes through these
critical points, at each of which σ ∗

H jumps by unity (the
plateau transition in Fig. 1), accompanied by a topological
metal-insulator transition (the peak in Fig. 1). In addition, the
scaling law (15) implies that the quantum critical points are
evenly spaced along the h−1

e axis.
Comparing the results summarized above with the dis-

covery of Klitzing and co-workers [36], we find that h−1
e

mimics the driving parameter, namely, the filling fraction
in conventional IQHE, as discussed above. Furthermore,
limt→∞ E(t)

t
and σ ∗

H simulate two transport parameters, namely,
the longitudinal conductivity and the quantized Hall conduc-
tivity, respectively (Table III). In this paper, this analogy will
be put on a firm ground, both analytically and numerically.

2. Rational ω̃/(2π )

Although the Planck-IQHE is found to be very robust
against the modification of H0 and Vi , we find that it
is extremely sensitive to the number-theoretic property of
the modulation frequency ω̃. Specifically, when ω̃ becomes
commensurate with 2π (but H0 and Vi do not change), we find
that the action S[Z,Z̃] in Eq. (11) is reduced to a 1D effective
action [cf. Eq. (195)] at large scales. Most importantly, this
effective action does not include any topological term and is
essentially the same as that for the conventional QKR [13].
Following from this effective field theory, the system behaves
as conventional QKR [4,9,12,13], i.e., the rotor’s energy
saturates at long times irrespective of the value of Planck’s
quantum [52]. Therefore, the phenomenon of Planck-IQHE is
washed out. It is likely that this occurs also for nongeneric
irrational values of ω̃/(2π ).

TABLE III. The analogy between Planck- and conventional IQHE.

Planck-IQHE Conventional IQHE

System Spin- 1
2 quasiperiodic QKR 2D electron gas (e.g., MOSFET)

Driving parameter Planck’s quantum he Magnetic field (or inverse filling fraction)
Characteristic of dissipation Energy growth rate limt→∞

E(t)
t

Longitudinal conductivity
Characteristic of topology Hidden quantum number σ ∗

H Quantized Hall conductivity
Characteristic of insulator limt→∞

E(t)
t

= 0 Vanishing longitudinal conductivity
Characteristic of metal limt→∞

E(t)
t

= σ ∗ Finite longitudinal conductivity
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D. Discussions on critical metallic phase

The linear energy growth E(t → ∞) ∼ t for classical
kicked rotors has been well understood [53]. It finds its origin at
stochastic diffusion (Brownian motion) in angular momentum
space. Although the linear growth also displays at the critical
metallic phase, it exhibits considerable “anomalies.” Most
strikingly, the growth rate σ ∗ is small, which is order of unity,
and universal. This indicates the quantum nature of the critical
metal. It also indicates that the canonical physical picture for
linear energy growth of classical kicked rotors must break
down here since the picture leads to a growth rate sensitive to
the system’s details such as the kicking strength and potential
which is not the case here. Below, we discuss a possible picture,
the quantum stochastic web (Fig. 4), for the critical metal.

First of all, the smallness of σ ∗ cannot be attributed to
a small mean-free path since the latter is governed by the
system’s details. Rather, it is a signature of certain nonergodic
but unbounded motion in 2D angular momentum (N ) space.
More precisely, a large portion of the N space is “blocked,”
and the system has to find narrow channels in order to arrive
at a remote point. Figure 4 represents a heuristic example for
such channel structure. It is an extended web, topologically
equivalent to a graph made up of nodes and links: stretched
channels (the inset). The quantum stochastic diffusion in N

space, manifesting itself in E(t → ∞) → σ ∗t , finds its origin
at the node. Then, σ ∗ is the total conductance of this web,
essentially given by the ballistic conductance of the link (nar-
row channel), which is of order unity and universal. Provided
the skeleton (topological structure) of this web is universal,
independent of the system’s details such as the potential, the
critical point, etc., the universality of σ ∗ then follows.

We note that the classical stochastic web was discovered
in many dynamical systems long time ago [53–55]. It gives
rise to intriguing transport phenomena, notably the Arnold
diffusion [54]. However, results for quantum stochastic webs
are extremely rare. Among them is the nonergodic metal

FIG. 4. The quantum stochastic web in N space as a possible
physical picture for the critical metallic phase. The link supports
ballistic motion while the node is the origin of quantum stochasticity.
Inset: this web is topologically equivalent to a graph made up of links
and nodes.

in many-body localized systems, which is believed to be a
manifestation of Arnold diffusion [56].

III. EFFECTIVE FIELD THEORY

Having summarized the main results, we present the
analytic derivation. The microscopic theory starts from the
2D autonomous stroboscopic dynamics (9).

A. Functional integral formalism

To calculate the rotor’s energy at integer times, we introduce
the “two-particle Green function,” defined as

Kω(Ns+s−,N ′s ′
+s ′

−) ≡
〈
〈Ns+| 1

1 − eiω+Û
|N ′s ′

+〉

× 〈N ′s ′
−| 1

1 − e−iω−Û †
|Ns−〉

〉
ω0

. (19)

Here, s± and s ′
± are spin indices. ω± ≡ ω0 ± ω

2 and ω is
understood as ω + iη

2 with η being an infinitesimal positive.

The average, 〈. . .〉ω0 ≡ ∫ 2π

0
dω0
2π

(. . .), forces the two paths in
Fig. 3(a) that interfere with each other to last for the same
time. The energy is related to Kω via

E(t) = 1

2

∫
dω

2π
e−iωtTr

(
n̂2

1Kωψ0 ⊗ ψ
†
0

)
. (20)

Throughout, the capital trace “Tr” includes the angular
momentum but the small trace “tr” does not.

To proceed, we combine the methods of deriving effective
field theories for conventional QKR [13,21] and for graphene
with long-range disorder [57]. Noticing the broken time-
reversal symmetry, we introduce a superfield ψ = {ψNsαλ},
where α discriminates between the commuting (α = b) and the
anticommuting (α = f ) component, and the index λ between
the advanced (λ = +) and the retarded (λ = −) space of the
theory. With this introduction, Eq. (19) is cast into a Gaussian
functional integral

Kω(Ns+s−,N ′s ′
+s ′

−) =
∫

D(ψ̄,ψ)〈exp(−ψ̄G−1ψ)〉ω0

× ψ̄N ′s ′+b+ψNs+b+ψ̄Ns−b−ψN ′s ′−b−,

(21)

where

G−1 =
(

(1 − eiω+Û )−1 0
0 (1 − e−iω−Û †)−1

)
ar

(22)

is block diagonal in the advanced-retarded (ar) space.
Next, we apply a rigorous identity, the color-flavor trans-

formation for the circular unitary ensemble [58]. The adjective
“circular” accounts for the ω0 average and “unitary” for the
broken time-reversal symmetry. This transforms the ψ integral
and the ω0 average into the integral over a supermatrix field
Z ≡ {ZNsα,N ′s ′α′ } in the bosonic-fermonic (bf ) space as

Kω(Ns+s−,N ′s ′
+s ′

−)

=
∫

D(Z,Z̃)e−S[Z,Z̃][(1 − ZZ̃)−1Z]Ns+b,Ns−b

× [(1 − Z̃Z)−1Z̃]N ′s ′−b,N ′s ′+b. (23)
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Here, D(Z,Z̃) is the flat Berezin measure, Z is subjected to the
constraints Z̃b,b = Z

†
b,b, Z̃f,f = −Z

†
f,f and all the eigenvalues

of Zb,bZ
†
b,b be less than unity. The action is given by

S[Z,Z̃] = −Str ln(1 − ZZ̃) + Str ln(1 − eiωÛZÛ †Z̃). (24)

The supertrace Str ≡ Trbb − Trff with Trbb,ff being the
normal trace of the bosonic-bosonic (fermionic-fermionic)
block. Like the definition of normal trace, throughout the
capital supertrace “Str” includes the angular momentum but
the small one “str” not. Equations (23) and (24) constitute
an exact supersymmetric functional integral formalism for the
two-particle Green function.

Let us make the following observation. Expanding the
action in Z up to the second order, we find that the kernel
of the ensuing Gaussian action is (1 − eiωAdÛ )−1. Here the
notation: AdÔ(. . .) ≡ Ô(. . .)Ô† for a general operator Ô. We
see that this kernel, namely, the propagator corresponding
to the Z field, describes the coherent propagation of the
advanced and the retarded quantum amplitudes, as discussed in
Sec. II B 2.

B. Low-energy effective action

We proceed to derive the effective field theory, which
describes the 2D motion at large scales, from this formalism.
To this end, we note that in the zero-frequency limit ω → 0,
the action (24) vanishes provided that the field is constrained
by [Û ,Z] = 0. To solve this constraint, we substitute the
decomposition Z ≡ Z0σ

0 + Z · σ into it, where σ 0 is the unit
matrix in spin space. We find that the constraint is satisfied
provided that Z = 0 and Z0 is homogeneous in N space (zero
mode). In other words, the Z components are massive and
thereby negligible. Physically, this reflects that the particle
number is conserved but the spin polarization not and, as
a result, the latter is irrelevant to physics at large scales.
We are thereby left with a low-energy effective action of Z0

component only. Therefore, we use the symbols Z,Z̃ for Z0,Z̃0

hereafter.
The simplified zero-frequency action can be rewritten in a

rotationally invariant form

S[Z,Z̃]|ω=0 = Str ln

(
1 + Û

1 − Û
+ Qσ 0

)
≡ S[Q]|ω=0, (25)

where Q is a 4 × 4 supermatrix field, defined as

Q ≡ T −1�T (26)

with

T =
(

1 Z

Z̃ 1

)
ar

≡ 1 + iW, � =
(

1 0
0 −1

)
ar

. (27)

In this definition, the spin index is excluded.

1. Separation of fast and slow modes

The action (25) is invariant under global rotation

S[Q]|ω=0 = S[T ′QT ′−1]|ω=0, (28)

where T ′ ∈ G = U (1,1|2) is homogeneous in N space. As
a result, for homogeneous Q configurations one may always
rotate Q back to � with the action invariant, i.e., S[Q]|ω=0 =

S[�]|ω=0. The latter obviously vanishes. Therefore, a finite but
small action S[Q] must result from either shallow variations
of Q in N space or small ω, and they contribute separately
(because their coupling is of higher order.)

By their definitions, Z,Z̃ and thereby Q are off diagonal in
N space in general. Accordingly, we divide the components
of Z,Z̃ into two groups. For one group, the components
are diagonal in N space and vary smoothly in N ; for the
other, they are either diagonal, but varies rapidly in N , or off
diagonal. Their definitions are essentially the same as those
in conventional QKR [13]. Since they are unimportant for
present discussions, we refer to Ref. [13]. The former group
of (Z,Z̃) components (the slow mode) carries information
about the 2D motion at large scales, and the latter (the fast
mode) at short scales. In particular, the latter carries the
information about the velocity relaxation. If the chaoticity
associated with the motion at short scales is sufficiently
strong, the scales are well separated, and so are the fast and
slow modes. In this case, as shown in Appendix A, the fast
mode only introduces unimportant corrections to the bare
(unrenormalized) parameters governing motion at large scales.
For this reason, we will not discuss the fast mode further and
hereafter the fields Z,Z̃ are composed of slow modes only,
i.e.,

Z = {ZNα,Nα′ } ≡ {Zα,α′ (N )},
(29)

Z̃ = {Z̃Nα,Nα′ } ≡ {Z̃α,α′ (N )}.
Moreover, these fields exhibit shallow variations in N .

For Q made up of Z,Z̃ given above, Eq. (26) is simplified
to

Q(N ) = T (N )−1�T (N ),
(30)

T (N ) =
(

1 Z(N )
Z̃(N ) 1

)
ar

≡ 1 + iW (N ).

Taking this into account, the first exponent of Û (i.e.,
e− i

he
[H0(hen̂1)+heω̃n̂2]) is canceled out in the exact action (24).

As a result, the zero-frequency action (25) is substantially
simplified, which reads as

S[Q]|ω=0 = Str ln(ε + iQ), (31)

with (recall that the index i runs over 1,2,3)

ε ≡ εiσ
i, εi = cot

|V |
2he

Vi

|V | . (32)

This is a key step, which makes subsequent derivation
completely different from that of the effective field theory
for the conventional QKR [13,21]. Instead, in the following
the effective action is derived in a way close to Ref. [46].
In deriving Eqs. (31) and (32), we use the relations (1). To
make the formula compact, we suppress the argument � of
Vi , εi , etc., and drop out the unit matrix σ 0. Note that this
action is insensitive to the explicit form of H0 and the value
of irrational ω̃/(2π ). Physically, this is due to the ignorance of
all fast modes, namely, the immediate loss of the memory on
� upon kicking.

The action (31) can be rewritten as

S[Q]|ω=0 = Str ln(ε + i� + T [ε,T −1]). (33)
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Then, we formally express [ε,T −1] as the summation over the
terms of the following form:

∼ [θ1, . . . [θ1︸ ︷︷ ︸
k

, [θ2, . . . [θ2︸ ︷︷ ︸
j

,T −1] . . . ]σ i,

where k,j are arbitrary (non-negative) integers. This may be
considered as a hydrodynamic expansion since T (N ) varies
smoothly in N and the operator −i[θα, ] can be identified
as the usual derivative ∇α with respect to nα . Keeping this
expansion up to the second order and then substituting it into
Eq. (33), we obtain (see Appendix B for the derivation)

S[Q]|ω=0 = Str ln
(
G−1

+ + i∂θα
ε uα

− 1
2∂2

θαθβ
ε (uαuβ − ∇αuβ)

)
, (34)

where we have introduced the notations

uα ≡ T ∇αT −1 (35)

and

G± ≡ (ε ± i�)−1. (36)

Throughout, the Greek indices α,β = 1,2, and the Einstein
summation convention applies to these indices also.

2. Fluctuation action

To simplify technical discussions, below we consider
potentials such that

V2(θ1,θ2) = V1(θ2,θ1), V3(θ1,θ2) = V3(θ2,θ1). (37)

[This simplification is inessential. Its only effect is to make
the ensuing effective field theory, namely Eq. (65), isotropic.]
The action (34) can be decomposed as

S[Q]|ω=0 = S1 + S2, (38)

with S1 being real and S2 purely imaginary. The real part is
given by

S1 = 1
2 Str ln

(
G−1

+ + i∂θα
ε uα

− 1
2∂2

θαθβ
ε (uαuβ − ∇αuβ)

)+ c.c., (39)

where c.c. is the abbreviation of complex conjugate. Keeping
its hydrodynamic expansion up to the second order, we obtain

S1 = − 1
4 Str

((
G0

R + G0
A

)
∂2
θαθβ

ε uαuβ

)
+ 1

8 Str
((
G0

R + G0
A

)
∂θα

ε
(
G0

R + G0
A

)
∂θβ

ε uαuβ

)
+ 1

8 Str
((
G0

R − G0
A

)
∂θα

ε
(
G0

R − G0
A

)
∂θβ

ε�uα�uβ

)
, (40)

where the “free-particle Green function”

G0
R,A ≡ 1

ε ± i
. (41)

Introducing the decomposition uα = u‖
α + u⊥

α , where u‖
α (u⊥

α )
(anti)commutes with �, we rewrite Eq. (40) as

S1 = − 1
4 Str

((
G0

R − G0
A

)
∂θα

ε
(
G0

R − G0
A

)
∂θβ

εu⊥
α u⊥

β

)
. (42)

Thanks to u⊥
α u⊥

β = − 1
4T ∇αQ∇βQT −1, we further reduce it

to [59]

S1 = −σ

4
Str(∇Q)2, (43)

where

σ = − 1
4 Tr
((
G0

R − G0
A

)
∂θ1ε
(
G0

R − G0
A

)
∂θ1ε
)

= − 1
4 Tr
((
G0

R − G0
A

)
∂θ2ε
(
G0

R − G0
A

)
∂θ2ε
)

(44)

and ∇ ≡ (∇1,∇2). In deriving the second line of Eq. (44), we
have used the relations (37). Substituting Eq. (41) into Eq. (44)
we obtain

σ = 2
∫∫

dθ1

2π

dθ2

2π

∂θ1εi∂θ1εi

(ε2 + 1)2
. (45)

This term is the same as that describing localization physics
[60] and the (inverse) coupling constant σ mimics the
unrenormalized (Drude) longitudinal conductivity in normal
metals.

From Eq. (43) we see that S1 is isotropic in N space,
in contrast to the anisotropicity of the microscopic system
(8). This difference arises because this action is responsible
for long-time but not short-time behavior. Due to strong
chaoticity, the system loses memory on � after each kicking,
and this leads to the isotropicity of S1. It becomes clearer how
this isotropic low-energy action emerges from an anisotropic
microscopic Hamiltonian, when Eqs. (43) and (44) are derived
in an alternative way (see Appendix A). The alternative
derivation shows that the isotropicity is washed out by
short-time memory effects, and an action − 1

4 [σ1Str(∇1Q)2 +
σ2Str(∇2Q)2], σ1 �= σ2, results when these effects are taken
into account. However, we emphasize that this anisotropicity is
weak and by appropriately rescaling one can always recover an
isotropic effective field theory. Therefore, we will not discuss
this issue further.

3. Topological action

We turn to the imaginary part. Similar to Eq. (39), S2 is
given by

S2 = 1
2 Str ln

(
G−1

+ + i∂θα
ε uα

− 1
2∂2

θαθβ
ε (uαuβ − ∇αuβ)

)− c.c. (46)

We then perform the hydrodynamic expansion up to the second
order. To this end, we expand the logarithms in uα up to the
second order, obtaining

S2[Q] = S
(1)
2 [Q] + S

(2)
2 [Q], (47)

with

S
(1)
2 = i

2
Str[(G+ − G−)∂θα

ε uα] (48)

and

S
(2)
2 = 1

4 Str
[−(G+ − G−)∂2

θαθβ
ε(uαuβ − ∇βuα)

+ (G+∂θα
ε uαG+∂θβ

ε uβ − G−∂θα
ε uαG−∂θβ

ε uβ

)]
.

(49)

S
(1,2)
2 are both purely imaginary.

We first consider S
(1)
2 . At first glance, it seems to be a

first-order hydrodynamic expansion and one might thereby
expect that it vanishes. Yet, the boundary inevitably introduces
inhomogeneity effects, which must be investigated carefully.
In general, it deforms Û in the way that Vi(�) acquires a
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parameter (denoted as μ) dependence and μ varies smoothly
in N . With this taken into account, Eq. (48) leads to a
nonvanishing second-order hydrodynamic expansion, which
reads as

S
(1)
2 = − 1

2 Str
[(
G0

R∂με G0
R∂θα

ε G0
R∂θβ

ε

−G0
A∂με G0

A∂θα
ε G0

A∂θβ
ε
)
�uα∇βμ

]
. (50)

By using Stokes’ theorem we rewrite it as

S
(1)
2 = σ II

H

4
Str(Q∇1Q∇2Q) (51)

with

σ II
H = −

∫
dμ Tr

(
G0

R∂με G0
R∂θ1ε G0

R∂θ2ε

−G0
A∂με G0

A∂θ1ε G0
A∂θ2ε

)
. (52)

The expression (52) for σ II
H resembles an expression for

the quantum contribution to the (bare) Hall conductivity in
conventional IQHE [46,48,61].

In Appendix C, the deformation will be discussed in
details. There, we further trade Eq. (52) for an integral
which is independent of the deformation, implying that σ II

H
is an intrinsic quantity and its value is unique. We stress
that the deformation is made only at the stage of deriving
the effective field theory. It does not apply to the original
system, namely Eqs. (5) and (8), and therefore does not affect
numerical simulations below. In addition, such deformation
has no consequence on S1 up to O(∇2).

Next, we consider S
(2)
2 . Because of uα = O(∇) in perform-

ing the hydrodynamic expansion for Eq. (49) we need not
consider the above deformation of Û since its effects are of
higher order. As a result,

S
(2)
2 = 1

4 Str
[(
G0

R + G0
A

)
∂θα

ε
(
G0

R − G0
A

)
∂θβ

εuα�uβ

]
. (53)

With the help of the identity

− 2 Str[�(uαuβ − uβuα)] = Str(Q∇αQ∇βQ), (54)

Eq. (53) can be rewritten as

S
(2)
2 = σ I

H

4
Str(Q∇1Q∇2Q) (55)

and the coefficient

σ I
H = 1

2 Tr
[(
G0

R + G0
A

)
∂θ1ε

(
G0

R − G0
A

)
∂θ2ε

]
. (56)

Equation (56) resembles an expression for the contribution to
the (bare) Hall conductivity arising from the Lorentz force in
conventional IQHE [46,48].

Adding S
(1)
2 and S

(2)
2 together, we cast Eq. (46) to a

topological action, namely, the theta term [47,48,62]

S2[Q] = σH

4
Str(Q∇1Q∇2Q), (57)

with the coefficient

σH = σ I
H + σ II

H (58)

giving the unrenormalized topological theta angle 2πσH. This
term is topological in nature. With the substitution of Eq. (41),

Eqs. (52) and (56) are rewritten as

σ I
H = 4εijk

∫∫
dθ1

2π

dθ2

2π

εi∂θ1εj ∂θ2εk

(ε2 + 1)2
(59)

and

σ II
H = 4εijk

∫∫
dθ1

2π

dθ2

2π

∫
dμ

∂μεi∂θ1εj ∂θ2εk

(ε2 + 1)2
, (60)

respectively. In Eq. (60), the upper limit of the μ integral takes
the bulk value corresponding to an undeformed Û , while the
lower limit corresponding to the integrable deformation of Û

depends on the details of Vi . In Appendix C, we show that
Eq. (60) can be expressed in a form which is independent of
the deformation. Equations (60) and (59) justify Eq. (2).

4. Topological meanings of theta term

Let us gain some insights for the topological theta term
(57). To this end, it is sufficient to keep only the commuting
components of Z(N ), i.e., Zf,f (N ) and Zb,b(N ). One com-
ponent, Zf,f (N ), takes the value of unconstrained complex
number. Therefore, it can be written as

Zf,f (N ) = tan
(

1
2θf (N )

)
e−iϕf (N),

(61)
θf ∈ [0,π ], ϕf ∈ [0,2π ).

Consider the stereographic projection of S2 from the south
pole, with its Euclidean coordinate (x,y,z) = (0,0, − 1), onto
the equator plane z = 0. We see that the real and imaginary
parts of the parametrization (61) constitute the coordinate of
this projection, i.e., (tan θf

2 cos ϕf , tan θf

2 sin ϕf ,0). This im-
plies Zf,f � S2. The other component, Zb,b(N ), is constrained
by |Zb,b(N )| < 1. Therefore, we can write it as

Zb,b(N ) = tanh
(

1
2θb(N )

)
e−iϕb(N),

(62)
θb ∈ R+, ϕb ∈ [0,2π ).

On the other hand, consider the upper sheet of the two-
sheet hyperboloid x2 + y2 − z2 = −1, namely, H 2. It can be
parametrized as (sinh θb cos ϕb, sinh θb sin ϕb, cosh θb). Then,
the real and imaginary parts of the parametrization (62)
constitute the coordinate of the stereographic projection of H 2

from (0,0, − 1) onto the disk: {(x,y,z)|x2 + y2 < 1,z = 0},
which is (tanh θb

2 cos ϕb, tanh θb

2 sin ϕb,0). This implies Zb,b �
H 2. Therefore, the field Zb,b × Zf,f induces a mapping from
N space onto H 2 × S2 discussed in Sec. II B.

Substituting Eqs. (61) and (62) into Eqs. (30) and (57), we
find

1

8π
Str(Q∇1Q∇2Q) = 1

4π

∫
dN n · (∇1n × ∇2n), (63)

where n ≡ (sin θf cos ϕb, sin θf sin ϕb, cos θf ) is a three-
dimensional unit vector. The right-hand side of Eq. (63) is
the Brouwer degree of the mapping from the (compactified)
N space (�S2) to the target space (�S2 also) which is an
integer. For this mapping, the degree is a complete homotopy
invariant, implying π2(S2) = Z, namely, the last equality
of Eq. (12). Note that the noncompact component has no
contributions.
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5. Frequency action

The finiteness of ω generates a third contribution, denoted
as Sω[Q], to the action. As before, the fast modes and the Z
components are ignored. Moreover, at large scale, O(∇) <

he, and low frequencies, ω � 1, the terms ∼ O(ω∇2) are
irrelevant. That is, the inhomogeneity of Z,Z̃ can be ignored
when we derive the frequency action. As a result,

Sω[Q] ≈ −2(Str ln(1 − ZZ̃) − Str ln(1 − eiωZZ̃))

≈ −2iω Str
ZZ̃

1 − ZZ̃

= −i
ω

2
Str(Q�), (64)

where the factor of 2 in the first line arises from the trace
over the spin index. [Recall that in Eq. (64) Z,Z̃ are 2 ×
2 supermatrices.] It is important that this action breaks the
global rotation symmetry (28), exhibited by the zero-frequency
action. The ensuing symmetry group is U (1|1) × U (1|1) ⊂
G = U (1,1|2). The rotation transformation representing this
symmetry group leaves � invariant. As we will see in Sec. IV,
such symmetry breaking has significant consequences.

Adding Eqs. (43), (57), and (64) together, we find the total
low-energy effective action

S[Q] = 1
4 Str[−σ (∇Q)2 + σHQ∇1Q∇2Q − 2iωQ�],

(65)

which describes 2D dynamics at large scales. This is the super-
symmetric version of the Pruisken-type field theory, previously
obtained in studies of conventional IQHE [38,47–49,62]. We
stress that because the physical setup here does not exhibit any
similarities to the conventional quantum Hall system, namely,
a 2D electron gas subjected to a magnetic field and strongly
disordered potential, the derivation of the action (65) is totally
different from that for the latter system. Comparing this action
with the one for conventional IQHE, we find that, interestingly,
the control parameters σ and σH mimic the unrenormalized
longitudinal and Hall conductivities, respectively. We should
emphasize that this similarity, however, does not necessarily
lead to the IQHE-like transition. Whether and how it occurs
still depends on the behavior of σ and σH, and this is the
main subject of the next two sections. Finally, we remark
that in the absence of the topological theta term, this action
is reduced to the one describing Anderson localization in a
spinless quasiperiodic QKR [21].

Summarizing, the action (24) is exact and does not depend
on whether the 2D dynamics (9) is chaotic or not. Provided
this 2D dynamics is chaotic, i.e., the correlation of � or
more precisely (sin θ1, sin θ2) decays rapidly at short times,
a characteristic microscopic scale, essentially the mean-free
path ∼√

σ arises. For the field configuration varying over a
scale much larger than this and ω � 1, Eq. (24) is reduced to
the Pruisken-type field theory.

C. Energy profile E(t)

Since in the effective field theory the supermatrix fields
are all proportional to σ 0, the two-particle Green function is

simplified to

Kω(Ns+s−,N ′s ′
+s ′

−)

= δs+s−δs ′+s ′−

∫
D(Z,Z̃)e−S[Q]

× [(1 − ZZ̃)−1Z]Nb,Nb[(1 − Z̃Z)−1Z̃]N ′b,N ′b, (66)

where Z,Z̃ are understood according to Eq. (29). Exploiting
the definition of Q(N ), namely Eqs. (30) and (27), we further
express Eq. (66) as a functional integral over Q, which reads
as

Kω(Ns+s−,N ′s ′
+s ′

−)

= −1

4
δs+s−δs ′+s ′−

∫
D(Q)e−S[Q]Q(N )+b,−bQ(N ′)−b,+b.

(67)

The Q integral above depends only on the difference of
(N − N ′) because the action (65) is translationally invariant.
Therefore, Eq. (67) can be rewritten as

Kω(Ns+s−,N ′s ′
+s ′

−) = 1
4δs+s−δs ′+s ′−Kω(N − N ′), (68)

with the function Kω(N ) given by

Kω(N ) ≡ −
∫

D(Q)e−S[Q]Q(N )+b,−bQ(0)−b,+b. (69)

Inserting Eqs. (68) and (69) into Eq. (20), we find

E(t) = 1

4

∑
N

n2
1

∫
dω

2π
e−iωtKω(N ). (70)

Equations (45), (58), (60), (59), (65), (68), (69), and (70) con-
stitute the first-principles analytic formalism for calculating
the energy profile.

D. Universal scaling behavior of σ and σH for small he

The effective field theory (65) is controlled by two param-
eters, the unrenormalized (inverse) coupling constant σ and
topological angle 2πσH. For a given potential V , they depend
only on he. Following, we show that these two parameters
exhibit universal scaling behavior for small he, independent of
the details of V .

First of all, by substituting Eq. (32) into Eq. (45) we obtain

σ = 1

2

∫∫
dθ1

2π

dθ2

2π

[(
∂θ1 |V |

he

)2

− sin2 |V |
he

(∂θ1 |V |)2 − ∂θ1Vi∂θ1Vi

|V |2
]
. (71)

This gives

σ
he�1−→ 1

2h2
e

∫∫
dθ1

2π

dθ2

2π
(∂θ1 |V |)2 ∝ h−2

e , (72)

namely, Eq. (14). In fact, this rescaling exists also in the
conventional QKR [13,21]. It implies that σ is proportional
to the square of the mean-free path, which is a manifestation
of strongly chaotic motion at microscopic scales. As we will
see later, σ is the energy growth rate at short times.
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Next, we analyze the scaling behavior of σH. To this end,
we rewrite Eq. (60) as

σ II
H = 4εijk

∫∫
dθ1

2π

dθ2

2π

∫
dμ

Dμ,iDθ1,jDθ2,k

sin2(|V |/2he)
, (73)

where

Dα,i ≡ sin
|V |
he

∂αVi

2|V | −
( |V |

he

+ sin
|V |
he

)
Vi∂α|V |2

4|V |3 , (74)

with the subscript α = μ,θ1,2. For he � 1, Eq. (73) is
simplified to

σ II
H ≈ − 1

he

∫∫
dθ1

2π

dθ2

2π

∫
dμ

(
1 + cos

|V |
he

)

× εijk∂μVi∂θ1Vj∂θ2Vk

|V |2 . (75)

For he � 1, the cosine function in the bracket oscillates
rapidly in |V | (and thereby �) and the corresponding term
is negligible. As a result, Eq. (75) is simplified to

σ II
H

he�1−→ − 1

he

∫∫
dθ1

2π

dθ2

2π

∫
dμ

εijk∂μVi∂θ1Vj∂θ2Vk

|V |2 . (76)

On the other hand, Eq. (59) can be written as

σ I
H = εijk

∫∫
dθ1

2π

dθ2

2π

Vi∂θ1Vj∂θ2Vk

|V |3

×
(

sin
|V |
he

+ 1

2
sin

2|V |
he

)
. (77)

For the same reasons it is negligible for he → 0. Taking this
and Eq. (76) into account, we find

σH
he�1−→ − 1

he

∫∫
dθ1

2π

dθ2

2π

∫
dμ

εijk∂μVi∂θ1Vj∂θ2Vk

|V |2 . (78)

Since Vi is he independent, from Eq. (78) we obtain
the universal scaling law (15), where the proportionality
coefficient generally does not vanish. In principle, corrections
to Eq. (78) violate this scaling law. However, these corrections
are small for he � 1 and therefore negligible. As we will
see below, this scaling law is crucial for establishing the
universality of the Planck-IQHE pattern represented by Fig. 1.
We recall that in conventional Hall systems, the classical
Hall conductivity increases linearly with the inverse magnetic
field, when the magnetic field is strong [38]. Comparing this
law with Eq. (78) suggests an analogy between h−1

e and the
filling fraction (or he and the magnetic field). As we will show
in Sec. V, this is a key ingredient of the analogy between
Planck- and conventional IQHE.

IV. FIELD THEORY OF TRANSPORT PARAMETERS

Armed with the effective field theory (65), in this section we
will calculate perturbative and nonperturbative contributions
to the energy growth rate. Moreover, the field theory allows
us to introduce a virtual Hall conductivity. We will calculate
its perturbative and nonperturbative parts as well. This virtual
transport parameter enables us to uncover the hidden quantum
number in the next section by using the RG method. The
calculation scheme of this section, within the supersymmetry

formalism, is parallel in spirit to that developed by Pruisken
and co-workers for the replica field theory of conventional
IQHE [63–65]. However, the detailed treatments are very
different. In particular, it has not yet been reported in literatures
whether and to what extent the relatively recent results [65]
for the renormalization theory of conventional IQHE could be
extended to the supersymmetry formalism. On the other hand,
there are principal reasons and examples [66] showing that the
agreement of perturbative results obtained from the replica and
supersymmetry formalism does not guarantee the agreement of
nonperturbative results. In view of successes recently achieved
in applications of the supersymmetry technique to spinless
QKR [13,21,67], it is natural to proceed to obtain explicit
results from this technique, namely, the effective field theory
(65). For these reasons (as well as for the self-contained
purpose), we give the details of the extension in the following,
although some technical pieces are the same as earlier works
[63–65], as they do not depend on specific formalism (replica
or supersymmetry).

The results obtained in this section pave the way for RG
analysis, which will be performed in the next section. We stress
that the treatments of this section are not exact. Rather, they
are perturbative and nonperturbative single-instanton analysis.
We do not study the multi-instanton effect [68], which is far
beyond the scope of this work.

A. Background field formalism

Motivated by the similarity between the effective field
theory (65) and that for conventional IQHE, we follow the
field-theoretic treatment [47–49,63–65] of conventional IQHE
to introduce a background field. This field, given by

U = ei(n1j1τ1+n2j2τ2), τi = σ i
ar ⊗ Eff , (79)

varies smoothly in the N space and is minimally coupled to
the effective field theory (65) so that the gradients in the action
(65) are replaced by the covariant derivatives

∇α → ∇α + [U ∇αU −1 ]. (80)

Here, j1,2 are infinitesimal external parameters. Eαα′ is a
projector in the bf space which takes the value of unity for
the entry (α,α′) and is zero otherwise. Observing the structure
of the exponent of U , on general grounds, we expect that
the response to this background field is characterized by two
parameters, defined as

σ̃ ≡ − 1

4�
∂2
j1
Z[U ]|j1,2→0,ω→0 (81)

and

σ̃H ≡ 1

2i�
∂2
j1j2

Z[U ]|j1,2→0,ω→0, (82)

respectively, with � = ∫ dN being the system’s volume and
the zero-frequency limit of ω → 0 taken. Recall that ω is
understood as ω + iη

2 , and the imaginary part, namely, the
infinitesimal positive η, is set to zero only in the final results.
Such term breaks the global G symmetry of the zero-frequency
action S[Q]|ω=0 and gives nonvanishing results for σ̃ and σ̃H.
Although presently we are not aware of physical implications
of this coupling to the original system (5), formally the
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definitions bear a close analogy to the genuine longitudinal
and Hall conductivity, respectively [38]. For this reason, we
dub σ̃ and σ̃H “transport parameters.”

With the substitution of Eq. (65), Eqs. (81) and (82) are cast
into the functional integral of Q:

σ̃ = − σ

4�

〈
Str
(
Qτ1Qτ1 − τ 2

1

)〉
η

+ σ 2

4�
〈(Str(τ1Q∇1Q))2〉η (83)

and

σ̃H = σH − σ

4�
〈Str(τ3Qεαβnα∇βQ)〉η

+ iσ 2

2�
〈Str(τ1Q∇1Q)Str(τ2Q∇2Q)〉η, (84)

where 〈. . .〉η ≡ ∫ D(Q)(. . .)e
−S[Q]|

ω→ iη
2 and εαβ is the totally

antisymmetric tensor. In the final results we first set � to
infinity and then η to zero. We remark that these expressions
are not invariant under the rotation Q → T −1QT , where
[T ,�] = 0. We do not know how to obtain from Eqs. (83) and
(84) their equivalent and rotationally invariant expressions.
Because of this, calculations below differ substantially from
those performed in Refs. [63–65].

B. Implications of transport parameters

While this section is devoted to explicit calculations of
Eqs. (81) and (82), it may be useful to first obtain some insights
into the implications of these two transport parameters.

1. Optical conductivity and physical meanings of σ

Because σ̃ and σ̃H are functions of the parameters σ and σH

of the effective field theory (65), we first need to discuss the
meaning of σ and σH. To this end, we derive a general result
for E(t). For the moment, we restore the frequency term, i.e.,
finite ω. By the particle-number conservation law, the Fourier
transformation of Kω(N ), denoted as Kω(φ) with φ ≡ (φ1,φ2),
has to obey the limiting behavior limφ→0 Kω(φ) = 2/(−iω).
Then, the most general low-φ asymptotic compatible with this
requirement and the rotation symmetry must take the general
form as follows:

Kω(φ) = 2

−iω + σ (ω)φ2 , (85)

where σ (ω) simulates the “optical conductivity” in condensed
matter [69]. Most importantly, it has a diffusive pole. Substi-
tuting Eq. (85) into Eq. (70) gives

E(t) = −
∫

dω

2π

e−iωt

ω2
σ (ω). (86)

This is a general relation between the rotor’s energy profile
and σ (ω). It shows that the low-frequency behavior of σ (ω)
governs the energy profile at long times. To be specific, if

σ (ω → 0) is finite, then E(t)
t→∞−→ t (metal); if σ (ω → 0) ∼

−iω, then E(t)
t→∞−→ const (insulator) with the saturation value

characterizing the 2D localization volume.
For sufficiently short times, which corresponds to ω much

larger than a characteristic frequency ∼e−4πσ 2
(which, as we

will discuss in the end of Sec. V A, is the inverse of the
characteristic time for effecting quantum interference), the Q

field fluctuates weakly around �. Therefore, we can expand
Q in Z,Z̃. Substituting it into the expression (69) of Kω(N )
and keeping the leading term gives

Kω(N ) = 4
∫

D(Z,Z̃)e−S0[Z,Z̃]Z(N )b,bZ̃(0)b,b,

(87)
S0[Z,Z̃] = 2 Str(Z(−σ∇2 − iω)Z̃).

It is important to note that on the perturbation level the topo-
logical term does not contribute to the action. The Gaussian
integral in Eq. (87) can be readily calculated. The result is
Kω(φ) = 2/(−iω + σφ2). Substituting it into Eq. (70) gives

E(t) = −1

4

∫
dω

2π
e−iωt ∂2

φ1
|φ=0Kω(φ) = σ t. (88)

We see that at early times (�e4πσ 2
) chaotic diffusion in the

N space dominates over localization effects arising from
interference and σ gives the short-time energy growth rate.
In fact, it is easy to show that the chaotic diffusion occurs
in both n1 and n2 directions. When short-time correlations
are negligible, this 2D chaotic diffusion is isotropic (see also
discussions in Appendix A).

2. Perturbative contributions to σ̃ and σ̃H

We now discuss the implications of σ̃ and σ̃H. Let us make
some observations of the perturbative parts of Eqs. (83) and
(84). Specifically, we perform the Z,Z̃ expansion for these two
expressions and keep the leading (quadratic) order expansion.
This gives σ̃ = σ and σ̃H = σH which, as discussed above,
are valid only for short times and totally exclude interference
effects. For longer times, interference effects must dominate
and strongly renormalize σ and σH. To see this, we calculate
Eq. (83) up to the two-loop order, which gives

δσp = σ

(
1

2
− 1

d

)
〈0|(−σ∇2)−1|0〉2, (89)

with d being the dimension and 〈N |(−σ∇2)−1|N ′〉 the
diffusive propagator. It exhibits infrared divergence which is a
signature of strong interference effects at large scales. This is
the well-known weak localization correction to σ for systems
with broken time-reversal symmetry. Note that the one-loop
correction vanishes as a result of the time-reversal symmetry
breaking. In contrast, σH does not receive any perturbative
corrections,

δσH,p = 0, (90)

which reflects the nonperturbative nature of the topological
term.

To cure the infrared divergence, we resort to the RG
method which is to be discussed in Sec. V. We note that
the diffusive propagator suffers ultraviolet divergence. For this
reason, we cannot directly set d = 2 in Eq. (89). The ultraviolet
divergence in Eq. (89) can be readily cured by the dimensional
regularization.

From these observations based on perturbative calculations,
we may interpret σ̃ as the long-time energy growth rate or the
quantum longitudinal conductivity. This will become clearer in
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the next part. Likewise, σ̃H may be interpreted as the (virtual)
quantum Hall conductivity.

3. Zero-frequency limit of optical conductivity

The absence of perturbative corrections δσH,p signals that
quantum interference gives rise to important nonperturbative
effects. Before turning to its quantitative analysis, which is
the main subject of the remainder of this section, we derive
a general result for σ̃ showing that Eqs. (81) and (82) indeed
capture strong renormalization effects. To this end, we rewrite
Z[U ] as

Z[U ] =
∫

D[Q]e− 1
4 Str(−σ (∇Q)2+σHQ∇1Q∇2Q−2iωQU −1�U ).

(91)

Upon substituting it into Eq. (81) we obtain

σ̃ = lim
ω→0

1

4
ω2∂2

φ1

∣∣
φ=0Kω(φ). (92)

Inserting the general expression (85) of Kω(φ) into Eq. (92)
we find

σ̃ = σ (ω → 0). (93)

So, σ̃ defined by Eq. (81) is the energy growth rate in the
long-time limit.

4. Discussions on σ̃H

Similar to that σ̃ is the renormalization of σ , Eq. (82)
gives the renormalization of the bare topological theta angle
2πσH. In Sec. V, we will explicitly work out the two-parameter
scaling theory and see that the renormalization of topological
angle has far-reaching physical consequences.

We note that the parameter σ̃H was introduced at the level
of effective field theory. A natural problem is whether σ̃H can
be introduced at the level of the original model (5) or its 2D
equivalent (9)? In other words, can a linear-response theory be
formulated for the original model, like conventional quantum
Hall systems [61,70]? This turns out to be difficult, owing to
the lack of genuine electromagnetic coupling in the kicked
rotor as well as the driving nature of the model. In fact, the
physical meaning (in terms of the original model) and direct
measurement of σ̃H are prominent problems left by this work,
and are currently under investigations. At present, σ̃H is only
a formal parameter.

C. Nonperturbative instanton contributions

We are ready to go beyond the perturbative results (89) and
(90) where quantum corrections are organized as an expansion
in 1

σ
. Specifically, we will calculate nonperturbative instanton

contributions to σ̃ and σ̃H. To this end, we will generalize
the method developed in Refs. [64,65], which is based on the
replica formalism, to the present supersymmetry formalism.

1. Single-instanton approximation

The sufficient and necessary conditions leading to a
stationary zero-frequency action are [68]

∂z∗Z = 0, ∂zZ̃ = 0 (94)

corresponding to the instanton and

∂zZ = 0, ∂z∗Z̃ = 0 (95)

to the anti-instanton, where we have identified the N space
as the complex plane with the coordinate z ≡ n1 + in2 and z∗
being its complex conjugate. As shown in Appendix D, they
are equivalent to the self-duality equation

∇αQ± ± εαβQ±∇βQ± = 0, (96)

with the + (−) sign referring to the (anti-) instanton.
In general, the solutions of Eqs. (94) and (95) give

multi-instanton configurations. The particular case of single-
instanton solution to Eq. (94) (the so-called “dilute instanton
gas”) is given by

Qs(N ) = T −1�s(N )T (97)

with s = ±. Here, T ∈ G = U (1,1|2) is homogeneous in N

space generating a global rotation and

�s = R−1
s �Rs, (98)

where

R+ = R∗
− =

(
e∗

1 e0

−e0 e1

)
ar

⊗ Eff + 1ar ⊗ Ebb, (99)

e0 = λ√
|z − z0|2 + λ2

, e1 = z − z0√
|z − z0|2 + λ2

(100)

with z0 ≡ n10 + in20 being the position of the instanton and
λ the instanton size. According to Eq. (99), the instanton
configuration is nontrivial only in the fermionic-fermionic
block, consistent with discussions above [cf. Eq. (61)]. From
now on we adopt the standard single-instanton approximation
[38,39,60,63–65].

Substituting Eqs. (97) and (98) into the (zero-frequency)
action, we obtain the stationary action (see Appendix E for the
derivation)

S[Qs]|ω=0 = 4πσ − s2πiσH (101)

corresponding to the instanton configuration. We find from
Eqs. (98) and (99) that �s → � at infinity of N space, i.e.,
|z − z0| → ∞. In contrast, Rs is not a constant at the boundary,
i.e.,

Rs → e−iϑσ 3
ar ⊗ Eff + σ 0

ar ⊗ Ebb ≡ Rs(ϑ), (102)

which depends on the angle

ϑ ≡ Arg(z − z0) ∈ [0,2π ). (103)

This has an important consequence. There exists a local
U (1) symmetry, i.e., R−1

s (ϑ)�Rs(ϑ) = �, at the boundary.
As shown in Appendix E, the instanton action (101) can be
directly attributed to this local gauge symmetry.

The single-instanton solutions to the self-dual equation (96)
have a structure as Qs = U−1�U, U = RsT and constitute a
manifold. To explore the structure of this manifold we consider
a subgroup H ⊂ G:

H ≡ {h|h ∈ G,h−1�s(N )h = �s(N ),∀ N}. (104)

That is, �s(N ) is invariant under the rotation transformation
generated by h ∈ H . By this definition, the element h has the
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general form h = (e
iα1 0
0 eiα2 )

ar
⊗ Ebb + eiγ 1ar ⊗ Eff with

α1,2,γ ∈ [0,2π ), which implies H�U (1) × U (1) × U (1). The
coset space

G/H = U (1,1|2)

U (1|1) × U (1|1)

(
U (1|1)

U (1) × U (1)

)2

U (1), (105)

then carries the degrees of freedom of the instanton. The
first factor refers to the coset space associated with the
supersymmetry σ model of unitary symmetry, and the sub-
group U (1|1) × U (1|1) in the denominator generates rotations
leaving � invariant. In the second factor, the subgroup U (1) ×
U (1) generates rotations leaving σ 3

bf invariant, and the square
accounts for the advanced-advanced and retarded-retarded
blocks; The last factor generates the rotation in the complex
plane, i.e.,

z − z0 → e−iφ(z − z0),
(106)

z∗ − z∗
0 → eiφ(z∗ − z∗

0),

where φ ∈ [0,2π ). The first factor has 8 generators, the second
2 × 2 = 4, and the third 1. On the other hand, Rs has 3 degrees
of freedoms, i.e., {n10,n20,λ}. As a result, the total number of
the instanton’s degrees of freedom is

8 + 4 + 1 + 3 = 16. (107)

We remark that the degrees of freedom carried by G/H

are intrinsic to the zero-frequency limit, i.e., exist only if
the frequency term ∼Str(Q�) in the action (65) is absent.
As we will see in the following, when this term is present,
even for infinitesimal (imaginary) frequency ω → iη

2 , the
first factor in Eq. (105) is fully suppressed in the limit of
� → ∞.

2. Fluctuations and zero modes

To calculate the nonperturbative instanton contributions to
Eqs. (83) and (84), we perform the semiclassical analysis.
More precisely, for weak coupling σ � 1, the Q functional
integral is dominated by the Gaussian fluctuations around
the instanton configurations. To study these fluctuations we
parametrize the Q field as

Q = U−1qU, U = RsT (108)

with

q = w + �
√

1 − w2, w =
(

0 v

−ṽ 0

)
ar

, (109)

where the N dependence is carried by v and Rs with v,ṽ being
2 × 2 matrices in the bf space.

Without loss of generality we focus on s = +. Substituting
Eqs. (108) and (109) into Eq. (65), we find

S[Q]|ω=0 ≈ S[Q+]|ω=0 + δSnp, (110)

where the fluctuation action

δSnp[v,ṽ] = σ

2

∫
dNμ2(N )

(
vbbÔ

(0)ṽbb + vbf Ô(1)ṽf b

− vf bÔ
(1)ṽbf − vff Ô(2)ṽff

)
. (111)

Here, the operator Ô(a) is defined as

Ô(a) ≡ − 1

μ2(N )

(
∇α + iaεαβ (nβ − nβ0)

|z − z0|2 + λ2

)2

− a

2
(112)

with μ(N ) = 2λ/(|z − z0|2 + λ2). The fluctuation action
(111) indicates that the instanton configuration effectively
introduces a curved space background and the corresponding
measure is dNμ2(N ), where the Jacobian μ2(N ) arises from
the nontrivial Riemannian metric. The “−” sign of the last two
terms of Eq. (111) results from the supertrace definition.

To proceed further, we pass to the stereographic projection.
The corresponding coordinates are denoted as (η,ϑ), with

η ≡ |z − z0|2 − λ2

|z − z0|2 + λ2
∈ [−1,1] (113)

and ϑ defined by Eq. (103). In this coordinate system, the
space is flat because of dNμ2(N ) = dη dϑ , and Ô(a) has the
following representation:

Ô(a) = −
(

(1 − η2)∂2
η − 2η∂η + 1

1 − η2
∂2
ϑ − ia

1 − η
∂ϑ

− a2

4

1 + η

1 − η
+ a

2

)
. (114)

The eigenfunctions and eigenvalues of Ô(a), satisfying

Ô(a)�
(a)
J,M (η,ϑ) = E

(a)
J �

(a)
J,M (η,ϑ), (115)

are given by (see Appendix F for details)

E
(a)
J = J (J + a + 1), J = 0,1,2, . . . (116)

and

�
(a)
J,M = 1

2M+1

√
2J + a + 1

2aπ

�(J − M + 1)�(J + M + a + 1)

�(J + 1)�(J + a + 1)
e−iMϑ (1 − η2)

M
2 (1 − η)

a
2 P

M+a,M
J−M (η),

(117)
M = −J − a, − J − a + 1, . . . ,J.

Here, P
α,β
n (η) is a polynomial of degree n, defined as

P α,β
n (η) ≡ 1

n!

n∑
ν=0

Cν(n,α,β)

(
η − 1

2

)ν

(118)
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with

Cν(n,α,β) =

⎧⎪⎨
⎪⎩
(n
ν

)
(n + α + β + 1) . . . (n + α + β + ν)(α + ν + 1) . . . (α + n), ν �= 0,n,

(α + 1) . . . (α + n), ν = 0,

(n + α + β + 1) . . . (2n + α + β), ν = n

(119)

which extends the Jacobi polynomial defined for α,β > −1
to arbitrary complex α,β (cf. Ref. [71]). The normalization
constant in Eq. (117) is determined in the way such that∫ 1

−1
dη

∫ 2π

0
dϑ �

(a)∗
J ′,M ′ (η,ϑ)�(a)

J,M (η,ϑ) = δJJ ′δMM ′ . (120)

Equation (117) gives the degeneracy

d (a)(J ) = 2J + a + 1 (121)

for a given eigenvalue E
(a)
J . Note that the normalization factor

in Eq. (117) has been first derived in Ref. [72].
For J = 0, − a � M � 0, the eigenvalue vanishes and the

corresponding eigenfunctions are

�
(0)
0,0 = 1

2
√

π
, (122)

�
(1)
0,0 = 1√

2π
e0, �

(1)
0,−1 = 1√

2π
e∗

1, (123)

�
(2)
0,0 =

√
3

4π
e2

0, �
(2)
0,−1 =

√
3

2π
e0e

∗
1, �

(2)
0,−2 =

√
3

4π
e∗2

1 .

(124)

These are the zero-mode bases. Fluctuations along these direc-
tions (in the Hilbert space) do not cost any action. According to
Eq. (111), �

(0)
0,0 is associated with the bosonic-bosonic block,

�
(1)
0,M with bosonic-fermionic or fermionic-bosonic block, and

�
(2)
0,M with fermionic-fermionic block. As a result, the total

number of zero modes is

2 × (1 + 2 × 2 + 3) = 16, (125)

which is the same as the instanton’s degrees of freedom (107),
as expected.

To understand better the meaning of zero modes, let us
consider a “motion” in the instanton manifold. According to
Eqs. (97) and (98), the coordinates of the instanton manifold
are composed of c ≡ {n10,n20,λ}, which discriminate different
R+ matrices, and the natural coordinates ξ of T . Then,
the motion is defined as a displacement Q+ → Q+ + dQ+,
generated by an infinitesimal coordinate change c → c + dc,
ξ → ξ + dξ . Here,

dQ+ = U−1[UdU−1,�]U, U = R+T . (126)

Comparing this with the first-order w expansion of Eq. (108),
we find that the coordinate change generates a w field, w =
[UdU−1,�]. More precisely,

v = −2(UdU−1)+−, ṽ = −2(UdU−1)−+. (127)

As shown in Appendix G, these two special fields are spanned
by the zero-mode bases (122)–(124), with the expansion
coefficients being the position and size of the instanton and
the generators of the coset space G/H . Therefore, field

configurations corresponding to the instanton manifold Q+ =
U−1�U, U = R+T have the same action as (101) (s = +),
as expected.

3. Fluctuation determinant and zero-mode integration

Observing Eqs. (83) and (84), we find that their nonpertur-
bative parts have the general structure as follows:∑

s=±

∫
DRs

∫
G/H

DT

∫
D(v′,ṽ′)e−δSnp[v′,ṽ′]

× e−4πσ+s2πiσH−ηStr(�Qs )(. . .)|Q=Qs
≡ Onp, (128)

where the fluctuations v′,ṽ′ exclude the zero-mode com-
ponents, and (. . .) is a shorthand notation for the quantity
inside the bracket 〈. . .〉η. Equation (128) factorizes the
functional integral into an integration over the instanton
manifold (

∫
DRsDT ), namely, the zero-mode integration and

a functional integral over nonzero modes [
∫

D(v′,ṽ′)].
The measure of v′,ṽ′ is flat and the ensuing functional

integral can be readily carried out, giving

eD ≡
∫

D(v′,ṽ′)e−δSnp[v′,ṽ′] = (det′Ô(1))2

det′Ô(0)det′Ô(2)
, (129)

where the denominator arises from the integration over bosonic
(complex number) fields vbb,vff and the numerator over
fermionic (Grassmannian) fields vbf ,vf b, and the functional
determinants det′Ô(a) exclude zero modes. Note that the
overall factor σ

2 in Eq. (111) is canceled out. To calculate
Eq. (129) explicitly, we use the spectral decomposition of
Ô(a). Using Eqs. (115)–(121), we obtain

D = 2D(1) − D(2), (130)

where

D(1) =
∞∑

J=1

(
(2J + 2) ln E

(1)
J − (2J + 1) ln E

(0)
J

)
, (131)

D(2) =
∞∑

J=1

(
(2J + 3) ln E

(2)
J − (2J + 1) ln E

(0)
J

)
. (132)

This result can also be obtained by using the replica method
with the replica limit taken [65]. Note that if we include the
overall factor σ

2 in Ô(a), then E
(a)
J is replaced by σ

2 E
(a)
J . This

factor is, however, canceled out and the value of D is not
affected.

Equations (131) and (132) show that D(1,2) suffer ultraviolet
divergence. This can be cured by the regularization method of
’t Hooft. The procedure and results are exactly the same as that
described in Ref. [63] and here we will give the results only,
which read as

D(1) → D(1)
reg = − ln M + 3

2 − 2 ln 2 (133)
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and

D(2) → D(2)
reg = −2 ln M + 4 − 3 ln 3 − ln 2, (134)

where M is a mass associated with the Pauli-Villars regulator
fields. It is important that this mass cancels out in regularized
D:

D → Dreg = 2D(1)
reg − D(2)

reg = −1 + 3 ln 3
2 . (135)

This cancellation has an important physical meaning as
follows. Substituting Eq. (129) into Eq. (128), we find that,
if such divergence ∼ ln M existed, then it would renormalize
the instanton action, namely σ ; this would contradict the result
of Eq. (89) showing that the one-loop perturbative correction to
σ vanishes. Therefore, the cancellation of ln M in Eq. (135)
reflects the well-known result of the vanishing of one-loop
weak localization correction to σ for systems with broken
time-reversal symmetry [60]. If we keep the v′,ṽ′ expansion
up to the fourth order, then integrating out v′,ṽ′ gives rise to
a nonvanishing quantum correction ∼ O( 1

σ
) to the instanton

action, i.e.,

δS[Qs]|ω=0 = 4π
A2

σ
, (136)

where the numerical constant A2 is universal, to be given
below. With the substitution of Eqs. (129), (135), and (136),
Eq. (128) is reduced to

Onp = 1

e

(
3

2

)3∑
s=±

e
−4πσ (1+ A2

σ2 )+2πsiσH

×
∫

DRs

∫
G/H

DT e−ηStr(Qs�)(. . .)|Q=Qs
. (137)

In what follows, we will perform the integration over the
instanton manifold.

Consider the length element

ds2 ≡ 1

4

∫ 1

−1
dη

∫ 2π

0
dϑ str(ṽv), (138)

where the zero-mode fields v,ṽ are generated by the change in
the natural coordinates according to Eq. (127). In Appendix G,
we express v,ṽ in terms of the coordinate change dλ,dz0,dz∗

0,
associated with Rs and the generators

tαα′
λλ′ ≡ (T dT −1)λα,λ′α′ (139)

of T [see Eqs. (G3)–(G10)]. Substituting the expressions
obtained for v,ṽ into Eq. (138) gives

ds2 = e2
0|e1|2

(
dλ

λ

)2

+ e2
0|e1|2dφ2

+Dψ̄bgbDψb + Dψ̄f gf Dψf . (140)

Here,

Dψb ≡ (dz0,t
ff
+−,tbb

+−)T, (141)

Dψ̄b ≡ (dz̄0,t
ff
−+,tbb

−+), (142)

Dψf ≡ (tbf+−,t
f b
+−,t

bf
++,t

f b
−−)T, (143)

Dψ̄f ≡ (tf b
−+,t

bf
−+,t

f b
++,t

bf
−−), (144)

with the superscript “T” denoting the transpose, and

idφ ≡ t
ff
++ − t

ff
−−. (145)

The matrices gb,f are given by

gb ≡

⎛
⎜⎜⎝

1
λ2 e

4
0

1
λ2 e

4
0 0

− 1
λ2 e

4
0 −(e4

0 + |e1|4
)

0

0 0 1

⎞
⎟⎟⎠ (146)

and

gf ≡

⎛
⎜⎜⎜⎜⎝

−|e1|2 0 0 0

0 |e1|2 0 0

0 0 −e2
0 0

0 0 0 e2
0

⎞
⎟⎟⎟⎟⎠, (147)

respectively. The overline stands for
∫ 1
−1 dη

∫ 2π

0 dϑ(. . .).
By using Eq. (140) we can factorize the measure DRsDT

into four parts (see Appendix H for the proof): (i) dλdn10dn20

associated with the instanton’s size and position, (ii) the
measure of the U (1) group represented by Eq. (106), (iii) the
measure of the coset space U (1,1|2)

U (1|1)×U (1|1) , and (iv) the measure

of the coset space ( U (1|1)
U (1)×U (1) )

2. We parametrize ( U (1|1)
U (1)×U (1) )

2 as

u ≡
(

u1 0
0 u2

)
ar

, (148)

where

u1 =
(

1 + 1
2ζ1ζ

∗
1 ζ1

ζ ∗
1 1 − 1

2ζ1ζ
∗
1

)
bf

, (149)

u2 =
(

1 + 1
2ζ ∗

2 ζ2 iζ ∗
2

−iζ2 1 − 1
2ζ ∗

2 ζ2

)
bf

, (150)

with ζ1,2,ζ
∗
1,2 being Grassmannians [68]. The result of the

factorization is

DRsDT = 4

π2

(e0|e1|)2 e4
0 |e1|4 1(

e2
0 |e1|2

)2
× dλ

λ3
dφdn10dn20dT̃ dζ1dζ ∗

1 dζ ∗
2 dζ2, (151)

with T̃ ∈ U (1,1|2)
U (1|1)×U (1|1) . Corresponding to this factorization,

Qs = (u0uT̃ )−1�s(u0uT̃ ), (152)

with

u0(φ) ≡ ei
φ

2 σ 3
ar ⊗ Eff + 1ar ⊗ Ebb. (153)

With the substitution of Eqs. (151) and (152), Eq. (137) is
reduced to

Onp = 4

π2e

∑
s=±

e−4πσ+2πsiσH

×
∫

dλ

λ3
dn10dn20dφ

∫
dT̃

∫
dζ1dζ ∗

1 dζ ∗
2 dζ2

× e−ηStr(Q�)(. . .)
∣∣
Q=(u0uT̃ )−1�s (u0uT̃ ). (154)
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To proceed further, we note that the frequency term has an
important consequence. To see this, we substitute

η Str(Q�)|Q=(u0uT̃ )−1�s (u0uT̃ )

= η� str(�T̃ −1�T̃ )

− 2πλ2η ln
�

λ2
str
[
�(uT̃ )−1(σ 3

ar ⊗ Eff

)
(uT̃ )

]
(155)

into the exponent of e−η Str(Q�). Then, the first term in Eq. (155)
implies that in the limit of � → ∞ the T̃ integration in
Eq. (154) is restricted to T̃ = 1 and the integration over
fluctuations around T̃ = 1 gives a factor of unity due to
supersymmetry. The second term in Eq. (155) is reduced cor-
respondingly to 4πλ2η ln �

λ2 , which, formally, diverges in the
infrared (i.e., � → ∞). However, as discussed in Appendix I,
such divergence is unphysical because the instanton solution
described by Eqs. (97)–(99) is valid only for instanton size
λ �

√
σ/η. In other words,

√
σ/η serves as an infrared cutoff

of the integral over λ and N . Taking this into account we
find that the second term is finite, which is 4πλ2η ln σ

ηλ2 , and
vanishes in the limit of η → 0. So, a physical meaning of
the scale

√
σ/η can be given as follows. When the instanton

size reaches this scale, the instanton action 4πσ becomes
comparable to the frequency term. At this scale, the derivation
of the instanton solution given by Eqs. (97)–(99) is invalid
since it ignores the frequency term. This suggests that the
instanton behavior at large N would be very different from
that described by Eqs. (98) and (99). Instead, the so-called
constrained instanton [65] is involved and we refer the readers
to Appendix I for further discussions.

Returning to Eq. (154) and taking the discussions above
into account, we eventually reduce Eq. (154) to

Onp = 4

π2e

∑
s=±

∫
dλ

λ3
dn10dn20dφ

∫
dζ1dζ ∗

1 dζ ∗
2 dζ2

× e
−4πσ (1+ A2

σ2 )+2πsiσH (. . .)|Q=(u0u)−1�s (u0u) (156)

upon sending η to zero.

4. Instanton contribution to σ̃ and σ̃H

Applying Eq. (156) to Eq. (83), we find

δσnp = −32π

e

∫
dλ

λ
[σ 2 + O(σ )]

× e
−4πσ (1+ A2

σ2 ) cos(2πσH). (157)

The term ∼O(σ ) in the bracket arises from the first term of
Eq. (83) and higher-order contributions of fluctuations (around
instanton configurations) to the second term of Eq. (83).
Applying Eq. (156) to Eq. (84), we find that the first term
vanishes and the second term gives

δσH,np = −64π

e

∫
dλ

λ
[σ 2 + O(σ )]

× e
−4πσ (1+ A2

σ2 ) sin(2πσH). (158)

Here, the term ∼O(σ ) arises from higher-order contributions
of fluctuations (around instanton configurations).

Equations (89), (90), (157), and (158) are the main results
of this section. Note that the integral over λ suffers an infrared

divergence. The treatments of this divergence are the main
subject of the next section.

V. TWO-PARAMETER SCALING THEORY OF
PLANCK-IQHE

We have shown that at short times the energy always grows
linearly with time, and the growth rate grows quadratically
with h−1

e for small he. What happens to the energy growth
at long times? Having obtained the leading perturbative and
instanton contributions to the transport parameters, we are
now ready to answer this question. In this section, we will
show that the Planck’s quantum drives a dynamical analog of
IQHE.

A. RG equations

As mentioned before, the perturbative and nonperturbative
instanton contributions to the transport parameters suffer
infrared divergence. The idea to circumvent this is to consider
the transport parameters at a finite scale size λ̃, denoted as σ̃ (λ̃)
and σ̃H(λ̃) accordingly, and find the RG equations satisfied by
them. Inheriting from the structure of σ̃ = σ + δσp + δσnp

and σ̃H = σH + δσH,np, these equations have the general
form

dσ̃

d ln λ̃
= βL,p(σ̃ ) + βL,np(σ̃ ,σ̃H) ≡ βL(σ̃ ,σ̃H), (159)

where the RG function βL is composed of perturbative (βL,p)
and nonperturbative (βL,np) parts, with the former depending
only on σ̃ and is an expansion in 1

σ̃
, and the latter on both σ̃

and σ̃H, and
dσ̃H

d ln λ̃
= βH(σ̃ ,σ̃H), (160)

where βH consists of nonperturbative (βH,np) part only. Then,
we solve these two equations and find the fixed points of RG
flow (i.e., λ̃ → ∞).

To find βL,H explicitly, we recall a perturbative one-loop
calculation within the replica formalism [65]. According to
this calculation, the one-loop correction to the instanton action,
i.e., σ in Eq. (101), is identically the same as the perturbative
one-loop expansion of σ̃ . In particular (within the replica
formalism) these two one-loop results have the same ultraviolet
divergence structure. This calculation leads to the ansatz that
perturbative loop expansions for σ̃ and the instanton action
are identically the same. Because such loop expansions are of
perturbative nature, we expect this ansatz to be valid also for
the supersymmetry technique. (It is well known that on the
perturbation level the replica and supersymmetry techniques
give the same results [60,66].) Indeed, we have already shown
explicitly that the perturbative one-loop contribution to σ̃

and the instanton action both vanish [comparing Eqs. (89)
and (136)], in agreement with the replica limit of the results
obtained in Ref. [65]. Taking this ansatz into account, we
find

σ̃ = [σ + βL,p(σ ) ln(M eγ )] − 32π

e

×
∫ λ̃ dλ

λ
σ 2e−4π[σ+βL,p(σ ) ln(M eγ )] cos(2πσH) (161)
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and

σ̃H = σH − 64π

e

∫ λ̃ dλ

λ
σ 2e−4π[σ+βL,p(σ ) ln(M eγ )] sin(2πσH)

(162)

from Eqs. (89), (90), (157), and (158), where the Euler constant
γ ≈ 0.577.

Note that in Sec. IV C 3, the Pauli-Villars regularization was
performed for the field theory in (η,ϑ) space. This corresponds
to the introduction of a spatially varying quantity μ2(N )M in
the flat N space. Following Ref. [65], upon passing to the N

space, we make the following replacement:

M → 1
4e2λμ0 (163)

for the Pauli-Villars mass, with μ−1
0 being a flat microscopic

angular momentum scale.
In Appendix J, we derive the perturbative RG function

βL,p(σ̃ ) = − 1

8π2σ̃
, (164)

which gives the coefficient A2 = − 1
8π2 in Eq. (136). We

substitute Eqs. (163) and (164) into Eqs. (161) and (162).
Noticing that σ has the same form of the quantum corrections
in all scales of λ̃ and so does σH, we obtain the following
self-consistent equations:

σ̃ (λ̃) = σ̃ (λ0) −
∫ λ̃

λ0

dλ

λ

(
1

8π2σ̃ (λ)

+ 32π

e
[σ̃ (λ)]2e−4πσ̃ (λ) cos[2πσ̃H(λ)]

)
(165)

and

σ̃H(λ̃) = σ̃H(λ0) − 64π

e

∫ λ̃

λ0

dλ

λ
σ 2e−4πσ̃ (λ) sin[2πσ̃H(λ)],

(166)

with λ0 being the renormalization reference point. These two
equations suggest that λ̃ can be interpreted as the size of
a (large) background instanton. From Eq. (165) we obtain
Eq. (16), with

βL = − 1

8π2σ̃
− 32π

e
σ̃ 2e−4πσ̃ cos(2πσ̃H), (167)

where the second term is the instanton contribution βL,np . From
Eq. (166) we obtain Eq. (17), with

βH = −64π

e
σ̃ 2e−4πσ̃ sin(2πσ̃H). (168)

Although these results are derived for the weak coupling
regime (i.e., large σ̃ ), as we will see in the following, they turn
out to capture well the system’s behavior in the strong coupling
regime (i.e., for small σ̃ ), even quantitatively. The RG equa-
tions (16) and (17) constitute a two-parameter scaling theory.

Here, we make a remark. With the substitution of Eqs. (163)
and (164) into the first line of Eq. (161), we find that at
a length scale of μ−1

0 e8π2σ 2
the perturbative contribution to

σ̃ is comparable to σ , signaling that localization physics
begins to dominate. This length scale can be translated into
a characteristic time scale ∼e4π2σ 2

. At this time localization
effects dominate over chaotic diffusion.
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E(
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t

30

~

~
H

H

H0 = (he n1)2

H0 = (he n1)4

FIG. 5. (a) The RG flow line structure of two-parameter RG equa-
tions. The fixed points (solid circles) at σ̃H = n (n ∈ Z) correspond
to insulating phases and at σ̃H = n + 1

2 to metal-insulator transitions.
(b) The analytic prediction for the critical he values is made by
letting the unrenormalized transport parameter σH (solid line) be half-
integers. Namely, the solid and dashed lines intersect at the critical
he values. (c) Long-time simulations confirm the transitions with the
critical values in excellent agreement with analytic predictions, and
the critical points are evenly spaced along the h−1

e axis. They also
confirm that the critical metallic phase has an energy growth rate
order of unity. The simulation results of E(t)/t are for t = 1.2 × 106

and for the specific forms of H0 = (−ihe∂θ1 )α , with the exponent
α = 2 (black solid line) and α = 4 (red dashed line), respectively,
and V given by Eqs. (172), (173), and (174). Simulations confirm
that the critical value is robust against changing α.

B. RG flow and quantum phase structures

The RG flow lines given by Eqs. (16) and (17) are shown
in Fig. 5(a). In spite of the absence of the Landau bands in the
present system, this RG flow line structure is identical to that
responsible for conventional magnetic field-driven IQHE in
strongly disordered environments [38,39,63–65,73]. In the fol-
lowing, we summarize the main features of the RG flow lines.
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First, thanks to the periodicity of the cosine (sine) function
in Eq. (167) [Eq. (168)], the RG flow lines are periodic in σ̃H,
i.e., invariant under the shift σ̃H → σ̃H + 1. Second, the RG
flow has two types of fixed points which are the zeros of βL,H

[solid circles in Fig. 5(a)]. One type of fixed points, located at
(σ ∗

H = n,0), is stable. They correspond to quantum phases with
a vanishing zero-frequency conductivity σ (ω → 0) = σ̃ = 0.
[Recall Eq. (93).] This is a characteristic of insulator. These in-
sulating phases correspond to the plateau regimes in Fig. 5(a).
They are distinguished by the plateau value σ ∗

H; this number
or more precisely 2πσ ∗

H is the renormalization of the bare
topological angle 2πσH and, therefore, of topological nature.
The other type of fixed points, located at (n + 1

2 ,σ ∗), is stable
in the σ̃ direction but unstable in the σ̃H direction: these are
critical fixed points. They correspond to quantum phases with a
zero-frequency conductivity σ (ω → 0) = σ̃ = σ ∗, which is a
main characteristic of metals. Substituting this zero-frequency

conductivity into Eq. (86) gives E
t→∞−→ σ ∗t . The critical lines

are located at σ̃H = n + 1
2 . Passing through each of these lines,

the system exhibits a plateau transition: σ ∗
H changes by unity.

Simultaneously, a metal-insulator transition occurs.
Inheriting from the universality and σ̃H periodicity of βL,

the value of σ ∗, namely, the zero of βL|σ̃H=n+ 1
2

is universal.
Specifically, this value is insensitive to system’s details, e.g.,
H0, Vi , and the critical he values. It is important to note that
this universal value is much smaller than the short-time energy
growth rate σ ∼ h−2

e (for small he). This substantial difference
reflects both quantum and topological nature of the critical
metal, as discussed in Sec. II D.

C. Planck’s quantum-driven phase transitions

We have analyzed the structure of the RG flow lines. A
variety of possible quantum phases are predicted, which are
the fixed points of this RG flow. However, no information has
been provided regarding the phase diagram as the Planck’s
quantum varies, which is the subject of this subsection.

1. Universal Planck-IQHE pattern for small he

According to Fig. 5(a), the bare Hall conductivity σH

determines the quantum phase, namely, the fixed point where
the RG flow line ends. For small he, a universal scaling
law σH(he) ∼ h−1

e [namely Eq. (15)] follows. Consequently,
as h−1

e increases the system successively passes through the
critical lines in Fig. 5(a), corresponding to half-integer σH(he)
[cf. Eq. (18)], and sequential quantum phase transitions are
triggered. At the critical value of he, determined by Eq. (18),
the system is metallic and the quantum number σ ∗

H jumps by
unity; between two nearest critical he values, the system is
insulating and σ ∗

H does not change. In addition, because of the
linear scaling (15) the critical points are evenly spaced along
the h−1

e axis. This feature is insensitive to the details of the
potential, although the value of the spacing does depend on
the potential via Eq. (78). These results lead to the pattern in
Fig. 1, which bears a close resemblance to conventional IQHE.

We stress that the Planck-IQHE pattern is robust. It is
independent of the modification of the free rotation Hamil-
tonian H0 and the kicking potential Vi , as long as strong
chaoticity and symmetry are not destroyed. Moreover, we note

that the microscopic expressions (45), (60), and (59) for the
bare transport parameters σ and σH are independent of H0.
This leads to a remarkable result. That is, the critical point
determined by Eq. (18) is not shifted when H0 is modified.
Correspondingly, the pattern in Fig. 1 is totally unaffected by
this modification.

We remark that there are some very special cases (see
Appendix C 3 for example) for which the proportionality
coefficient of the scaling law (15) vanishes. In this case, no
transitions occur at small he. Whether and how transitions
occur at large he then depends on the details of Vi , and we
discuss this issue in the following.

2. Nonuniversal pattern for large he

We have seen that the universality of the scaling law (15)
is responsible for that of Planck-IQHE pattern for small he.
For large he, this scaling generally breaks down. In contrast to
Eq. (15), the behavior of σH is nonmonotonic as h−1

e varies.
As a result, given an integer n Eq. (18) generally has several
solutions, depending on the details of V . Corresponding to
this, unlike the blue line in Fig. 1, as h−1

e increases σ ∗
H

exhibits reentrant behavior, i.e., the system reenters into the
same insulating phase. So, the σ ∗

H pattern is composed of
several pieces, for each of which σ ∗

H monotonically increases
or decreases. Note that at every critical point the change of σ ∗

H
is unity, i.e., �σ ∗

H = ±1. Since the linear scaling of σH breaks
down, the critical points are no longer evenly spaced along the
h−1

e axis. Therefore, the σ ∗
H pattern for large he is nonuniversal,

depending on specific V .
Here, we make two remarks. First, as before, the critical

values of he are not shifted by the modification of H0. Second,
it is possible that for certain potentials the pattern in Fig. 1
extrapolates well to the large-he regime, as long as the linear
scaling (15) holds there.

3. Estimate of σ ∗ and critical exponent

Although the RG functions (167) and (168) are derived for
weak coupling, we may extrapolate them to the strong coupling
regime to quantitatively assess various properties of quantum
criticality. Specifically, by setting σ̃H = n + 1

2 in Eq. (167) and
letting βL vanish, the zero gives an estimate of σ ∗. The result
is

σ ∗ ≈ 0.44. (169)

This value is consistent with the value of 0.25 as one expects
based on the well-known result of the critical universal
conductivity in the conventional IQHE (see, e.g., Refs. [74–80]
and references therein), although we do not know how to
generalize the critical theory of conventional IQHE [75] to the
present QKR systems. Note that the longitudinal conductivity
defined by Eq. (81) differs from that in conventional IQHE by
a factor of 2 (cf. Ref. [59]).

With the help of Eq. (169), we find from Eq. (168) the
critical exponent ν for the localization length ξ , i.e.,

ξ ∼ |σH(he) − σH(h∗
e )|−ν,

(170)

ν =
(

dβH

dσ̃H

)−1∣∣∣∣
(σ̃H=n+ 1

2 ,σ̃=σ ∗)

≈ 2.75,
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where h∗
e is the critical value of Planck’s quantum. Equations

(169) and (170) are valid, no matter whether the critical value
is small or large.

D. Discussions on potential’s topology

It is important that, unlike many topological phenomena
in condensed matter systems, the Planck-IQHE here is not
triggered by changes in the potential’s topology, i.e., the
Pontryakin index − 1

4π

∫∫
dθ1dθ2V̂ · (∂θ1 V̂ × ∂θ2 V̂ ) with V̂ ≡

(V1,V2,V3)/|V |. Indeed, this index is independent of he. If it
were applied to characterize topological phases in the present
system, a conclusion can be immediately reached. That is, the
Planck’s quantum drives no transitions, which contradicts the
results established above. Therefore, our results are, both con-
ceptually and phenomenologically, different from an earlier
finding in QKR [33] (see Sec. VI C 2 for further discussions).
In particular, counterintuitively, our results remain valid even
when the Pontryakin index defined above vanishes.

VI. NUMERICAL CONFIRMATION OF PLANCK-IQHE

In this section, we put analytic results shown in Sec. V into
numerical tests.

A. The model and short-time dynamics

We first consider a specific form of Eq. (5) with

H0 = (−ihe∂θ1 )2 (171)

and

V (�) = 2 arctan Kd

d
d · σ , (172)

where

d = (sin θ1, sin θ2,β(μ − cos θ1 − cos θ2)) (173)

and d = |d|. This model was introduced in Ref. [33] for a
numerical study of a μ-driven topological phenomenon, where
he is fixed to unity. In contrast to that work, we are interested
in the physics sensitive to he. Thus, we fix all the parameters
in V (�), and he is the only tuning parameter. To be specific,
in most parts of this section (except Sec. VI C 2) we set

K = 2, β = 0.8, μ = 1. (174)

In addition, throughout this section we set ω̃ = 2π/
√

5 for
Eq. (5) without loss of generality [52].

We apply the fast Fourier transformation technique to
simulate the quantum evolution (5) at integer times, i.e., ψ̃t =
(
∏t

s=1 Û ′
s)ψ̃0, where Û ′

s ≡ e−hen̂
2
1e− i

he
V (θ1,θ2+ω̃s). The angular

momentum (n1) space is of 16 384 sites and the periodic
boundary condition is imposed. Note that as far as Û ′

s is
concerned, θ2 is understood as an external parameter.

1. Linear energy growth

We first simulate the short-time evolution for a broad range
of he varying from 5 × 10−3 to 5 × 10−1. Figures 6(a) and
6(b) are representative simulation results for the energy profile
and the energy growth rate, respectively. These results are
obtained by averaging over 102 values of θ2. As shown in
Fig. 6(a), the rotor’s energy grows linearly at short times,

1/

(a)

(b)

FIG. 6. (a) Simulations of the quantum evolution (5) show that at
short times the rotor’s energy grows linearly irrespective of the value
of he. (b) The numerical (solid circles) and analytical (solid line)
results for the rate of this short-time energy growth are in excellent
agreement.

irrespective of the value of he. This is in agreement with the
analytic prediction (88). The simulation results for the energy
growth rate E(t)/t are shown in Fig. 6(b) (solid circles). On
the other hand, substituting Eqs. (172) and (173) into Eq. (32)
we find

εi = cot ϕ

d
di, ϕ = arctan Kd

he

. (175)

With the substitution of Eq. (175) into Eq. (45) we find the
analytic expression of σ as a function of he for V given
above. The results are shown in Fig. 6(b) (red line). We
see that the analytic and simulation results are in excellent
agreement. This confirms the physical meaning of σ as the
short-time energy growth rate, namely Eq. (88). Figure 6(b)

also confirms the scaling σ
he→0∼ h−2

e predicted by Eq. (14).
Similar to conventional QKR [4], the early linear growth in
rotor’s energy is a manifestation of chaotic motion in the
angular momentum space.

2. Further tests of strong chaoticity

Note that the analytical derivation of Eq. (45) starts from
the equivalent 2D motion (9) and is based on the fact that
this motion is chaotic in both the n1 and n2 directions.
Therefore, the agreement between simulation and analytic
results for the early energy growth rate indicates that such
strong chaoticity indeed exists for V given above. To confirm
the latter, we directly simulate the equivalent 2D evolution
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(a)

(b)

FIG. 7. Further numerical evidences of strong chaoticity.
(a) Simulations of the equivalent 2D evolution show that the system
exhibits short-time diffusion in both n1 and n2 directions, i.e., both
E1(t) (solid lines) and E2(t) (dashed lines) grow linearly at short
times. (b) The Floquet operator Û governing the 2D evolution has a
chaotic quasienergy spectrum when the angular momentum lattice is
small. The level spacing distribution (histograms) obeying the Wigner
surmise of unitary type (dashed line). These results are irrespective
of the value of he.

and compute E1,2(t) ≡ 1
2 〈ψt |n̂2

1,2|ψt 〉. As shown in Fig. 7(a),
they both grow linearly at early times, reflecting chaotic
motion in both the n1 and n2 directions. In addition, we
study the quasienergy spectrum of the Floquet operator Û ,
governing the 2D evolution by numerical diagonalization. The
Hilbert space is composed of wave functions on the angular
momentum lattice of 64 × 64 sites and subject to periodic
boundary conditions. This lattice size is much smaller than the
length scale at which interference effects begin to dominate.
The quasienergy spectrum is found to be chaotic. As shown
in Fig. 7(b), the level spacing distribution P (s) satisfies the
Wigner surmise for the circular unitary ensemble [2]. These
results fully confirm that the equivalent 2D motion is chaotic
in all directions of N space. Note that the small deviations
between the slopes of E1(t) and E2(t) for given he result from
short-time correlation effects (cf. Appendix A) and reflect the
anisotropic nature of the first exponent of Û [see the definition
given in Eq. (9)].

B. Long-time dynamics: Planck-IQHE

1. Analytic predictions for critical points

We turn to the long-time behavior of quantum evolution
(5). First of all, we apply the developed analytic theory to the
specific model with H0 and V given by Eqs. (171)–(173) and

the corresponding parameters by Eq. (174). This enables us to
make analytic predictions for the critical points. For this V ,
the parameter μ in Eq. (60) can be identified as μ in Eq. (173),
and the lower limit of the corresponding integral set to +∞
(see Appendix C 3 for discussions). Taking this into account
and substituting Eq. (175) into Eqs. (59) and (60), we obtain

σ I
H = 4β

∫∫
dθ1

2π

dθ2

2π

sin ϕ cos3 ϕ

d3

× (cos θ1 cos θ2 − cos θ1 − cos θ2) (176)

and

σ II
H = 4β

Khe

∫∫
dθ1

2π

dθ2

2π

∫ +∞

1
dμ

cos2 ϕμ cos θ1 cos θ2

d2
μ

(
d2

μ + K−2
) , (177)

where

dμ = [sin2 θ1 + sin2 θ2 + β2(μ − cos θ1 − cos θ2)2]1/2,
(178)

ϕμ = arctan Kdμ

he

,

with ϕμ=1 ≡ ϕ and dμ=1 ≡ d. In deriving Eq. (177), we have
used the identity

∂μd2d · ∂θ1 d × ∂θ2 d + ∂θ1d
2d · ∂θ2 d × ∂μd

+ ∂θ2d
2d · ∂μd × ∂θ1 d = 2d2β cos θ1 cos θ2 (179)

for d defined in Eq. (173). Carrying out numerical evaluations
of the integrals in these expressions (see Appendix K for
details), we obtain σH(he) as shown in Fig. 5(b). The linear
scaling is clearly seen, consistent with Eq. (15). The slight
deviation is due to that the value of he in Fig. 5(b) is not small
enough.

According to the result, when h−1
e takes the value of 0.73,

2.19, and 3.60, the bare Hall conductivity σH is 1
2 , 3

2 , and
5
2 , respectively. Combining with the RG flow lines shown in
Fig. 5(a), we predict that there are three topological quantum
phase transitions for he � 0.2. To be specific, h−1

e = 0.73
corresponds to a plateau transition (cf. blue line in Fig. 1) from
σ ∗

H = 0 to 1, h−1
e = 2.19 from σ ∗

H = 1 to 2, and h−1
e = 3.60

from σ ∗
H = 2 to 3. At these critical points, σ̃ = σ ∗.

2. Numerical confirmation

To probe the predicted transitions we simulate the quantum
evolution (5) up to t = 1.2 × 106. The value of he varies from
0.2 to 10.0 (i.e., 0.1 � h−1

e � 5.0). For such a long time, the
profile of E(t)/t is found to converge well (cf. Appendix L for
discussions). Figure 5(c) shows the simulation result (black
solid line). We find that E(t)/t exhibits three sharp peaks at
h−1

e = 0.77, 2.13, and 3.42, each of which corresponds to a
topological transition predicted above. These critical values
are in excellent agreement with analytic predictions. The peak
values are nearly the same. They are small (≈0.3) and closed
to the analytic estimation (169). More sophisticated numerical
studies of the peak value will be presented in Sec. VI D.
Here, we only stress that this smallness of the (asymptotic)
energy growth rate confirms the quantum nature of the rotor
metal. Between these peaks, E(t)/t is fully suppressed which
is a characteristic of rotor insulator. Moreover, the peaks
are approximately evenly spaced with a spacing ≈1.33. This
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agrees with the analytic prediction and is an evidence of the
σ̃H periodicity of the RG flow lines. Thus, simulations confirm
the Planck-IQHE.

C. Robustness of Planck-IQHE

A straightforward result implied by the topological meaning
of σ ∗

H is the robustness of Planck-IQHE. In this section
we will test this result numerically. We recall that, like
conventional QKR [6,12,13,21], for Û defined in Eq. (9),
� mimics the electron velocity in normal metals and V (�)
the free-electron Hamiltonian, while the first exponent of Û ,
i.e., e− i

he
[H0(hen̂1)+heω̃n̂2], plays the role of impurities. Keeping

this in mind, below we will modify H0(hen̂1) (the “disordered
potential”) and V (�) (the “free-electron Hamiltonian”), re-
spectively, and examine the robustness of Planck-IQHE.

1. Modifying free rotation Hamiltonian H0

First of all, we choose another form of free rotation
Hamiltonian, read as H0 = (−ihe∂θ1 )4, and keep the kicking
potential V unchanged. [Recall that for this Hamiltonian,
exactly speaking, the meaning of E(t) is the variance of
angular momentum.] The ensuing equivalent 2D system
remains strongly chaotic, i.e., the memory of � is quickly
lost. Therefore, the results of Sec. V apply. In particular,
according to what was discussed in the end of Sec. V C 1, the
critical values of h−1

e are not shifted under such modification.
We simulate this modified system, with the procedures being
exactly the same as before. The results are shown by the red
dashed line in Fig. 5(c). It is clear that the critical points are
not shifted. Besides, the peak values are only slightly changed.

2. Modifying kicking potential V

Next, we modify the kicking potential V while fixing the
free rotation Hamiltonian to H0 = (−ihe∂θ1 )α . To be specific,
we tune the parameter μ in Eq. (173) and study how Planck-
IQHE evolves with this parameter.

Analytically, for each fixed μ we apply the developed
effective field theory to such modified model. In this way,
we obtain a phase structure where the h−1

e axis is divided into
an infinite number of intervals. Each interval represents an
insulting phase characterized by a quantum number σ ∗

H. Upon
tuning μ, this phase structure is turned into a μ-h−1

e phase
diagram (Fig. 8, upper panel). The phase diagram is composed
of an infinite number of shells, each of which corresponds
to an insulating phase characterized by σ ∗

H. For the nth shell
σ ∗

H = n, with n = 0,1,2, . . . counted from the outermost shell.
The boundary between the shells of σ ∗

H = n and σ ∗
H = n + 1 is

determined by the solution to Eq. (18), with its left-hand side
given by

σH(he) = 4β

∫∫
dθ1

2π

dθ2

2π

(∫ +∞

μ

dμ
cos2 ϕμ cos θ1 cos θ2

Khed2
μ(d2

μ + K−2)

+ sin ϕμ cos3 ϕμ

d3
μ

(μ cos θ1 cos θ2

− cos θ1 − cos θ2)

)
. (180)

E(t)/t
0       0.1      0.2      0.3      0.4      0.5     0.6

1 2 3 4
0

0.5

1

1.5

2

3H0H 1H 2H

FIG. 8. Analytic prediction for the μ-h−1
e phase diagram (top

panel). Simulation results of the energy growth rate at t = 105 for
H0 = (−ihe∂θ1 )α , with α = 2 (middle panel) and 4 (bottom panel).
The dashed lines are the phase boundaries predicted analytically.

As before, the parameters K = 2 and β = 0.8. The shells
(insulating phases) correspond to a vanishing (asymptotic)

energy growth rate, i.e., E(t)/t
t→∞−→ 0, while the boundaries

between two shells (metallic phases) to an energy growth rate

E(t)/t
t→∞−→ σ ∗.
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As done in Sec. VI B, we simulate the long-time quantum
evolution and obtain the energy profile for different values
of μ and h−1

e . The simulation results for E(t)/t,t = 105 are
shown in the middle (for α = 2) and bottom (for α = 4)
panels of Fig. 8. Four insulating phases (dark blue regimes)
corresponding to σ ∗

H = 0,1,2,3 (compared with upper
panel) are clearly seen. Three narrow phase boundaries are
also clearly seen. Their locations are in good agreement
with analytic predictions (dashed lines). We see that these
boundaries correspond to a small energy growth rate and
thereby to quantum metallic phases. Note that the phase
boundaries at large h−1

e are smeared because for such values
of h−1

e finite-time effects are strong [81].
Importantly, Fig. 8 shows that as he decreases, so that

effects of chaos are stronger and stronger, more and more
topological phases are excited, which are characterized by
distinct σ ∗

H. This is totally beyond the mechanism proposed in
Ref. [33], which states that the topological phases are com-
pletely determined by the Pontryakin index of the potential.

D. Simulation results for σ ∗

From simulation results above for various models, we have
seen that the peak values are consistently close to each other
(≈0.3). However, they are obtained by 1D simulations, and
do not take into account effects of residual anisotropicity of
the equivalent 2D model. The latter modifies the numerical
value of σ ∗. On the other hand, such anisotropicity generally
exists for realistic models. Indeed, it has already been seen
in simulation results of the short-time energy growth rate
[Fig. 7(a)]. So, to confirm fully the universality of the long-time
energy growth rate at critical points we simulate the equivalent
2D model as well.

Figures 9 and 10 show the simulation results for two 2D
models, whose 1D equivalent leads to the result represented by
the black solid and red dashed lines in Fig. 5(c), respectively.
From panel (a) of Figs. 9 and 10, we find that the quantum
diffusion rates in n1 and n2 directions are different, i.e.,
E1(t)

t
�= E2(t)

t
. This indicates the anisotropicity of long-time

2D dynamics. In these 2D simulations, the quantum diffusion
rates in different directions exhibit peaks at the same critical
he values. Moreover, these critical values are identical to those
obtained from 1D simulations. Note that because of computer
limitation we can simulate the 2D dynamics only up to
t = 104. This time is much shorter than that in 1D simulations
and causes relatively large finite-time effects, especially the
broadening of the third peak in Figs. 9 and 10.

Because of the anisotropicity, the effective quantum dif-
fusion rate is the geometric mean of the long-time quantum
diffusion rates in the n1 and n2 directions [cf. Eq. (A13)]. The
simulation results of this effective diffusion rate are shown
in Figs. 9(b) and 10(b) and the corresponding peak values,
i.e., σ ∗, given in Table IV. The values listed are all close to
0.25, as one expects based on the common belief of the critical
universal conductivity in conventional IQHE. (Recall that the
longitudinal conductivity in this work, defined based on the
effective field theory, differs from that in conventional IQHE
by a factor of 2.) They are in good agreement with the data
for conventional IQHE systems [74,77–80]. Note that because
finite-time effects are enhanced by increasing h−1

e , the third
peak in Figs. 9(b) and 10(b) gives relatively large values of σ ∗.

(a)

(b)

FIG. 9. (a) Simulations of 2D dynamics show that the long-time
diffusion rates of rotor metal in n1 (blue solid line) and n2 directions
(red dashed line) are different, indicating the anisotropicity of the
2D model. For this model H0 = (−ihe∂θ1 )2 and V (�) is given by
Eqs. (172)–(174). (b) The geometric mean of the two diffusion rates.
The results are for t = 104.

(a)

(b)

FIG. 10. The same as Fig. 9 but for H0 = (−ihe∂θ1 )4.
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TABLE IV. Simulation results for σ ∗ taking anisotropicity of 2D
dynamics into account.

H0 = (−ihe∂θ1 )α 1st peak 2nd peak 3rd peak

α = 2 0.22 0.23 0.30
α = 4 0.23 0.24 0.30

VII. DISAPPEARANCE OF PLANCK-IQHE
AT RATIONAL ω̃/(2π )

The effective field theory (65) holds only for ω̃ incommen-
surate with 2π . Indeed, provided this condition is violated, i.e.,
ω̃ = 2πp/q with p,q ∈ N coprime, the Floquet operator Û

governing the 2D evolution is invariant under the translation
n2 → n2 + q; this translation symmetry is not respected by
the effective field theory (65). In this section, we analytically
show and numerically confirm that for rational ω̃/(2π ) the
Planck-IQHE does not occur and, instead, the rotor’s energy
saturates at long times irrespective of the value of he, i.e., the
system is always an insulator as conventional QKR [9,12].

A. A case study: q = 1

To understand better the situation, we first consider the
simplest case of q = 1. (The qualitative behavior of the system
is not affected by p.) In this case, the Floquet operator defined
in Eq. (9) is simplified to Û = e− i

he
H0(hen̂1)e− i

he
V (θ1,θ2) ≡ Ûθ2 .

Since the first exponent does not depend on n̂2, i.e., the
system is translationally invariant in the n2 direction with
a (spatial) period of unity, the ensuing 2D autonomous
stroboscopic dynamics conserves the “velocity” component
θ2. That is, θ2 is a good quantum number which implies that
the dynamics exhibits partial regularity. The subscript of Ûθ2

is the bookkeeping of this conservation law. Because of this
conservation law, the 2D dynamics is reduced to a family of
1D dynamics each of which is controlled by this good quantum
number. Such reduced 1D system is exactly the same as the
original 1D system (5).

From the general expression (20) we find

E(t) = 1

2

∫
dω

2π
e−iωt

〈
Tr
(
n̂2

1Kω,θ2ψ0 ⊗ ψ
†
0

)〉
θ2
, (181)

where

Kω,θ2 (n1s+s−,n′
1s

′
+s ′

−) ≡ 〈〈n1s+| 1

1 − eiω+Ûθ2

|n′
1s

′
+〉

× 〈n′
1s

′
−| 1

1 − e−iω−Û
†
θ2

|n1s−〉〉ω0

(182)

describes interference between the advanced and retarded
quantum amplitudes corresponding to the reduced 1D dynam-
ics governed by Ûθ2 .

1. Effective field theory

We follow the procedures described in Sec. III to calculate
Eq. (182). Thanks to the 1D nature of the reduced dynamics,

the results turn out to be totally different. Specifically, we find

Kω,θ2 (n1s+s−,n′
1s

′
+s ′

−)

= −1

4
δs+s−δs ′+s ′−

∫
D(Q)e−SQ(n1)+b,−bQ(n′

1)−b,+b, (183)

where Q depends only on n1 and the effective action is

S[Q] = 1
4 Str(−σ (∇1Q)2 − 2iωQ�). (184)

The (bare) conductivity is

σ = − 1
4 Tr
((
G0

R − G0
A

)
∂θ1ε
(
G0

R − G0
A

)
∂θ1ε
)
. (185)

Recall that the trace Tr includes both the spin and the angular
(θ1) indices of the theory. The Green functionsG0

R,A as well as ε

are formally defined in the same way as Eq. (41), but with the
conserved velocity component θ2 understood as an external
parameter. As a result, σ (and thereby S) are θ2 dependent.
Most importantly, compared to the action (65) there is no
topological term in Eq. (185), which can be attributed to the
trivial homotopy group (13).

The effective field theory (184) describes Anderson local-
ization of quasi-1D disordered systems of unitary symmetry
[60]. With the help of Eqs. (183) and (184), it can be shown
that Eq. (86) is still valid. Physically, this validity is a result of
the diffusive pole which reflects the particle conservation law
and is irrespective of the presence or absence of topological
term in the effective field theory. Furthermore, from Eqs. (183)
and (184) we find

σ (ω) = −ζ (3)iωξ 2 (186)

for ω � σ/ξ 2, where ζ (x) is the Riemann ζ function. Note
that the localization length ξ = 4σ parametrically depends
on θ2. With the substitution of Eq. (186) into Eq. (86) we
obtain

E(t)
t→∞∼ 〈ξ 2〉θ2 ∼ 〈σ 2〉θ2 . (187)

This implies that irrespective of the value of he the energy
saturates at long times, i.e., the Planck-IQHE is washed
out.

2. Numerical confirmation

We put these analytic predictions on numerical tests. The
model for simulations is the same as that used in Sec. VI
described by Eqs. (171)–(174) except that the value of ω̃ is
changed. Simulations show that irrespective of the value of
he, the rotor’s energy saturates after a transient growth, in full
agreement with the analytic prediction of Eq. (187). The solid
lines in Fig. 11(a) are representative results for ω̃ = 2π . These
energy profiles are qualitatively the same as those of insulating
phases for irrational ω̃/(2π ). The saturation value increases
with h−1

e , which will be discussed in details in Sec. VII B.
These profiles are in sharp contrast to those of critical metallic
growth at irrational ω̃/(2π ), for which a linear energy growth
persists in the entire course of time. The dashed lines in
Fig. 11(a) are representative examples which correspond to
the critical values of h−1

e = 0.77, 2.13, and 3.42, respectively
and ω̃ = 2π/

√
5.
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(a)

(b)

FIG. 11. (a) For ω̃ = 2π the rotor’s energy saturates following a
transient growth, irrespective of the value of he. The representative
simulation results are shown by the solid lines with h−1

e = 0.77 (blue),
2.13 (green), and 3.42 (red), respectively. These energy profiles are
in sharp contrast to those represented by the dashed lines for which
the values of he are the same but ω̃ = 2π√

5
. The latter exhibits linear

growth in the entire course of time since the system is at the critical
metallic phase. (b) The motion in the n2 direction is ballistic for
ω̃ = 2π (solid) while diffusive for ω̃ = 2π√

5
(dashed). Two lines with

the same color correspond to the same value of he.

3. Mechanism

To investigate the mechanism we simulate the equivalent
2D evolution and compute the profile of E2(t). The simulation
results show that it grows quadratically after a transient process
[Fig. 11(b), solid lines]. This implies a ballistic motion in the n2

direction. Therefore, the memory of the velocity component
θ2 is never lost. In other words, the regular motion in the
n2 direction is restored at ω̃ = 2π . In sharp contrast, at
ω̃ = 2π/

√
5 chaoticity leads to quick loss of the memory of

θ2, manifesting in that E2(t) grows linearly in short times
irrespective of the value of he [Fig. 11(b), dashed lines]. These
results are in agreement with the aforementioned analysis that
for Planck-IQHE to occur it is necessary that the motion is
chaotic in both n1 and n2 directions.

B. General q

For general q, the 1D system (5) is time periodic with
a period of q. For sufficiently short times, this periodicity

does not play any roles and the system behaves essentially
the same as the one with ω̃/(2π ) being irrational (≈p/q).
In particular, provided q is sufficiently large, we expect to
observe certain signatures of Planck-IQHE in intermediate
time scales. Then, similar to the q = 1 case, at longer times
the time periodicity completely changes the system’s behavior.
To study this change it is sufficient to consider the 1D evolution
(5) at times of multiple q. This evolution is described by

ψ̃t̃ = Û ′t̃ ψ̃0, ψ̃t̃ ≡ ψ̃t̃q , (188)

with t̃ ∈ Z and

Û ′ =
q∏

s=1

Û ′
s (189)

being the effective Floquet operator. Note that this operator
parametrically depends on θ2. By using the definition (6) we
obtain

E(t̃q) = 1

2

∫
dω

2π
e−iωt̃

〈
Tr
(
n̂2

1K
′
ωψ̃0 ⊗ ψ̃

†
0

)〉
θ2

(190)

for times of multiple q, where

K ′
ω(n1s+s−,n′

1s
′
+s ′

−) ≡ 〈〈n1s+| 1

1 − eiω+Û ′ |n
′
1s

′
+〉

× 〈n′
1s

′
−| 1

1 − e−iω−Û ′† |n1s−〉〉ω0 .

(191)

As before, Eqs. (190) and (191) lay down a foundation for
field-theoretic treatments of the energy profile.

1. Effective field theory

Repeating the procedures of deriving Eqs. (21)–(24), we
can rewrite Eq. (191) as

K ′
ω(n1s+s−,n′

1s
′
+s ′

−)

=
∫

D(Z,Z̃)e−S[(1 − ZZ̃)−1Z]n1s+b,n1s−b

× [(1 − Z̃Z)−1Z̃]n′
1s

′−b,n′
1s

′+b, (192)

with the action

S = −Str ln(1 − ZZ̃) + Str ln(1 − eiωÛ ′ZÛ ′†Z̃). (193)

Similar to discussions in Sec. II B, Z describes the coherent
propagation of the advanced and retarded quantum amplitudes
corresponding to the 1D time-periodic evolution (188). The
only but crucial difference is that this motion takes place in
n1 instead of N space. Similar to situations discussed before,
the off-diagonal components of Z in this space Zn1,n

′
1

(n1 �=
n′

1) carry the information on the relaxation of the velocity
of the coherent propagation. Because of the chaoticity of the
evolution (188), the memory on the velocity is lost quickly.
As before, this eliminates the off diagonality of Z in n1 space,
yielding Zn1,n

′
1
∝ δn1n

′
1
Zn1,n1 . Then, the homotopy group for

the mappings from the n1 into target space is the same as (13).
This implies the absence of a topological term in the effective
field theory.

To find the effective action explicitly we first note that, as
before, in the action (193) the Z components are massive and
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thereby negligible. Moreover, at ω = 0 such action must bear
the same symmetry as (28), with Q(n1) and T (n1) defined
in the same way as Eq. (30). Then, it is more convenient
to follow the procedures described in Appendix A to derive
the effective action since the topological term is now absent.
Specifically, as Q(n1) varies smoothly in n1, we can rotate
Q(n1) back to � and perform the Z expansion around it. The
quadratic action thereby obtained has a rotationally invariant
generalization which describes fluctuations around any Q(n1)
(see Ref. [13] for details). The result is

S|ω=0 = −Eq

4
Str(∇1Q)2, (194)

where Eq characterizes the energy growth within a single
period, i.e., from time t = 1 to q, for fixed parameter θ2.
Adding the frequency term to the zero-frequency action (194)
gives the effective action as

S = 1
4 Str(−Eq(∇1Q)2 − 2iωQ�). (195)

Combining Eqs. (192) and (195) we find

E(t̃q)
t̃→∞∼ 〈

E2
q

〉
θ2
, (196)

implying the absence of Planck-IQHE. In the special case of
q = 1, Eq. (196) is reduced to Eq. (187).

2. Numerical confirmation

We put these analytic predictions on numerical tests and
consider different values of q. For small q (e.g., q = 3) we
find that the system behaves essentially in the same way as
that at q = 1. That is, irrespective of the value of he the
rotor’s energy saturates following a transient growth. For large
q (with p/q≈1/

√
5) we observe that the peaks in Fig. 1 show

up in intermediate times, but are suppressed at longer times
and eventually disappear. Therefore, the system is insulating
irrespective of the value of he. In particular, the quantum phase
transitions shown in Fig. 5(c) are replaced by a crossover from
linear energy growth to saturation. Figure 12(a) shows some
representative energy profiles with h−1

e = 2.13, which is the
critical value for the central peak in Fig. 5(c). Simulations also
confirm the scaling (196) of the saturation value, as shown in
Fig. 12(b). Therefore, the absence of Planck-IQHE for rational
ω̃/(2π ) is confirmed.

3. Mechanism

To investigate the mechanism, we also carry out simulations
of the equivalent 2D system. Specifically, we compute E1,2(t)
and the results for h−1

e = 2.13 and p/q = 4/9 are shown in
Fig. 12(c). We see that following a linear growth, which is
a remnant of the metallic phase at the topological transition
for irrational ω̃/(2π ) = 1/

√
5, E1(t) saturates while, simulta-

neously, E2(t) crosses over to a ballistic growth. Therefore,
similar to the special case of q = 1, the partial restoration
of regular dynamics corrupts the metallic phase and thereby
washes out the Planck-IQHE. Interestingly, the simultaneous
occurrence of localization (namely, energy saturation) in one
direction and ballistic motion in the other has been observed
in a spinless quasiperiodic QKR [21].

(a)

(b)

(c)

FIG. 12. (a) The metallic growth at the topological transition for
ω̃

2π
= 1√

5
(black) is replaced by a crossover from a linear energy

growth to saturation, when 1√
5

is approximated by a rational number
p/q. This number is set to 1/2 (green), 4/9 (light blue), 17/38 (dark
blue), 72/161 (red), and 305/682 (pink) from bottom to top. Here,
h−1

e = 2.13. (b) Simulation results confirm the scaling (196) for the
saturation value of E(t). For each value of h−1

e we choose several
different values of p/q. From left to right, the four clusters of data
points are for p/q = 4/9, 17/38, 72/161, and 305/682, respectively.
(c) Simulations of the equivalent 2D systems show that the saturation
of E1(t) at large times (red solid) is associated with the restoration
of regular dynamics in the n2 direction manifesting in an asymptotic
ballistic growth of E2(t) (blue dashed). Here, h−1

e = 2.13 and p/q =
4/9.

VIII. CONCLUSIONS

Summarizing, we have shown analytically and con-
firmed numerically a dynamical phenomenon, namely, the
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Planck-IQHE, in a large class of spin- 1
2 quasiperiodic QKR.

The phenomenon is driven by the Planck’s quantum, and
topological in nature. Strikingly, it is found to emerge from
strong chaos. The phenomenon bears a firm analogy to
conventional IQHE, occurring in 2D electronic systems, such
as MOSFET, which are fundamentally different from QKR.
Specifically, the inverse Planck’s quantum and the asymptotic
energy growth rate of the rotor mimic the filling fraction
and the longitudinal conductivity, respectively. Moreover, the
rotor insulating phase, for which the rotor’s energy saturates
at long times, is characterized by a hidden quantum number
σ ∗

H; this number mimics the quantized Hall conductivity in
conventional IQHE. We find that a topological theta angle
emerges from strongly chaotic motion at microscopic scales.
The renormalization of this topological angle gives the hidden
quantum number. On the other hand, when the dynamics is
(partially) regular, the topological theta angle does not show
up and therefore the Planck-IQHE does not occur. This is also
confirmed by numerical simulations.

The system considered here differs from conventional
quasiperiodic QKR in having a spin degree of freedom. This
and the angular degrees of freedom are coupled to each other
upon kicking. The roles of this coupling are twofold. First,
it is the origin of strong chaos, from which the topological
theta angle emerges. Second, it gives rise to a universal linear
scaling law (∼ h−1

e ) for the unrenormalized theta angle for
large h−1

e . As a result, the renormalized theta angle has a
quantization spectrum Z, and as h−1

e increases infinitely many
insulating phases result, with σ ∗

H increasing one by one. In other
words, the renormalization of the linear scaling law leads to
the universal stairlike pattern in Planck-IQHE.

Because the system here is nonintegrable, the Planck-
IQHE is beyond the canonical TKNN paradigm, where the
topological invariant is expressed as an integral over conserved
quantities (e.g., Bloch momentum). Therefore, it is different
from topological phenomena found in other driven systems
(see, e.g., Refs. [82–85]). Those phenomena fall into the
TKNN paradigm; and the quantum phase transition there is
associated with the change in the topological structure of
(effective) Floquet bands that are formed due to the presence
of translation symmetry and(or) adiabatic parameter cycles.

In this work, we do not study details of quantum criticality,
which require substantially more efforts, both analytically and
numerically. The physical implication of the hidden quantum
number σ ∗

H remains largely unexplored. Another prominent
issue is the exact role of spin. Does the Planck-IQHE
exist in higher spin cases? These issues are currently under
investigation.

Our findings suggest that rich quantum topological phe-
nomena can emerge from chaos. Many interesting questions
are thereby opened. First of all, in this work we have focused
on spinful quasiperiodic QKR with a single modulation
frequency. Our preliminary investigation has shown that when
there are more modulation frequencies, chaos can trigger the
even more interesting Planck’s quantum-driven topological
transitions. Second, the interplay between nonlinearity and
Anderson-type localization is currently under intense investi-
gations [86]. To the best of our knowledge, so far no attention
has been paid to potential effects of topology. A natural
question is as follows: How does the nonlinearity affect the

Planck-IQHE? Third, we have seen that chaos triggers the
IQHE analog, even when a magnetic field and Fermi statistics
are both absent. This motivates us to explore analogs of the
fractional quantum Hall effect in chaotic systems. Finally,
it seems very promising to confirm the Planck-IQHE by
cold-atom experiments on quasiperiodic QKR [19], previously
used to confirm Anderson transition.
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APPENDIX A: EFFECTS OF SHORT-TIME CORRELATION

In this appendix, we will present an alternative derivation
of fluctuation action given by Eqs. (43) and (44), following
Ref. [13]. Most importantly, this derivation helps us to
understand better effects of short-time correlation encoded in
the massive modes.

Thanks to the gauge invariance (28), it is sufficient to first
analyze the fluctuations near the reference point Z = Z̃ = 0
and derive the corresponding zero-frequency action. Then,
the rotationally invariant generalization of the latter gives
the full action. To facilitate this procedure we suppose that
in the parametrization (27) the angular-momentum-dependent
fields Z,Z̃ are small. As a result, the zero-frequency action is
simplified to

S[Z,Z̃]|ω=0 = Str (Z̃(1 − AdÛ )Z). (A1)

Recall that Z,Z̃ are 2 × 2 supermatrices and the supertrace
includes the spin index.

Next, we introduce the slow and fast mode decompositions
for Z,Z̃,

Z = B + C, B ≡ (1 − π̂ )Z,C ≡ π̂Z, (A2)

Z̃ = B̃ + C̃, B̃ ≡ (1 − π̂ )Z̃, C̃ ≡ π̂ Z̃, (A3)

where π̂ is the fast mode projector and we refer to Ref. [13]
for its exact definition. Here, B,B̃ are the slow modes and C,C̃

the fast modes. Inserting this decomposition into Eq. (A1), we
obtain

S[B,C]|ω=0 = Str
(
(B̃ + C̃)(1 − AdÛ )(B + C)

)
= Str

(
B̃(1 − AdÛ )B + C̃(1 − π̂AdÛ )C

− C̃π̂ AdÛB − π̂ AdÛ †B̃C
)
. (A4)

The first (second) term in the second equality shows that the B

(C) field is massless (massive). In the presence of strong chaos
at microscopic scales, the C field describes short-time velocity
(�) correlation and its effects diminish rapidly. As we will
show in the following, these effects feed back into the effective
action via introducing short-time correlation corrections to the
(bare) control parameters of the action.

Substituting Eq. (A4) into the functional integral and
performing the Gaussian integral of the fast modes, we obtain
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an effective fluctuation action of the slow mode B:

S[B,B̃]|ω=0 = S0[B,B̃] + Sm[B,B̃], (A5)

where

S0[B,B̃] = Str(B̃(1 − AdÛ0
)B) (A6)

and

Sm[B,B̃] = −Str

(
B̃AdÛ

π̂ AdÛ

1 − π̂ AdÛ

B

)

= −
∞∑

k=1

Str(B̃AdÛ (π̂ AdÛ )kB), (A7)

with Û0 = e− i
he

V (�). This result is formally the same as
that for conventional QKR [13] but the details, namely the
operators Û and Û0, not. Most importantly, (i) the leading
contribution S0[B,B̃] results solely from the slow modes
and describes that the system loses memory on � after each
kicking which accounts for the reduction Û → Û0 in Eq. (A6);
(ii) the fast modes introduce corrections to the action S0[B,B̃]
and as we will see in the following, they renormalize the
bare longitudinal conductivity; and (iii) these renormalization
corrections account for short-time memory effects and arise
from the expansion in the second equality of Eq. (A7).

Consider the action (A6). We introduce the Fourier transfor-
mations BN = ∫∫ d2φ

(2π)2 e
iNφB(φ) and B̃N = ∫∫ d2φ

(2π)2 e
iNφB̃(φ)

and substitute it into the action. Since the slow modes are
composed of B(φ) with very small φ, we can expand the
ensuing action in φ. Keeping the expansion up to the second
order, we obtain

S[B,B̃]|ω=0 ≈ 1

2

∫∫
d2φ

(2π )2

[
Tr
(
∂θ1Û

†
0∂θ1Û0

)
φ2

1

+ Tr
(
∂θ2Û

†
0∂θ2Û0

)
φ2

2

]
str[B(φ)B̃(−φ)]

= 1

2

[
Tr
(
∂θ1Û

†
0∂θ1Û0

)
Str(∇1B̃∇1B)

+ Tr
(
∂θ2Û

†
0∂θ2Û0

)
Str(∇2B̃∇2B)

]
. (A8)

This action was obtained by the quadratic expansion around
the reference configuration Q = �. Its rotationally invariant
generalization is

S[B,B̃]|ω=0 → S1[Q]

= − 1
16

[
Tr
(
∂θ1Û

†
0∂θ1Û0

)
Str(∇1Q)2

+ Tr
(
∂θ2Û

†
0∂θ2Û0

)
Str(∇2Q)2

]
. (A9)

By using Eq. (44) it can be shown that σ = 1
4 Tr(∂θ1,2Û

†
0∂θ1,2Û0)

after straightforward calculations. Therefore, Eq. (A9) is
identical to Eq. (43).

From the above derivation we see that the isotropicity of
the longitudinal conductivity arises from the isotropic nature
of V (�) and the ignorance of the short-time memory effects. In
order to take short-time memory effects into account, we need
to compute the corrections (A7) to the action, which must be
of the general form

∫∫
d2φ

(2π)2 str[B̃(φ)(δσ11φ
2
1 + δσ22φ

2
2)B(φ)].

This gives rise to the renormalization of longitudinal conduc-

tivity (or inverse coupling constant)

σ → σ1 = σ + δσ11, σ → σ2 = σ + δσ22. (A10)

Note that this renormalization arises from short-time memory
effects and does not contain any localization physics, which is
a long-time effect. Because the operator Û is anisotropic, the
values of σ1 and σ2 are different, giving

S1[Q] → − 1
4 [σ1Str(∇1Q)2 + σ2Str(∇2Q)2]. (A11)

Therefore, the effective field theory is anisotropic when the
short-time memory effects are taken into account.

With the rescaling

(n1,n2) → (
√

σ2/σ1n1,n2) ≡ (n′
1,n

′
2), (A12)

the action (A11) becomes isotropic again,

S1[Q] → −
√

σ1σ2

4
[Str(∇′

1Q)2 + Str(∇′
2Q)2], (A13)

with
√

σ1σ2 being the effective (inverse) coupling constant.
∇′

1,2 stand for the gradient with respect to the rescaled angular
momenta n′

1,2 and the supertrace includes these rescaled
angular momenta.

APPENDIX B: DERIVATION OF EQ. (34)

Keeping the hydrodynamic expansion of the commutator
[ε,T −1] up to the second order, we obtain

[ε,T −1] ≈ ∂θα
ε[θα,T −1] − 1

2∂2
θαθβ

ε[θα,[θβ,T −1]]. (B1)

As a result,

T εT −1 = ε + T [ε,T −1]

≈ ε + T ∂θα
ε[θα,T −1] − 1

2T ∂2
θαθβ

ε[θα,[θβ,T −1]]

= ε + ∂θα
εT [θα,T −1] − [∂θα

ε,T ][θα,T −1]

− 1
2T ∂2

θαθβ
ε[θα,[θβ,T −1]]. (B2)

For the commutator [∂θ1ε,T ], we find

[∂θ1ε,T ] ≈ ∂2
θ1
ε[θ1,T ] + ∂2

θ1θ2
ε[θ2,T ] (B3)

and likewise for the commutator [∂θ2ε,T ]. Substituting them
into Eq. (B2) and using the identity

T [θα,[θβ,T −1]] = −[θα,T ][θβ,T −1] + [θα,T [θβ,T −1]],

(B4)

we obtain Eq. (34).

APPENDIX C: BOUNDARY-INDUCED
DEFORMATION OF Û

When we derived the topological action, we discussed that
as a boundary effect Û is deformed in N space, which gives
partial topological action, namely, Eq. (51). In this appendix,
we make further discussions on this deformation.

1. Integrable limit of deformation

The kicking potential can be expressed in a general form

V (�) = f (d)

d
d · σ , d ≡ {di(�)}. (C1)
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Here, f (d) and di(�) are generic continuous functions. In
addition, di(�) satisfies the same symmetry as Vi(�) (Table I)
and is periodic in � also. An example is given by Eqs. (172)
and (173). Thanks to the periodicity, {di(�)} generates a
mapping from the torus T 2 = S1 × S1 onto a closed oriented
surface in R3, denoted as S. This surface is composed of
several pieces {Sγ }, with the same orientation as S and
∀ γ �= γ ′ : Sγ ∩ Sγ ′ = �, where � is their common boundary
line.

Then, the deformation of Û in N space consists of two steps.
First, we let d acquire a smooth parameter (μ) dependence

d(�) → d(�; μ), (C2)

such that the deformed surfaces Sγ → Sγ (μ) do not intersect
and d(�; μ) has the same symmetry and periodicity properties
as d(�). Second, we let μ smoothly vary in N . Since the
particle cannot escape from the boundary, at the boundary Û

is deformed into an integrable operator diagonal in N index.
Thanks to

Û = e− i
he

[H0(hen̂1)+heω̃n̂2]
(

cos
f (d)

he

− i sin
f (d)

he

d · σ

d

)
,

(C3)

the diagonality implies

f (d) = const,
di

d
= const. (C4)

Because d1|θ1→0 = d2|θ2→0 = 0 arising from the symmetry
and continuity properties of d1,2, the conditions (C4) can be
met only if

d = const,
d1,2

d
= 0,

d3

d
= ±1. (C5)

Equivalently (without loss of generality we take the positive
sign for the last equation above.),

∀ � :
d1,2

d3
= 0, d3 = +∞. (C6)

At this limit, an integrable deformation results,

Û → e− i
he

[H0(hen̂1)+heω̃n̂2]
(

cos
const

he

− i sin
const

he

σ 3

)
,

(C7)

with the constant given by f (d → ∞). Note that this operator
is diagonal in spin index also.

Due to the condition (C6), S� ≡ ∪μ�(μ) with �(μ) being
deformed �, has an infinite extension in positive d3 direction.
Moreover, each family of deformed surfaces {Sγ (μ)} generates
a manifold Dγ . For γ �= γ ′, ∂Dγ ∩ ∂Dγ ′ = S� .

2. Invariant form of σ I I
H

For Eq. (60), namely Eq. (52), the deformation (C2) is
implied. Because for given Dγ the mapping

d(�; μ) : (θ1,θ2,μ) → (d1,d2,d3) (C8)

is bijective, we have

εijkdθ1dθ2dμ∂μεi∂θ1εj ∂θ2εk

= (−1)sγ εijkd(d1)d(d2)d(d3)∂d1εi∂d2εj ∂d3εk, (C9)

where sγ is the sign of the d3 component of the normal direction
of Sγ . Substituting it into Eq. (60) gives

σ II
H = εijk

π2

∑
γ

∫∫∫
Dγ

d(d1)d(d2)d(d3)
∂d1εi∂d2εj ∂d3εk

(ε2 + 1)2
.

(C10)

Because S is closed, the numbers of positive and negative sγ

must be the same. Taking this into account, we can rewrite
Eq. (C10) as

σ II
H = εijk

π2

∫∫∫
D

d(d1)d(d2)d(d3)
∂d1εi∂d2εj ∂d3εk

(ε2 + 1)2
, (C11)

where D is the volume enclosed by the closed oriented surface
S. Equation (C11) trades Eq. (60), namely Eq. (52), for a d
integral within the volume D , which is invariant under the
change of deformation. This shows that σ II

H is an intrinsic
quantity and its value is unique.

3. Applications

When the surfaceS has a complicated geometry, in general,
it is difficult to use Eq. (C11) to calculate σ II

H . In this case,
the invariance of Eq. (C11) allows us to calculate σ II

H by
an alternative method. That is, we find a simple deformation
and perform the ensuing μ integral in Eq. (60). This method
is particularly useful when the deformation can be easily
found. For example, consider the kicking potential given by
Eqs. (172)–(174). A “natural” deformation is to identify μ

defined in Eq. (173) as the deformation parameter μ, and let it
vary from 1, as specified in Eq. (174), to the boundary value
+∞ at which d3 = +∞. Accordingly, we deform d3, while
letting d1,2 be unchanged, i.e.,

(sin θ1, sin θ2,0.8(1 − cos θ1 − cos θ2))

→ (sin θ1, sin θ2,0.8(μ − cos θ1 − cos θ2)). (C12)

In this case, the constant in the integrable operator (C7) is π .
Substituting this deformation into Eq. (60) we obtain Eq. (177).

Interestingly, when the volume D enclosed by S is zero,
Eq. (C11) vanishes. In this case, no transitions can occur at
large h−1

e . An example can be obtained by replacing β(μ −
cos θ1 − cos θ2) in Eq. (173) by βμ. For this modified model,
we find no transitions for 0 � h−1

e � 10 numerically (Fig. 13),
consistent with theoretical predictions.

APPENDIX D: SELF-DUAL EQUATIONS

Without loss of generality, we focus on the case of s = +
and suppress the subscript +. By using the parametrization
given in Eqs. (30) and (27) we find

∂zQ − Q∂zQ

= 4(1 + iW )−1

(
0 0

∂zZ̃ 0

)
ar

(1 − iW )−1 = 0, (D1)

where we have used ∂zZ̃ = 0. Similarly,

∂z∗Q + Q∂z∗Q

= −4(1 + iW )−1

(
0 ∂z∗Z

0 0

)
ar

(1 − iW )−1 = 0, (D2)
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FIG. 13. Numerical simulations show that when d3 = 0.8(1 −
cos θ1 − cos θ2) [cf. Eq. (173)] is replaced by d3 = 0.8 and other
conditions of the model used for obtaining Fig. 5(c) are not changed,
the system is always insulting and no transition occurs, in agreement
with analytic predictions.

where we have used ∂z∗Z = 0. From these two equations we
obtain

∂1Q + iQ∂2Q

= (∂zQ − Q∂z∗Q) + (∂z∗Q + Q∂z∗Q) = 0. (D3)

Multiplying both sides by −iQ gives

∂2Q − iQ∂1Q = 0. (D4)

Equations (D3) and (D4) are the self-dual equation (96)
corresponding to the “+” sign.

APPENDIX E: STATIONARY INSTANTON ACTION

By using the self-dual equation (96), we obtain

− σ

4
Str(∇Qs)

2 = si
σ

2
Str(Qs∇1Qs∇2Qs). (E1)

Therefore, in the zero-frequency limit the stationary instanton
action

S[Qs]|ω=0 =
(

si
σ

2
+ σH

4

)
Str(Qs∇1Qs∇2Qs). (E2)

We first consider S[Q+]|ω=0. Substituting Eqs. (97), (98), and
(99) into it we find

S[Q+]|ω=0 =
(

iσ

2
+ σH

4

)
Str(�+∇1�+∇2�+)

=
(

iσ + σH

2

)
Str[∇ × (�R∇R−1)]. (E3)

Then, we apply the Stokes’ theorem to Eq. (E3). This directly
relates the instanton action to the local U (1) gauge symmetry
carried by R+(ϑ), i.e.,

S[Q+]|ω=0 =
(

iσ + σH

2

)∮
|z|→∞

dl · str(�R+∇R−1
+ )

=
(

iσ + σH

2

)∫ 2π

0
dϑ lim

|z|→∞
str(�R+∂ϑR−1

+ ).
(E4)

Taking the limit of |z| → ∞ we obtain

S[Q+]|ω=0 = −
(

iσ + σH

2

)∫ 2π

0
dϑ lim

|z|→∞
tr

[
σ 3

ar

(
e∗

1 e0

−e0 e1

)
ar

∂ϑ

(
e1 −e0

e0 e∗
1

)
ar

]

= −
(

iσ + σH

2

)∫ 2π

0
dϑ tr

[
σ 3

ar

(
e−iϑ 0

0 eiϑ

)
ar

∂ϑ

(
eiϑ 0
0 e−iϑ

)
ar

]
= 4πσ − 2πiσH. (E5)

Taking the complex conjugate of Eq. (E5), we obtain the
stationary action of the anti-instanton.

APPENDIX F: EIGENVALUES AND
EIGENFUNCTIONS OF Ô (a)

Because of [∂ϑ,Ô(a)] = 0, there is a good quantum num-
ber associated with the operator ∂ϑ , which is denoted as
M . Taking this into account we can assume the general
form

�(a)(η,ϑ) = C(a)e−iMϑ (1 − η2)
M
2 (1 − η)

a
2 �′(a)(η) (F1)

for the eigenfunctions, with C(a) being the normalization
constant. Substituting it into the eigenfunction equation gives

the hypergeometric equation of Gauss,

((1 − η2)∂2
η + [β − α − (α + β + 2)η]∂η

+{E − [(1 + a)M + M2]})�′(a)(η) = 0 (F2)

with

α = M + a, β = M. (F3)

On the other hand, the Hilbert space of square integrable
functions is spanned by �(a) such that �′(a) is a polynomial.
Equation (F2) has a polynomial solution only if

E − [(1 + a)M + M2] = n(n + 2M + a + 1),

n = 0,1,2, . . . (F4)
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(cf. Theorem 4.2.2 in Ref. [71]). Setting n = J − M with M � J ∈ Z we obtain E = J (J + a + 1) and �′(a)(η) = P
M+a,M
J−M (η).

As we will see shortly, the normalizability condition requires J � 0. Therefore, we prove the eigenvalue spectrum (116).
Next, we calculate the normalization constant, which is given by

1

(C(a))2
=
∫ 1

−1
dη

∫ 2π

0
dϑ(1 − η)M+a(1 + η)M

∣∣e−iMϑP
M+a,M
J−M (η)

∣∣2 = 2π

∫ 1

−1
dη(1 − η)M+a(1 + η)M

(
P

M+a,M
J−M (η)

)2
(F5)

by the definition (120). Applying the Rodrigues’ formula [71]

(1 − η)α(1 + η)βP α,β
n (η) = (−1)n

2nn!

dn

dηn
((1 − η)n+α(1 + η)n+β), (F6)

which is valid for arbitrary α,β, we obtain

1

(C(a))2
= 2π

(−1)J−M

2J−M (J − M)!

∫ 1

−1
dη = dJ−M

dηJ−M
((1 − η)J+a(1 + η)J )P M+a,M

J−M (η) (F7)

from Eq. (F5). Then, we repeatedly perform the integration by parts. Because the polynomial (1 − η)J+a(1 + η)J P
M+a,M
J−M (η)

vanishes at η = ±1 (noticing that J > 0), no boundary contributions arise. As a result,

1

(C(a))2
= 2π

2J−M (J − M)!

∫ 1

−1
dη(1 − η)J+a(1 + η)J

dJ−M

dηJ−M
P

M+a,M
J−M (η). (F8)

We substitute Eq. (118) into it. Since only the highest-order term ∼ηJ−M survives after taking the derivative (J − M) times with
respect to η, we reduce Eq. (F8) to

1

(C(a))2
= 2π

22(J−M)(J − M)!

�(2J + a + 1)

�(J + M + a + 1)

∫ 1

−1
dη(1 − η)J+a(1 + η)J

= π22M+a+2

2J + a + 1

�(J + 1)�(J + a + 1)

�(J − M + 1)�(J + M + a + 1)
, (F9)

which gives the normalization constant in Eq. (117). From this we see that to ensure that the eigenfunctions are normalizable, it
is necessary that J � 0 and −J − a � M � J .

APPENDIX G: INSTANTON MANIFOLD AS ZERO MODES

From Eq. (127) we obtain

v = −2(R(c)[T (ξ )dT (ξ )−1]R(c)−1 + R(c)dR(c)−1)+−, (G1)

ṽ = −2(R(c)[T (ξ )dT (ξ )−1]R(c)−1 + R(c)dR(c)−1)−+. (G2)

We substitute Eqs. (98) and (99) into them and obtain [recalling tαα′
λλ′ = (T dT −1)λα,λ′α′]

vbb = −2
√

4πtbb
+− = −2

√
4πtbb

+−�
(0)
0,0, (G3)

ṽbb = −2
√

4πtbb
−+ = −2

√
4πtbb

−+�
(0)
0,0, (G4)

vbf = 2(tbf++e0 − t
bf
+−e∗

1) = 2
√

2π
(
t
bf
++�

(1)
0,0 − t

bf
+−�

(1)
0,−1

)
, (G5)

ṽbf = −2(tbf−+e1 + t
bf
−−e0) = −2

√
2π
(
t
bf
−+�

(1)∗
0,0 + t

bf
−−�

(1)
0,0

)
, (G6)

vf b = −2(e∗
1 t

f b
+− + e0t

f b
−−) = −2

√
2π
(
t
f b
+−�

(1)
0,−1 + t

f b
−−�

(1)
0,0

)
, (G7)

ṽf b = 2(e0t
f b
++ − e1t

f b
−+) = 2

√
2π
(
t
f b
++�

(1)
0,0 − t

f b
−+�

(1)∗
0,−1

)
, (G8)

vff = 2

[
e0e

∗
1

(
(tff

++ − t
ff
−−) + dλ

λ

)
+ e2

0

(
t
ff
−+ − dz∗

0

λ

)
− e∗2

1 t
ff
+−

]

= 2

√
4π

3

[
1√
2

(
(tff

++ − t
ff
−−) + dλ

λ

)
�

(2)
0,−1 +

(
t
ff
−+ − dz∗

0

λ

)
�

(2)
0,0 − t

ff
+−�

(2)
0,−2

]
, (G9)
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ṽff = 2

[
e0e1

(
(tff

++ − t
ff
−−) − dλ

λ

)
+ e2

0

(
t
ff
+− + dz0

λ

)
− e2

1t
ff
−+

]

= 2

√
4π

3

[
1√
2

(
(tff

++ − t
ff
−−) − dλ

λ

)
�

(2)∗
0,−1 +

(
t
ff
+− + dz0

λ

)
�

(2)
0,0 − t

ff
−+�

(2)∗
0,−2

]
. (G10)

The second equalities in Eqs. (G3)–(G10) show that vαα′ ,ṽαα′

are all expanded by the zero-mode bases. The expansion
coefficients are the coordinate c and the generators of G/H .
The latter are tαα′

λλ′ (λ �= λ′), tαα′
±± (α �= α′), and (tff

++ − t
ff
−−).

They generate the first, second, and last factors in Eq. (105),
respectively.

APPENDIX H: FACTORIZATION OF MEASURE DRs DT

With the shift

dz∗
0

λ
− t

ff
−+ → dz∗

0

λ
,

dz0

λ
+ t

ff
+− → dz0

λ
(H1)

made, the elementary length (140) becomes

ds2 = e2
0|e1|2

(
dλ

λ

)2

+ e2
0|e1|2 dφ2

+ e4
0

∣∣∣∣dz0

λ

∣∣∣∣2 +
4∑

i=1

ds2
i , (H2)

where

ds2
1 ≡ −|e1|4 t

ff
−+t

ff
+−, (H3)

ds2
2 ≡ 1 tbb

−+tbb
+−, (H4)

ds2
3 ≡ −|e1|2 (tf b

−+t
bf
+− − t

bf
−+t

f b
+−), (H5)

and

ds2
4 ≡ −e2

0 (tf b
++t

bf
++ − t

bf
−−t

f b
−−). (H6)

We see that
∑4

i=1 ds2
i involve a set of generators which are

not entangled with the coordinates λ, n10, n20, and φ. The first
three terms in Eq. (H2) induce a measure

e2
0|e1|2 e4

0

dλ

λ3
dφ dn10dn20. (H7)

Below, we find the measure induced by
∑4

i=1 ds2
i . First of

all, the generators in the length element ds2
4 are not entangled

with those in ds2
1,2,3. So, we separate ds2

4 from ds2
i , i = 1,2,3.

Note that any T ∈ U (1,1|2) can be factorized as

T = Ũ T̃ , Ũ = hu0u, (H8)

where T̃ ∈ U (1,1|2)
U (1|1)×U (1|1) , h ∈ H , u0 is given by Eq. (153), and

u ∈ ( U (1|1)
U (1)×U (1) )

2 with Eqs. (148)–(150) as its representation.
Substituting Eq. (H8) into Eq. (139), we obtain

t
f b
++ = (ŨdŨ−1)+f,+b

= (u1du−1
1

)
ei(γ+φ/2−α1)

= −dζ1e
i(γ+φ/2−α1), (H9)

t
bf
++ = −dζ ∗

1 e−i(γ+φ/2−α1), (H10)

t
f b
−− = −idζ ∗

2 ei(γ−φ/2−α2), (H11)

and

t
bf
−− = idζ2e

−i(γ−φ/2−α2). (H12)

Upon inserting them into Eq. (H6) we obtain

ds2
4 = −e2

0 (dζ1dζ ∗
1 + dζ ∗

2 dζ2). (H13)

This implies that Eqs. (149) and (150) constitute a flat
parametrization of ( U (1|1)

U (1)×U (1) )
2 with

4

π2

1

e2
0

2 dζ1dζ ∗
1 dζ ∗

2 dζ2 (H14)

as its measure.
Next, we find the measure induced by

∑3
i=1 ds2

i . To this end,
we choose the coordinates {ξc

μ} of T̃ so that (T ∂ξc
μ
T −1)−α,+α′

are diagonal in the indices μ and α,α′. Specifically, we can
introduce a set of complex numbers and Grassmannians χ

q

αα′
(q = 0,1) such that

tαα′
−+ ≡ dχ

q

αα′�
q

αα′ , tα
′α

+− ≡ dχ
q

αα′�̂
q

αα′ , (H15)

where χ
q

αα′ are complex variables (Grassmannians) for α = α′
(α �= α′). Then, we substitute them into ds2

i , i = 1,2,3. It turns
out that the coordinates in different ds2

i are not entangled
with each other and, therefore, the measure is factorized.
Specifically, substituting Eq. (H15) into Eq. (H3) gives

ds2
1 = −|e1|4 dχ

q

ff �
q

ff �̂
q ′
ff dχ

q ′
ff

= −|e1|4
(
dχ0

ff dχ1
ff

)
g1

(
dχ0

ff

dχ1
ff

)
, (H16)

where g1 ≡ {gqq ′
ff } with

g
qq ′
αα′ ≡ 1

2

(
�

q

αα′�̂
q ′
αα′ − (1 − 2δαα′ )�q ′

αα′�̂
q

αα′
)
. (H17)

Equation (H16) leads to a measure [87]

|e1|4
√

detg1

dχ0
ff dχ1

ff

π
. (H18)

Substituting Eq. (H15) into Eq. (H4) gives

ds2
2 = 1 dχ

q

bb�
q

bb�̂
q ′
bbdχ

q ′
bb

= (dχ0
bb dχ1

bb

)
g2

(
dχ0

bb

dχ1
bb

)
, (H19)
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with g2 ≡ {gqq ′
bb }. This induces a measure

1
√

detg2
dχ0

bbdχ1
bb

π
. (H20)

Substituting Eq. (H15) into Eq. (H5) gives

ds2
3 = −|e1|2

(
dχ

q

f b�
q

f b�̂
q ′
f bdχ

q ′
f b − dχ

q

bf �
q

bf �̂
q ′
bf dχ

q ′
bf

)
= −|e1|2 (dχ0

f b dχ1
f b)g3

(
dχ0

f b

dχ1
f b

)
+ |e1|2 (dχ0

bf dχ1
bf )g4

(
dχ0

bf

dχ1
bf

)
, (H21)

with g3 ≡ {gqq ′
f b } and g4 ≡ {gqq ′

bf }. This induces a measure

1

|e1|22

1√
det(g3g4)

dχ0
f bdχ1

f bdχ0
bf dχ1

bf . (H22)

Collecting Eqs. (H2), (H13), (H16), (H19), and (H21), we obtain

ds2 = e2
0|e1|2

(
dλ

λ

)2

+ e2
0|e1|2 dφ2 + e4

0

∣∣∣∣dz0

λ

∣∣∣∣2 − e2
0

(
dζ1dζ ∗

1 + dζ ∗
2 dζ2

)− |e1|4
(
dχ0

ff dχ1
ff

)
g1

(
dχ0

ff

dχ1
ff

)

+ 1
(
dχ0

bb dχ1
bb

)
g2

(
dχ0

bb

dχ1
bb

)
− |e1|2

(
dχ0

f b dχ1
f b

)
g3

(
dχ0

f b

dχ1
f b

)
+ |e1|2

(
dχ0

bf dχ1
bf

)
g4

(
dχ0

bf

dχ1
bf

)
. (H23)

This elementary length induces a measure

4

π2

e2
0|e1|2 e4

0 |e1|4 1(
e2

0 |e1|2
)2 dλ

λ3
dφ dn10dn20dζ1dζ ∗

1 dζ ∗
2 dζ2MQ, (H24)

namely, the product of the measures (H7), (H14), (H18), (H20), and (H22), where

MQ =
√

det

(
g1g2

g3g4

)
dχ0

ff dχ1
ff

π

dχ0
bbdχ1

bb

π
dχ0

f bdχ1
f bdχ0

bf dχ1
bf (H25)

with det(g1g2),det(g3g4) > 0.
The measure MQ has a gauge [U (1|1) × U (1|1)] invariant form. To see this, we consider a gauge invariant elementary length

on the coset space U (1,1|2)
U (1|1)×U (1|1) :

str(dQ)2 = str[d(T −1�T )2]

= −8str[(T dT −1)+−(T dT −1)−+]. (H26)

Then, we parametrize Q = T −1�T = T̃ −1�T̃ by the coordinates χ
q

αα′ . Taking into account Eq. (H15), we obtain

str(dQ)2 = 8

[(
dχ0

ff dχ1
ff

)
g1

(
dχ0

ff

dχ1
ff

)
− (dχ0

bb dχ1
bb

)
g2

(
dχ0

bb

dχ1
bb

)

+ (dχ0
f b dχ1

f b

)
g3

(
dχ0

f b

dχ1
f b

)
− (dχ0

bf dχ1
bf

)
g4

(
dχ0

bf

dχ1
bf

)]
, (H27)

which gives the measure MQ exactly. So, Eq. (151) is proven.

APPENDIX I: CONSTRAINED INSTANTON

The infrared divergence of the second term of Eq. (155)
merely informs that effects of the frequency term ηStr(Q�)
in the action S[Q] are significant when we consider the scale
much larger than

√
σ/η. Since the stationary equations (94)

and (95) or the self-dual equation (96) are obtained by setting
η to zero, they must break down for large N . So, exactly
speaking, the instanton solution described by Eqs. (97), (98),
and (99) is no longer valid for η > 0. As we will see in the

following, the solution indeed is dramatically modified for
|N | � √

σ/η.
Here, we adopt the method of Ref. [65] to cure this

infrared divergence. This method involves the concept of the
so-called constrained instanton. To start, we note that field
configurations constrained in certain way might minimize
the action, and such field configuration of finite action for
nonvanishing η has to converge to the instanton solution,
namely, Eqs. (97), (98), and (99) in the limit of η = 0. To
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achieve these conditions we assume that the field configuration
has the same form as Eq. (97) except that T is suppressed due
to the symmetry breaking, i.e.,

Q′
s = R′−1

s �R′
s , (I1)

and in Eq. (99) the instanton size λ has an N dependence:
λ2 → λ2f (x,η̃) with x = (|z − z0|/λ)2 and η̃ = 2ηλ2/σ . The
primes in Eq. (I1) are the bookkeeping of this replacement.
The function f (x,η̃) is constrained by f (x,0) = f (0,η̃) = 1
and f (x → ∞,η̃ > 0) = 0.

Substituting Eq. (I1) into the action gives

S[Q′
s]|ω→ iη

2
= 2πσ

∫ ∞

0
dx

f

(x + f )2

×
[

1 +
(

1 − x∂xf

f

)2

+ η̃(x + f )

]
. (I2)

The behavior of f optimizing this action is as follows:

f (x,η̃) =

⎧⎪⎨
⎪⎩

1 + 4η̃x, x�1

1 + η̃x

2 ln η̃x

4 , 1 � x � η̃−1

π
2

√
η̃xe−√

η̃x , x � η̃−1.

(I3)

The last line implies that the constrained instanton exhibits
an exponential decay in |z − z0| for |z − z0| much exceeding√

σ/η, while behaves as the unconstrained instanton for |z −
z0| � √

σ/η.
Substituting Eq. (I3) into the action (I2) we find that the

frequency term has a finite action

ηStr(Q′
s�) ∼ ηλ2 ln η̃, (I4)

instead of the naive result suffering infrared divergence [cf.
Eq. (155)]. Equation (I4) can be established in a more
sophisticated way based on the fact that η is not renormalized
[65]. Most importantly, Eq. (I4) gives a vanishing result in the
limit of η → 0. Correspondingly, the action of the constrained
instanton converges to that of unconstrained instanton.

APPENDIX J: PERTURBATIVE RG FUNCTION

In this appendix, we derive βL,p from Eq. (89). For this
purpose, we use the dimensional regularization to treat the
ultraviolet divergence. Specifically, we calculate Eq. (89) for
ε = d − 2 < 0 and finally extend the result to ε = 0. Applying
this regularization, we obtain

σ̃ = σ

(
1 + 1

ε

1

(4πσ λ̃ε)2

)
. (J1)

Note that throughout this appendix the nonperturbative part of
σ̃ is excluded. Define

σ̃ ≡ 1

4πλ̃εt
, σ ≡ 1

4πλ̃εt
Z−1

σ . (J2)

We rewrite Eq. (J1) as

Zσ = 1 + t2

ε
+ O(t4). (J3)

From the second equation of (J2) we find

d ln t

d ln λ̃
= − ε

1 + d ln Zσ

d ln t

≈ −ε + 2t2. (J4)

FIG. 14. Simulation results of E(t)/t at different times. The
center of these profiles is located at h−1

e = 2.19, corresponding to
the central peak in Fig. 5(c).

On the other hand, the first equation in (J2) gives

d ln σ̃

d ln λ̃
= −ε − d ln t

d ln λ̃
. (J5)

Substituting it into Eq. (J4) we obtain the perturbative RG
function (164).

APPENDIX K: DETAILS FOR NUMERICAL
COMPUTATION OF EQ. (177)

To numerically compute Eq. (177), we rewrite it as

σ II
H = σ

II,a
H + σ

II,b
H , (K1)

where

σ
II,a
H = 2β

Khe

∫∫
dθ1

2π

dθ2

2π

∫ +∞

1
dμ

cos θ1 cos θ2

d2
μ(d2

μ + K−2)
(K2)

and

σ
II,b
H = 2β

Khe

∫∫
dθ1

2π

dθ2

2π

∫ +∞

1
dμ

cos 2ϕμ cos θ1 cos θ2

d2
μ

(
d2

μ + K−2
) .

(K3)

For σ
II,a
H , carrying out the μ integral we obtain

σ
II,a
H = −2K

he

∫∫
dθ1

2π

dθ2

2π
cos θ1 cos θ2

×
(

1

s
arctan

β(1 − cos θ1 − cos θ2)

s

− 1√
s2 + K−2

arctan
β(1 − cos θ1 − cos θ2)√

s2 + K−2

)
,

(K4)

with s2 = s2
1 + s2

2 , si = sin θi . Introducing

fα1,α2 (s1,s2; γ ) ≡ 1√
s2 + γ 2

arctan

×
β
(
1 − α1

√
1 − s2

1 − α2

√
1 − s2

2

)
√

s2 + γ 2
, (K5)
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we rewrite Eq. (K4) as

σ
II,a
H = − 2K

(2π )2he

∫∫ 1

−1
ds1ds2

∑
α1,2=±

α1α2(fα1,α2 (s1,s2; 0) − fα1,α2 (s1,s2; K−1)). (K6)

Passing to the polar coordinate (s,φ) with tan φ = s2/s1, we rewrite Eq. (K6) as

σ
II,a
H = − 2K

(2π )2he

∑
α1,2=±

α1α2

∫ π

−π

dφ

∫ f (φ)

0
dss(f̃α1,α2 (s,φ; 0) − f̃α1,α2 (s,φ; K−1)), (K7)

with

f̃α1,α2 (s,φ; γ ) ≡ 1√
s2 + γ 2

arctan
β(1 − α1

√
1 − s2 cos2 φ − α2

√
1 − s2 sin2 φ)√

s2 + γ 2
(K8)

and

f (φ) =
{

1/| cos φ|, φ ∈ [−π/4,π/4] ∪ [−π, − 3π/4] ∪ [3π/4,π ];

1/| sin φ|, φ ∈ [−3π/4, − π/4] ∪ [π/4,3π/4].
(K9)

After the integration by parts, we find

σ
II,a
H = − 1

πhe

(arctan 3βK − 3 arctan βK)

− 2β

(2π )2heK

∑
α1,2=±

α1α2

∫ π

−π

dφ

∫ f (φ)

0
dss

1

d2(d2 + K−2)

(
1 − 1

α1

√
1 − s2 cos2 φ

− 1

α2

√
1 − s2 sin2 φ

)

− 2β

(2π )2heK

∑
α1,2=±

α1α2

∫ π

−π

dφ

∫ f (φ)

0
dss

1

s2(d2 + K−2)

(
s2 cos2 φ

α1

√
1 − s2 cos2 φ

+ s2 sin2 φ

α2

√
1 − s2 sin2 φ

)

= − 1

πhe

(arctan 3βK − 3 arctan βK)

− 2β

(2π )2heK

∑
α1,2=±

α1α2

∫∫ 1

−1
ds1ds2

1

d2(d2 + K−2)

⎛
⎝1 − 1

α1

√
1 − s2

1

− 1

α2

√
1 − s2

2

⎞
⎠

− 2β

(2π )2heK

∑
α1,2=±

α1α2

∫∫ 1

−1
ds1ds2

1

s2(d2 + K−2)

⎛
⎝ s2

1

α1

√
1 − s2

1

+ s2
2

α2

√
1 − s2

2

⎞
⎠, (K10)

where in the second equality we have returned to the coordinate
(s1,s2). Passing to the coordinate �, we obtain

σ
II,a
H = − 1

πhe

(arctan 3βK − 3 arctan βK)

+ σ
II,a1
H + σ

II,a2
H , (K11)

where

σ
II,a1
H = 2β

heK

∫∫
dθ1

2π

dθ2

2π

cos θ1 + cos θ2 − cos θ1 cos θ2

d2(d2 + K−2)

(K12)

and

σ
II,a2
H = − 2β

heK

∫∫
dθ1

2π

dθ2

2π

× sin2 θ1 cos θ2 + sin2 θ2 cos θ1

(sin2 θ1 + sin2 θ2)(d2 + K−2)
. (K13)

Therefore, the numerical calculation of σ II
H is reduced to

three numerical integrals, namely, Eqs. (K3), (K12), and
(K13).

APPENDIX L: FINITE-TIME EFFECTS IN SIMULATIONS

We find in simulations that the three peaks in Fig. 5(c)
are feasible already at short times, i.e., t = 103, but relatively
broad and exhibit large fluctuations. In Fig. 14, we present
an example which corresponds to the transition at the critical
value of h−1

e = 2.19. We see that when the simulation time
is longer and longer, this peak is narrower and narrower and
the fluctuations are gradually suppressed, with the peak center
pinned. In addition, we observe that the peak height converges
to a finite value. Practically, for t = 106 the peak reaches a
stable height, and has a sufficiently sharp profile.
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